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This manuscript is a supplement to, but not part of, the thesis Simplicial Com-
plezes of Graphs [1]. For notation and basic concepts, we refer to the thesis.

1 Useful results

A simplicial complex is V D(d) if the d-skeleton is vertex-decomposable (V' D).
Refer to the complex as V Dt (d) if the complex is V. D(d) and admits a decision
tree with all evasive sets of dimension d. Note that a V' D(d) simplicial complex
has homotopical depth at least d and that a VD% (d) complex is homotopy
equivalent to a wedge of spheres of dimension d [1].

For a graph G, M(G) is the simplicial complex of matchings contained in G.

Theorem 1.1 ([1, Th. 11.1]) Let G be a graph on the vertex set V. Suppose
that there is a partition {Uy,...,Us} of V such that |U;| < 3 for each i and such
that G(U;) is isomorphic to either K1, Ko, K3, or Pag = ([3],{12,23}). Suppose
further that whenever G(U;) is of the form ({a,b,c}, {ab, bc}) (thus isomorphic
to Pas), the vertex b is not adjacent to any other vertices in G than a and c.
Then M(G) is VD(v), where
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In particular, this holds whenever {Uy,..., U} is a clique partition of G such
that each U; has size at most three. [

Theorem 1.2 ([1, Cor. 11.15]) Let G be a graph on a vertex set V of size
n such that n mod 3 € {0,1}. Suppose that there is a partition {Ui,..., U} of
V' such that |U;| = 3 for each i <t and |Uy| = n mod 3 and such that G(U;) is
isomorphic to either K3 or Pag = ([3],{12,23}) for each i < t. Then M(G) has
nonvanishing homology in dimension v,. O

For n > 0, define Pa,, as the graph with edge set {i(i + 1) : 7 € [0,n — 2]};
we define Pa, as the empty graph if n € {0,1}. M(Pa,,) is isomorphic to the
complex of stable sets in Pa,_1; Kozlov [3, Prop. 4.6] determined the homotopy
type of this complex.



Proposition 1.3 ([1]) Let n > 0 and v, = [251]. Then M(Pa,,) is V.D(vy)
and
[ point ifn=2 (mod3)
M(Pay) ~ { S ifn£2 (mod3). O

2 Grids

The d-dimensional grid Grid, is the infinite graph with vertex set Z¢ and with
an edge between every pair of vertices on Euclidean distance 1; a is adjacent to
a + e;, where e; is the " unit vector. We think about the direction of the d'"
unit vector eg = (0,...,0,1) as “up”; edges of the form {a,a + e4} are vertical,
whereas other edges are horizontal. By convention, the 0-dimensional grid is a
single vertex.

For a sequence m = (myq,...,mq) of positive integers, define Grid(m) as
the induced subgraph of Gridg consisting of all vertices (ay,...,aq) such that
a; € [1,m;] for i € [1,d]. The number of vertices in Grid(m) is H‘Zzl m;.

In this section, we review some enumerative results about the matching
complex on Grid(m) and compute the depth of M(Grid(m)) in the case that some
m; is divisible by three. First, we state a classical result about the number of
perfect matchings in Grid(m,n).

Theorem 2.1 ([2, 5]) Letm and n be integers, not both odd. Then the number
of perfect matchings in Grid(m,n) equals the square root of

H H (200s (W—J) + 2¢ cos (W—k>> O
i i m+1 n+1

Using the techniques described in Propp [4, Sec. 4], one easily establishes the
following result about the f-vector of M(Grid(m)).

Theorem 2.2 Letd > 1 and let m' = (mq,...,mq—1) be a sequence of positive
integers. Then the generating function

Zf (Grid(m’,n)), q)t"

n>1

for the f-polynomial of M(Grid(m’,n)) is a rational function in q and t. In
particular, the generating function

— Gy ZX (Grid(m', n)))t"

n>1

for the reduced Euler characteristic of M(Grid(m',n)) is a rational function in
t. 0



We now consider topological properties of M(Grid(m)). It is probably very
hard to determine the homotopy type of this complex. We confine ourselves to
computing the depth and the connectivity degree in certain cases.

Lemma 2.3 Let m = (mq,...,mq) be a sequence of positive integers such that
n = H;.izl m; is congruent to 0 or 1 modulo 3. Then the shifted connectivity de-
gree of M(Grid(m)) is at most [(n—4)/3]. In fact, M(Grid(m)) has nonvanishing
homology in dimension [(n —4)/3.

Proof. Tt is well-known and easy to prove that M(Grid(m)) contains a Hamilto-
nian path. Partition this path into 3|n/3] short paths of length three and, if
n mod 3 = 1, an additional single vertex. This partition satisfies the conditions
of Corollary 1.2; hence we are done. O

Theorem 2.4 Let m = (my,...,mq) be a sequence of positive integers such
that n = Hle my; s divisible by three. Then M(Grid(m)) is VD(n/3 —1).

Proof. By symmetry, we may assume that my is divisible by three. Write
¥ = M(Grid(m)). Let Y be the set of edges {a,a+e;} such that a = (a4,...,a4)
satisfies ag = 2 (mod 3) and such that ¢ € [1,d — 1]; thus all edges in Y are
horizontal. We want to show that ¥(B,Y \ B) is VD(n/3—1) for each BCY.
Obviously, (B, Y\ B) is empty whenever the edges in B do not form a matching;
thus assume that the edges in B do form a matching.

Let U be the set of vertices not contained in any edge in B; |U| =n —2|B].
Let G be the induced subgraph of Grid(my,...,mgq) \ (Y \ B) on the vertex set
U. Partition U as

{Ua ke = Uay,..;a0_1,k * @i € [L,my], k € [1,mq/3]}

in the following manner; see Figure 1 for an illustration.
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Figure 1: The sets Uy j in the case that (m,n) = (7,6) and the edges in B
are {{42,52},{62,72}, {25,35},{55,65}}. Edges remaining to be checked are
marked with dotted lines.

o If (a’,3k — 1) € U, then define

U, ={@,r):r € {3k—2,3k—1,3k}}.



We have that G(Uy 1) is isomorphic to P; with (a’,3k — 1) as the middle
vertex. Moreover, (a’,3k — 1) is not adjacent to any other vertices than
(a',3k —2) and (a’, 3k) in G; all other edges incident to (a’, 3k — 1) belong
to Y\ B.

o If (a’,3k — 1) is adjacent to (a’,3k — 1) + e; in B, then define
Us o ={(a,3k — 2),(a",3k — 2) + e;}.
Note that G(U, i) is isomorphic to K».
e If (a’,3k — 1) is adjacent to (a’,3k — 1) — e; in B, then define
Us . = {(2',3k), (a",3k) — e;}.
Again, G(Uy 1) is isomorphic to K.

One readily verifies that each vertex is contained in exactly one set in the parti-
tion. The given partition satisfies the conditions of Theorem 1.1, which implies
that M(G) is VD(a), where a = M —1; the number of sets in the partition
is [1% m; - (ma/3) = n/3. Since £(B,Y \ B) = {B} * M(G), Z(B,Y \ B) is
hence VD(5), where

Wl=n/3 _  n=lUl _n_

f=atlBl=" 2 3

By properties of decision trees [1], we are done. O

Corollary 2.5 Let m = (my,...,mq) be a sequence of positive integers such

that n = Hle my; s divisible by three. Then the shifted connectivity degree and
homotopical depth of M(Grid(m)) equals n/3 —1. O

We do not know the connectivity degree and depth of M(Grid(m)) in the case
that n is not divisible by three.

Conjecture 2.6 Let m = (mq,...,mq) be a sequence of positive integers and
write n = H‘f:l m;. Then the homotopical depth of M(Grid(m)) equals [252].

The conjecture is true in the special case d = 2 and m; < 2:

Proposition 2.7 Let m1 and mo be positive integers such that mq < 2. Then
the homotopical depth of M(Grid(my,m2)) equals [(mimo — 4)/3].

Proof. We already know that the proposition is true if ms is divisible by three.
If my = 1 and my = n, then we obtain Pa,; by Proposition 1.3, the depth of
this complex is at least v, = [(n —4)/3]. One readily verifies that Pa,, contains
a maximal face of dimension exactly v,,, which implies that the depth equals
Vp,-

The remaining case is that my = 2 and ms = 3q + r, where ¢ > 0 and r €
{1,2}. Write m} = 3¢q and proceed in exactly the same manner as in the proof



of Theorem 2.4 with the subcomplex M(Grid(2,m})). Extend the family {Ug 1}
with the set {(1,m}5 +1),(2,m5 + 1)} and also the set {(1,m} +2), (2,m} +2)}
if » = 2. Using the same argument as in the proof of Theorem 2.4, we conclude
that M(Grid(2,m2)) is VD(f), where

S 2m2—2q—r_

3 _2m2—r/2_ 2me — 4

1 1>
2 3 3

To prove that the depth is exactly [(2ma — 4)/3], let o be the face containing
the edges {(1,3k—2),(1,3k—1)} and {(2,3k—1),(2,3k)} for each k € [1,m}/3]
and also the edge {(1,mb + i), (2,m} +14)} for 1 <i <r. Then o is a maximal
face in M(Grid(2,m2)) and contains [(2mq — 1)/3] edges as desired. O
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