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Abstract - Svenska

Att studera fördelnigen av speciella tal är en fundamental del av talteorin. Denna rapport behandlar
fördelningen hos summor av två kvadrater genom användningen av analytisk talteori. I rapportens
fokus ligger det asymptotiska beteendet av den motsvarande räknefunktionen, B(x). Konvergen-
stakten för approximationen har inte varit i fokus tidigare och underpresterar när det kommer till
faktiskt evaluera B(x). Vi introducerar en Dirichletserie och använder den i Perrons formel för att
ta fram de första termerna i talföljden som generear Dirichletserien. Denna integral är dessvärre
otymplig och än svårare att evaluera numeriskt. Dirichletserien utvidgas därmed analytisk och en
grenskärning i det komplexa talplanet introduceras. Konturen från Perron sluts och delar utav den
nya konturen förkastas för att kunna likställa den sökta integralen med en enklare. Den kan då
approximeras med en explicit serie med godtyckligt många termer. Resten av rapporten behandlar
en numerisk implementation för att ta fram koefficienterna i serien och sedan resultaten från den
nya approximationsformeln. Denna rapport är en liten fortsättning på arbetet av Daniel Shanks
som beräknade de första 2 koefficienterna med bra noggrannhet. Genom att beräkna högre ordnin-
gens koefficienter uppnår vi ännu högre precision i approximationen för stora x. Det finns flera
möjligheter för att utvidga detta arbete. Genom att vidare utvidga analyciteten hos Dirichletse-
rien kan man förhoppningsvis plocka upp korrektionstermer som reducerar det asymptotiska felet
till fjärderoten av x istället för det nuvarande roten ur x ifall man antar RH. Det exakta antalet
korrekta värdesiffror i de uträknade koefficenterna kan även diskuteras vidare.
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Abstract - English

Studying the distributions of special numbers is a fundamental area of research in number theory.
This paper studies the distribution of sums of two squares using analytic number theory. The
asymptotic behaviour of the corresponding counting function, B(x), is the object of study. The
rate of convergence for the relative error has not been in focus previously and the current formulas
underperform when used to evaluate B(x). We introduce a Dirichlet series and use Perron’s formula
to retrieve the first terms in the series. The integral is however unwieldy and numerically hard to
calculate. Therefore the Dirichlet series is analytically extended and a branchcut is then introduced.
Neglecting some parts of a new encircling contour in the complex plane allows for a simpler integral
to arise. This can in turn be approximated into an explicit series formula with arbitrary many
coefficients. The rest of the paper discusses a numerical method for evaluating the coefficients in
the series and the results for the new formula. This paper is a small continuation of the work done
by Daniel Shanks who calculated the first 2 coefficients with good precision. By calculating higher
order coefficients we achieve even greater precision for large x. There also exists work that can be
done to extend this report. Further extending analyticity of the Dirichlet series would allow for
correction terms, hopefully reducing the asymptotic error to be close to the fourth root of x instead
of the current square root error when assuming RH. Also the exact number of correct significant
decimals in the calculated coefficients can be discussed further
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Chapter 1

Theoretical Background

1.1 The counting function B(x)
We study the function

B(x) =
∑

1≤n≤x
b(n) (1.1)

where n runs through the positive integers and b(x) : R→ {0, 1} is 1 iff x ∈ Z+ and can be written
as the sum of the squares of two integers. Otherwise it is zero. Here we disregard 0 as a sum of
two squares, even though it is, since it will let us bypass an index shift in the Dirichlet series we
are about to introduce.

1.1.1 Reformulating B(x)
According to the sum of two squares theorem we have that b(n) = 1 if the prime decomposition
of n contains no prime congruent to 3 modulo 4 raised to an odd power and otherwise it is 0 [1].
Now for all n with b(n) = 1 we have for the prime decomposition of n that

n = pm1
1 pm2

2 pm3
3 · · · q2n1

1 q2n2
2 q2n3

3 · · · 2o (1.2)

where pi ≡4 1 are primes congruent to 1 mod 4 and qi ≡4 3 primes congruent to 3 mod 4. Then
for its corresponding Dirichlet series we have in the region of absolute convergence (Re(s) > 1)
that for p and q denoting primes

β(s) =
∞∑
n=1

b(n)
ns

=

(1 + 1
2s + 1

22s · · · )
∏
p≡41

(1 + 1
ps

+ 1
p2s · · · )

∏
q≡43

(1 + 1
q2s + 1

q4s · · · ) =

(1− 2−s)−1
∏
p≡41

(1− p−s)−1
∏
q≡43

(1− q−2s)−1.

(1.3)

For details see appendix B.1 and B.2. This expression can in turn be rewritten using the Riemann
Zeta function and another Dirichlet series generated by a certain Dirichlet character. We have two
series, shown analogously to 1.3

ζ(s) =
∞∑
n=1

1
ns

= (1− 2−s)−1
∏
p≡41

(1− p−s)−1
∏
q≡43

(1− q−s)−1 (1.4)

L(s, χ4) =
∞∑
n=1

(−1)n

(2n+ 1)s =
∏
p≡41

(1− p−s)−1
∏
q≡43

(1 + q−s)−1. (1.5)

These equalities are proven using unique prime factorization in the integers and that the coefficients
in L(s, χ4) are determined by their prime decomposition. Proving that the products (1.4) and (1.5)
converge absolutely and are analytic for Re(s) > 1 is shown in the same way as for β(s). Using that
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all factors converge absolutely in this region, allowing free rearranging of the terms and factors,
we can now state that in the region Re(s) > 1

β(s)2 = (1− 2−s)−1ζ(s)L(s, χ4)
∏
q≡43

(1− q−2s)−1 (1.6)

Observe that the right hand-side of (1.6) is analytic all the way to Re(s) > 1
2 , this is clearly an

analytic extension of β(s)2. From now on β(s)2 denotes this analytic extension defined by the right
hand-side of (1.6).

Let s = σ + it be a complex number. Now use the results from appendix B.1 saying that the
modulus of β(s)− 1 is bounded from above by 1

σ−1 . Study the region σ > 3 in the complex plane.
This is an open connected subset of C. Here β(s) can be written as β(s) = 1+(β(s)−1) where the
latter term has a modulus bounded by 1

2 . So |β(s)| ≥ 1
2 and Arg(β(s)) ∈ (−π4 ,

π
4 ). Then clearly

when taking the principal-branch-square root of β(s)2 in this area we get back β(s) and not −β(s)

Re(s) > 3 =⇒ β(s) =
√
β(s)2 (1.7)

Now we can use that β2 is an analytic extension given by equation (1.6) to try and extend β using
the monodromy theorem for Re(s) > 1

2 defining

β(s) :=
√
β(s)2 (1.8)

This is extension is well-defined with the exception that zeros and poles of β(s)2 will cause branch
points and therefore branch cuts for the square root. We can choose these branch cuts to be
horizontal rays stretching to the left of the branch points. Along the cuts the function will not be
analytic. Later we will integrate along a contour in this region and any such ray can be encircled
using the classic key-hole contour. β(s)2 is analytic in the region Re(s) > 1

2 and the zeros of an
analytic function cannot cluster, implying that these cuts are manageable. For simplicity we will
be assuming general RH and no such cuts will be discussed further except for the pole one at s=1
due to ζ(s).

1.2 Approximating B(x)
1.2.1 Perron’s Formula
Perron’s formula states that for an arithmetic function b(n) : Z+ → C with a uniformly convergent
Dirichlet series, β(s) =

∑∞
n=1

b(n)
ns , for Re(s) > σ0, where the σ0 is the abscissa of absolute

convergence for the Dirichlet series, that

B′(x) := b(x)
2 +

∑
1≤n<x

b(n) = 1
2πi

∫ c+i∞

c−i∞
β(s)x

s

s
ds (1.9)

where c > 0, c > σ and x > 0. For the proof see [2]. One immediately sees the use of this formula.
B′(x) will closely correspond to the function B(x) at the center of this paper. In fact the relative
error as n→∞ will tend towards 0.

1.2.2 Revising the Integral
For simplicity we will assume the general Riemann Hypothesis. Then one can conclude that the
function β(s) is analytic, with a pole in 1 and without zeros in the region R = {s ∈ C : Re(s) >
1
2}\(−∞, 1]. R is a half-plane without the closed ray going from 1 to −∞. The integral shown in
figure 1.1 is the integral of Perron’s formula (c = 2) with an extra enclosing integration path from
(1/2+δ)+ i∞ to (1/2+δ)− i∞ where δ > 0 is small. Note also that the contour includes a keyhole
around s = 1 to avoid the branch cut caused by the pole of the Riemann Zeta function here (note
that the other factors in β(s) are all clearly non-zero at s=1). This means that the shaded region
in figure 1.1 is completely void of poles and zeros making this complete integral 0.

The pole of ζ(s) at s = 1 shows up in β(s) as a pole of β(s) on the form 1√
s−1 . [3] The residue

of a pole on the form 1√
s
is 0, see appendix B.3. Thus contour B contributes 0.
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The contribution of contour C will become relatively small as x grows and can be neglected.
This will be shown in section 1.2.3

Finally contours D and D’ will give contributions in both directions and will not cancel out
due to the branch cut present. In essence this implies that the integral over A almost equals the
integral over −(D + D’).

Figure 1.1: First contour.

1.2.3 Proving the Insignificance of C
The error that arises when neglecting the integration over C in figure 1.1 is small. We shall now
show this and that there is no pathological behaviour for large imaginary parts. The proof will
closely mimic that of Davenport’s proof of the prime number theorem. [2] To start a result from
[2] is used, if

I(y, T ) = 1
2πi

∫ c+iT

c−iT

ys

s
ds (1.10)
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and

δ(y) =


0 if 0 < y < 1,
1
2 if y = 1,
1 if 1 < y

(1.11)

then

|I(y, T )− δ(y)| <
{
ycmin(1, T−1|ln(y)|−1) if y 6= 1
cT−1 if y = 1

. (1.12)

Note that this gives us
δ(y) = lim

T→∞
I(y, T ). (1.13)

Now introduce
J(x, T ) = 1

2πi

∫ c+iT

c−iT
β(s)x

s

s
ds. (1.14)

We can now deduce, using uniform convergence, that

|J(x, T )−B′(x)| =
∑
n≥1

b(n)
∣∣∣I(x

n
, T )− δ(x

n
)
∣∣∣ <∑

1≤n
n 6=x

b(n)(x
n

)cmin
[
1, T−1|ln(x

n
)|−1

]
+ cT−1b(x)

(1.15)

|J(x, T )−B′(x)| < xc
∑
1≤n
n 6=x

(b(n)
nc

) min
[
1, 1
T |ln( xn )|

]
+ cT−1b(x). (1.16)

To facilitate the calculations we choose c = 1 + 1
ln(x) . Note that then we obtain xc = eln(x)c =

e1+ln(x) = ex. Note also that the term cT−1b(x) is dominated by the rest of the expression and
can be omitted from the following calculations. Let us first study the part of the error such that
|n− x| > x

4 . Then we have that an upper bound for 1
|ln( xn )| <

1
|ln( 4

3 )| . We conclude that for T > 4

∑
1≤n

|n−x|> x
4

n 6=x

(b(n)
nc

) min
[
1, 1
T |ln( xn )|

]
<

1
|ln( 4

3 )|
∑
1≤n
n 6=x

(b(n)
nc

) 1
T
<

1
|ln( 4

3 )|
β(c) 1

T
(1.17)

How does β(c(x)) behave as a function of x? We need a bound for this factor. c will converge to
1 as x grows. Recall the definition of β(s), it has a pole due to

√
ζ(s) being one of its factors. So

we can write
β(s) = 1√

s− 1
A(s) (1.18)

where A(s) is analytic in a neighbourhood around s = 1. Close to 1 A(s) is close to A(1), a
constant, so we can conclude that

β(c) = O( 1√
c− 1

) = O(
√
ln(x)) (1.19)

In turn we obtain ∑
1≤n

|n−x|> x
4

n 6=x

b(n)( 1
nc

) min
[
1, 1
T |ln( xn )|

]
= O(

√
ln(x)
T

) (1.20)

This is a small term which will be dominated by the next one. We turn our attention to the rest
of the error term. Now consider n ∈ ( 3x

4 , x) and treat the other case analogously. Let x1 be the
largest integer in this interval such that b(x1) = 1. Then we have that the term contributes with a
constant 1

nc = O(1). The rest of the terms in this interval can be written on the form n = x1 − ν
where ν ∈ (0, x4 ). Then we can we write the following expression

|ln(x
n

)| ≥ |ln(x1

n
)| = |ln(1− ν

x1
)| ≥ ν

x1
. (1.21)
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This allows us to dominate the contribution of these terms to the error as follows using that ( xn )c
is bounded for these n ∑

n∈( 3x
4 ,x)

b(n) min
[
1, 1
T |ln( xn )|

]
<

1
T

∑
ν∈(0, x4 )

b(n)x1

ν
<

x

T

∑
ν∈(0, x4 )

1
ν
∼ x

T

∫ x
4

1

1
ν
dν = x

T
ln(x/4) = O(xln(x)

T
).

(1.22)

We will choose T to grow with x faster than ln(x) later and is what allows us say that min
[
1, 1

T |ln( xn )|

]
6=

1. Finally we may present the sought-after partial result

|J(x, T )−B′(x)| = O(xln(x)
T

+ 1) (1.23)

Now that we have shown that the infinite integral of (1.9) can be approximated by a finite integral
from c− iT to c+ iT we can consider the closed loop integral in figure 1.2. Since it is a closed loop
integral over a space in which the integrand is void of poles the total integral is, as before, 0. We
shall now show that the contribution of contour C in figure 1.2 is negligible.

Powered by TCPDF (www.tcpdf.org)

Figure 1.2: Second contour.
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First it is known that in the half plane 1
2 < σ (where s = σ + it) for sufficiently large t

|β(s)| = O(tε) where ε is some real number. It is proved using convexity and a generalization of
the maximum modules principle called the Phragmén-Lindelöf principle. For details see [4]. As β
is symmetric in t we shall only consider the parts of C for which t > 0. We denote the horizontal
line C1 and the vertical line C2.

For C1 we have s = σ + iT and thus for sufficiently large T the size of the contribution will be∣∣∣∣∣
∫ 1

2 +δ+iT

c+iT
β(s)x

s

s
ds

∣∣∣∣∣ ≤
∫ c

1
2 +δ
|β(s)| |xs|

|
√
σ2 + T 2|

dσ ≤∫ c

1
2 +δ

KT ε
|esln(x)|
T

dσ ≤
∫ c

1
2 +δ

KT ε−1eσln(x)dσ =

KT ε−1
∫ c

1
2 +δ

eσln(x)dσ = KT ε−1
[ xσ

ln(x)

]c
1
2 +δ

= KT ε−1(ex− x
1
2 +δ

ln(x) ) = O(T ε−1 x

ln(x) )

. (1.24)

Where K is a suitable constant. For C2 the size of the contribution will be∣∣∣∣∣
∫ 1

2 +δ+iT

1
2 +δ

β(s)x
s

s
ds

∣∣∣∣∣ ≤
∫ T

0
|β(s)| |xs|

|
√

( 1
2 + δ)2 + t2|

dt ≤

K

∫ T

0
tε
|e( 1

2 +δ)ln(x)|
t

dt ≤ Kx( 1
2 +δ)

∫ T

0
tε−1dt =

Kx( 1
2 +δ)

[ tε
ε

]T
0

= O(x 1
2 +δT ε)

. (1.25)

Now we will add the different contributions together to find the size of the error of our approxi-
mation. In the calculations below D is used to represent the sum of the integral over contours D
and D’.

|D−B′(x)| ≤ |D−J(x, T )|+|J(x, T )−B′(x)| ≤ O(T ε−1 x

ln(x) )+O(x 1
2 +δT ε)+O(xln(x)

T
+1) (1.26)

If we now choose T = x
1
2 and δ = ε

2 we get

|D−B′(x)| ≤ O(x
ε−1

2
x

ln(x) ) +O(x 1
2 + ε

2x
ε
2 ) +O(xln(x)

x
1
2

) = O(x 1
2 +ε). (1.27)

1.2.4 Logarithmic Taylor Expansion
Now we want study the integral with the greatest contribution to the integral more closely. It is
of the form

B(x) ≈ −1
πi

∫ 1

1−L
β(s)x

s

s
ds. (1.28)

Here we are looking at contour D slightly above the real axis and L = 1/2 − δ. This can be
rewritten as

B(x) ≈ 1
πi

∫ L

0
β(1− t) x1−t

(1− t)dt =
∫ L

0
x1−tf(t)dt (1.29)

where

f(t) = 1
π(1− t)

1√
t

√√√√−tζ(1− t)L(1− t, χ4)
(1− 2t−1)

∏
q≡43

(1− q2t−2)−1. (1.30)

We introduce g(t) and h(t) to facilitate calculations later on.

f(t) = 1√
t
g(t) = 1√

t

√
−tζ(1− t)h(t) (1.31)

Now once the singularity of ζ has been factored out, the rest, g(t) is analytic and we can Taylor
expand g at t = 0 (s = 1). This lets us write

g(t) =
N∑
n=0

g(n)(0)
n! · tn +O

(
tN+1). (1.32)
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Now it is relevant to study the following integral

x

∫ L

0
x−ttm−1/2dt. (1.33)

We will see it is very similar to the incomplete lower gamma function

Γl(a, x) =
∫ x

0
e−uua−1du. (1.34)

Here we can substitute u = t · ln(x) to obtain

x

∫ Lln(x)

0
e−u( u

ln(x) )m−1/2 du

ln(x) = x

ln(x)m+ 1
2

∫ Lln(x)

0
e−uum−1/2du =

x

ln(x)m+ 1
2

Γl(m+ 1/2, Lln(x))
. (1.35)

This result along with uniform absolute convergence of the Taylor series allows us to interchange
summation and integration and gives us a formula that can be tricky to calculate numerically but
useful when trying to extend our theoretical results.

B(x) = x√
ln(x)

∞∑
n=0

cn(x)
ln(x)n +O

(
x1/2+ε)

cn(x) =
g(n)(0) · Γ(n+ 1

2 , Lln(x))
n!

(1.36)

For evaluating the expression a bit faster numerically we can approximate the lower incomplete
function with the regular Γ for large x. Then an error term is introduced. It is of the form

x

ln(x)m+ 1
2

∫ ∞
Lln(x)

e−uum−1/2du. (1.37)

Let us estimate the size of it. Clearly there is a constant C (depending on m) such that for any
fix α > 0 such that∫ ∞

Lln(x)
e−uum−1/2du < C

∫ ∞
Lln(x)

e−(1−α)udu = O(x−(1−α)L). (1.38)

So as a conclusion we can write∫ L

0
x1−ttm−1/2dt = x

ln(x)m+ 1
2

Γ(m+ 1
2) +O

( x1−(1−α)L

ln(x)m+1/2

)
. (1.39)

In hindsight this is actually a quite crude approximation, especially when languages like Matlab
have an implementation of Γl(a, x). To conclude this gives us the approximation formula for our
numeric implementation.

B(x) = x√
ln(x)

N∑
n=0

cn
ln(x)n +O

( x

ln(x)N+3/2

)
+O

(x1−(1−α)L√
ln(x)

)
+O

(
x1/2+ε)

cn =
g(n)(0) · Γ(n+ 1

2 )
n!

(1.40)

The good thing about this formula is that all we need to evaluate it at x, except for calculating
ln(x), is the derivatives of g(t) at 0. This will be discussed in 2. Here the first error term is due to
us truncating the Taylor series of g(t). The second error term is due to simplifying the integral in
(1.28) and the third is due to us changing and disregarding parts of the contour.

Note that we will be discussing yet another contour shift which might reduce the error from ne-
glecting parts of the contour into ∼ O(x1/4+ε). Then we can no longer approximate Γl(a, Lln(x))
with ordinary Γ because it introduces an error comparable to

√
x and the formula from (1.36) must

be used in order for the shift to be meaningful.

12



1.2.5 Calculating g(n)(0)
The constants g(n)(0) of the previous section are derivatives in the complex plane. These are best
treated with Cauchy’s Integral formula. We recall that

g(n)(a) = n!
2πi

∫
C

g(z)
(z − a)n+1 dz (1.41)

where C is a closed loop around a. See section 2.2.6 for further details on how to do it numerically.

1.3 Analytic Extension
Now the Dirichlet series defining β(s) only converges up the the line with real-part 1. In section
1.1.1 we concluded that β(s) agrees with some other analytic expressions involving β(s)2. If we find
an analytic extension of β(s)2 it will automatically produce an extension of β(s) for us to use later.
This extension demands branch cuts at each zero and pole of β(s)2 as discussed previously. We
are allowed to choose the branch cut to be a closed ray from the branch point stretching to the left.

In section 1.1.1 we found the following expression

β(s)2 = (1− 2−s)−1ζ(s)L(s, χ4)
∏
q≡43

(1− q−2s)−1. (1.42)

We want this to extend this function even further down to all of Re(s) > 1/4. The method that
will be described invites for recursively extending the function down to any line Re(s) > 2−n.
However this has not been investigated further. We cannot do this unless we manipulate the
factor

∏
q≡43(1− q−2s)−1. Now in the region Re(s) > 3 we can manipulate it because of absolute

convergence, small angles and the absence of zeros to turn it into something new.

∏
q≡43

(1−q−2s)−1 =
∏
q≡43(1− q−2s)−1∏

p≡41(1− p−2s)−1∏
p≡41(1− p−2s)−1 = (1−2−2s)ζ(2s)

∏
p≡41

(1−p−2s) (1.43)

∏
p≡41

(1− p−2s) =
∏
p≡41

(1− p−2s)

√∏
q≡43(1 + q−4s)∏
q≡43(1 + q−4s) =

√∏
p≡41(1− p−2s)2∏

q≡43(1 + q−4s)∏
q≡43(1 + q−4s)

(1.44)
Recall from section 1.1.1 that in this region we can use

ζ(s)L(s, χ4) = (1− 2−s)−1
∏
p≡41

(1− p−s)−2
∏
q≡43

(1− q−2s)−1. (1.45)

Using this we obtain due to due well-behaved arguments

∏
p≡41

(1− p−2s) =
√

1
(1− 2−2s)ζ(2s)L(2s, χ4)

∏
q≡43(1 + q−4s) =

1√
(1− 2−2s)

√
ζ(2s)

√
L(2s, χ4)

∏
q≡43(1 + q−4s)

. (1.46)

Using this we obtain in the domain Re(s) > 3

β(s)2 = Φ(s)
√

Ψ(s)
Φ(s) := (1− 2−s)−1ζ(s)L(s, χ4)

Ψ(s) := (1− 2−2s)ζ(2s)L(2s, χ4)−1
∏
q≡43

(1 + q−4s)−1
. (1.47)

Note that both Φ and Ψ are analytic on Re(s) > 1
4 except for Φ having a pole at s = 1. The

monodromy theorem lets us extend β(s) here as well except for branch cuts stretching to the left
of each zero.

13



1.3.1 Assumptions
The form of β(s)2 from (1.47) is what we want. Now we will make some very strong assumptions
in order to get the results we want and extend this function beyond Re(s) > 1/2. Essentially all
branch cuts will to be due to the factors (s− ρ) where β(s)2(ρ) = 0. We assume

1. General Riemann Hypothesis

2. All zeros of ζ(s) and L(s, χ4) on the critical line are simple.

Zeros of higher order can be handled in a similar way as we are about to but we do not know the
order of the zeros of ζ(s). Finding ways to determine this numerically is out of the scope of this
paper but is an interesting subject.

1.3.2 Second Revision of the Integral
Here we study what happens if the left side of the contour is shifted even further to the left, close
to the line Re(s) = 1

4 . Now that the existence of an analytic extension has been proven one can
do this as long as one avoids the horizontal branch cuts caused by the zeros of β(s)2.

The zeros of β(s)2 arise only from the zeros of ζ(s) and L(s, χ4) and they are simple. This
let’s us at each zero ρ study the function ρβ(s)

s
√
s−ρ = O(β(s))√

s−ρ . Since the zeros are assumed to be
simple the function does not have a branch point, since we factored out the zero of β, and is
therefore analytic in a larger region than β

s , especially at ρ.

Just like at s = 1 we get a keyhole contour at each zero because of the square root that was
factored out. At each keyhole contour around some zero ρ the integral’s contribution will be very
similar to that of the one around s = 1. The circle part will vanish and only the horizontal lines
will contribute. The vertical lines connecting the keyholes will be our error term. The contribution
of the integral along the keyholes of length L′ around the horizontal branch cut at ρ will be

1
πi

∫ ρ

ρ−L′
β(s)x

s

s
ds =

∫ L′

0

xρ−t

ρ

√
tgρ(t)dt (1.48)

where gρ is the mentioned analytic function

gρ(t) = ρ

π(ρ− t)

√√√√−ζ(ρ− t)L(ρ− t, χ4)
t(1− 2t−ρ)

√
(1− 2−2(ρ−t))ζ(2(ρ− t))L(2(ρ− t), χ4)−1

∏
q≡43

(1 + q−4(ρ−t))−1.

(1.49)
Because gρ(t) has a Taylor expansion it is natural to try and study the following integral which we
can manipulate just like in section 1.2.4∫ L′

0
xρ−ttm+1/2dt = Γl(m+ 3

2 , L
′ln(x)) xρ

(ln(x))m+3/2 . (1.50)

Now we will get a sum over all zeros of β(s), for clarity we can use the expansion

gρ(t) = gρ(0) +O(t). (1.51)

Where

ζ(ρ) = 0 =⇒ gρ(0) = 1
π

√√√√ζ ′(ρ)L(ρ, χ4)
(1− 2−ρ)

√
(1− 2−2ρ)ζ(2ρ)L(2ρ, χ4)−1

∏
q≡43

(1 + q−4ρ)−1 (1.52)

L(ρ, χ4) = 0 =⇒ gρ(0) = 1
π

√√√√ζ(ρ)L′(ρ, χ4)
(1− 2−ρ)

√
(1− 2−2ρ)ζ(2ρ)L(2ρ, χ4)−1

∏
q≡43

(1 + q−4ρ)−1.

(1.53)
This gives us a picture of what the zeros do. Now we also have a pole due to ζ(2s) evaluated at
s = 1/2. This will be handled just like all other branch points. The circle part of the keyhole
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contributes 0. Now however we factor out the fourth root of t. The point s=1/2 lies at the
horizontal branch cut from s = 1 and we do not have to introduce a new one. We study the
integral

1
πi

∫ 1/2

1/2−L′
β(s)x

s

s
ds =

∫ L′

0
x1/2−tt−1/4g 1

2
(t)dt. (1.54)

Here we define

g 1
2
(t) = 1

iπ( 1
2 − t)

√√√√√−ζ( 1
2 − t)L( 1

2 − t, χ4)
(1− 2t− 1

2 )

√√√√ (1− 2−2( 1
2−t))tζ(2( 1

2 − t))
L(2( 1

2 − t), χ4)
∏
q≡43

(1 + q−4( 1
2−t))−1

(1.55)
which is an analytic function at s = 1

2 and has a uniformly and absolutely convergent Taylor series
that converges for t < 1/4. Since L′ < 1/4 the termwise integral of the Taylor series is well-defined.

g 1
2
(t) =

∞∑
k=0

g
(k)
1
2

( 1
2 )

k! tk (1.56)

So we can simplify the integral∫ L′

0
x1/2−tt−1/4g 1

2
(t)dt = x

1
2

ln(x) 3
4

∞∑
k=0

ek(x)
ln(x)k

ek(x) =
g

(k)
1
2

( 1
2 )Γl(k + 3

4 , L
′ln(x))

k!

. (1.57)

To conclude we have a new complete formula for B(x), using the full taylor expansion of gρ at
each zero

B(x) = x√
ln(x)

∞∑
n=0

cn(x)
ln(x)n + x

1
2

ln(x) 3
4

∞∑
k=0

ek(x)
ln(x)k +

∑
ρ

Im(ρ)<T

xρ

ρ

1
ln(x) 3

2

∞∑
m=0

dm(x)
ln(x)m + V +O(xln(x)

T
+ 1)

dm(x) =
g

(m)
ρ (ρ)Γl(m+ 3

2 , L
′ln(x))

m!

.

(1.58)

Here the first sum is due to the main term, the pole at s = 1. The second sum is due to the pole
at s = 1

2 . The poles are of different order and contribute differently. The third term is due to
the zeros of β(s). V is the error from neglecting the vertical contour with real-part close to 1/4
and the lids connecting it to the contour on the right. V needs to be investigated but is hopefully
small. The last term is due to the right side of the contour being finite. This is the result from
equation (1.23) where T is the height of the contour.
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Figure 1.3: The contour shifted past Re(s) = 1/2.
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Chapter 2

Numerical Studies

2.1 SageMath
SageMath is a Python based computer programming language primarily used for performing nu-
merical mathematical calculations. It has a vast mathematical library which is its main selling
point. Because of the inclusion of such things as the Stieltje constants and the Riemann zeta
function mainly Sage was used for the numerical portion of this report.

Due to the limited documentation of SageMath and its peculiarities most of the time spent on
this project was spent on developing an understanding for this tool. During early stages of the
project a lot of functions were implemented manually due to the lack of understanding for the
many preprogrammed functions in SageMath. However in the finalized version as many of the
already implemented methods as possible were used.

2.2 Calculating Higher Order Derivatives
Finding the constants g(n)(0) of section 1.2.4 is what is needed to evaluate our approximation.
Two different methods were used.

2.2.1 Evaluating Riemann ζ close to s = 1
SageMath has an inbuilt implementation of Riemann zeta utilizing the MPFR library for real
numbers and Pari C library for complex numbers. However this implementation did not behave
well in a neighborhoods of 1, exactly where we are interested in studying the function. To work
around this one can utilize the Laurent series of ζ at s = 1. From [3] this is known to be

1
s− 1 +

∞∑
n=0

(−1)n

n! γn(s− 1)n (2.1)

Where γn are the Stieltje constants. Luckily these are available in the standard library of SageMath.
Now, numerically, it is much easier to evaluate (s − 1)ζ and this is what is used. It allows us to
have the error in evaluation, denoted by µ(z), have an upper bound, µ, independent of how close
we are to the pole.

2.2.2 Difference quotients
The first method that might come to mind for calculating derivatives numerically is difference
quotients as per the Euler method. This is a rather crude method and quickly becomes problematic.

When restricted to the real line, β(s) is a real-valued function and can be treated as such.
We can find its derivatives by taking difference quotients. The proof of the two firs derivatives

17



correctness is most easily shown by Taylor expanding as follows.

f(x+ h) = f(x) + f ′(x)h+ f ′′(x)h
2

2 + f (3)(x)h
3

3! + f (4)(x)h
4

4! +O(h5)

f(x− h) = f(x)− f ′(x)h+ f ′′(x)h
2

2 − f
(3)(x)h

3

3! + f (4)(x)h
4

4! +O(h5)

f(x+ 2h) = f(x) + 2f ′(x)h+ 2f ′′(x)h2 + 4f (3)(x)h
3

3 + 2f (4)(x)h
4

3 +O(h5)

f(x− 2h) = f(x)− 2f ′(x)h+ 2f ′′(x)h2 − 4f (3)(x)h
3

3 + 2f (4)(x)h
4

3 +O(h5)

. (2.2)

This lets us deduce that

f(x+ h)− f(x− h) = 2f ′(x)h+ f (3)(x)h
3

3 +O(h5)

f(x+ h) + f(x− h) = 2f(x) + f ′′(x)h2 +O(h4)

f(x+ 2h)− f(x− 2h) = 4f ′(h) + 8f (3)h
3

3 +O(h5)

. (2.3)

Note that even higher order derivatives can be calculated with this method and the error continues
to small assuming there is no error in evaluating f, which is wrong to assume.

These lets us obtain the following formulas first used to evaluate the derivatives of β(s)

f(x+ h)− f(x− h)
2h = f ′(x) +O(h2)

f(x+ h)− 2f(x) + f(x− h)
h2 = f ′′(x) +O(h2)

f(x+ 2h)− f(x− 2h)− 2 ·
[
f(x+ h)− f(x− h)

]
2h3 = f (3)(x) +O(h2)

. (2.4)

This gave us the estimates shown in table 2.1.

h c0 c1 c2 c3
10−3 0.7642228753 0.4447311944 0.9864563024 3.7223345586
10−6 0.7642228753 0.4447299630 0.9867687981 -339.1159835
10−9 0.7642228753 0.4447298812 -324.7689910 1.537358655 ·1011

10−12 0.7642228753 0.4445708323 -3.521692457 ·108 2.459773844 ·1020

Table 2.1: Derivatives of g(s) for varying h by the Euler method.

Due to the limited precision of our numerical calculations the numerators of equation (2.4)
cannot become arbitrarily small and errors are introduced here. Also as the denominator decreases
(due to smaller h and larger powers of h) this error is magnified rendering the approximations of
higher order derivatives extremely poor and in some cases completely unusable. Therefor this
method is not at all recommended for calculating derivatives of high order and high precision.
Other more numerically stable methods are used instead.

2.2.3 Evaluating the Euler Product
To use Cauchy’s integral formula we need to evaluate β and especially the Euler product over
primes congruent to 3 mod 4 ∏

q≡43

1
(1− q−2s) . (2.5)

In section 1.3 we rewrite this as an expression that is now meromorphic on a larger set than the
original expression, see equation (1.47). We can repeat this procedure inductively, as done in [5],
and reach the form ∏

q≡43

1
(1− q−2s) =

∞∏
k=1

(
ζ(2ks)(1− 2−s·2k)

L(2ks)

) 1
2k

(2.6)
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at least in the region Re(s) > 1/2. A quick look at the formula and inspecting the Dirichlet series
of ζ and L will have the reader realize that the factors of this new product form converges much
faster. This facilitates the evaluation of the Euler product when considering speed and accuracy.

2.2.4 Error of finite Cauchy’s integral formula with Perfect Evaluation
The reasoning behind this way of extracting the derivatives is as follows. Choose a radius r for
encircling the point a, then

g(n)(a) = n!
2πi

∫
C

g(z)
(z − a)n+1 dz = n!

2πi

∞∑
k=0

g(k)(a)
k!

∫
C

(z − a)k

(z − a)n+1 dz =

n!
2πi

∞∑
k=0

g(k)(a)
k!

∫ 1

0
(re2πit)k−n−1r2πie2πitdt = n!

∞∑
k=0

g(k)(a)
k! rk−n

∫ 1

0
e2πi(k−n)tdt

. (2.7)

Now assuming we can evaluate functions perfectly, take a positive integer N. Then we approximate

g(n)(a) ≈ n!
N

∞∑
k=0

g(k)(a)
k! rk−n

N−1∑
t=0

e
2πi(k−n)t

N . (2.8)

Now we realize that the geometric sum
∑N−1
t=0 e

2πi(k−n)t
N = 1−e2πi(k−n)

1−e
2πi(k−n)t

N

= 0 unless (k − n) is
multiple of N . So we have

g(n)(a) ≈ g(n)(a) + n!
∞∑
k=1

g(n+Nk)(a)
(n+Nk)! r

Nk−n. (2.9)

Evaluating the function in N points implies that only the Nth derivative will have an significant
impact on the error for lower order derivatives! Of course this is not true when we have an error in
evaluating g but it explains how 100 points give us 10 correct decimals for lower order derivatives
in section 2.2.6.

2.2.5 Error of finite Cauchy’s integral formula with Error in Evaluation
If we use the results from section 2.2.4 to mimic Cauchy’s integral formula we see that our numerical
integration gives us an accurate formula for the error in our coefficients. This must be modified a
little because we have an error, µ(z), when evaluating the function. Let µ ∈ R+ be a bound for
the error. Using (2.9) we obtain a bound for the the total error En of our numerical integral when
evaluating g(z) along z = re2πi∆t at N equidistant points and gives us

En =

∣∣∣∣∣n!
N

N−1∑
t=0

g(re 2πit
N ) + µ(z)

(re 2πit
N )n

− g(k)(0)

∣∣∣∣∣ =

∣∣∣∣∣n!
∞∑
k=1

g(n+Nk)(0)
(n+Nk)! r

Nk−n + n!
N

N−1∑
t=0

µ(z)
(re 2πit

N )n

∣∣∣∣∣ ≤
n!
∞∑
k=1

∣∣∣∣g(n+Nk)(0)
(n+Nk)!

∣∣∣∣ rNk−n +
∣∣∣n! µ

rn

∣∣∣ ≤ n!
∞∑
k=1

∣∣∣∣g(n+Nk)(0)
(n+Nk)!

∣∣∣∣ rNk−n + n!
rn
µ

.

(2.10)

Note that this is the absolute error and not the relative error. It is the relative error which is the
deciding factor for the number of correct significant decimals. We know from 2.2.3 that g has a
pole dominated by the function 1

(1/2−z)
1
4

close to z = 1/2. This in turn is dominated by 2 2
1−2z .

This has a known Taylor series at z = 0.

1
1− 2z =

∞∑
n=0

2nzn. (2.11)

So the Taylor coefficients g(n)(1)
n! are bounded by 2n+2. So for n = 0, r = 1/4 and N=100 we

obtain that the error

E0 < 0!
∞∑
k=1

2100k+22−2·100k + µ < 2−97 + µ. (2.12)
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Now µ is clearly the limiting factor. This allows us to estimate the parameter µ to be about the
same size as the error in the first derivative. We will see it is about 10−12 and this means that
the main source of error n!

rnµ should remain small relative to the coefficients themselves for n ≤ 10
and hence we calculate these.

2.2.6 Cauchy’s Integral Formula
As mentioned in section 1.2.5 Cauchy’s Integral formula can be used to evaluate derivatives of
analytic functions. This method does not at all have the same issues as the Euler method. There
are no problems with differences between small numbers or division of small numbers. With the
Cauchy Integral formula derivatives of high orders are attainable. This means that more terms of
(1.40) can be calculated and the approximation is improved. The constants can be seen in table
2.2.

ci\n 102 103 104

c0 0.7642236535892 0.7642236535892 0.7642236535892
c1 0.4447389306251 0.4447389306251 0.4447389306251
c2 0.9866106018490 0.986610601850 0.98661060185020
c3 3.7253546472399 3.72535464723 3.725354647225
c4 20.1862425191 20.1862425193 20.18624251933
c5 144.9900524145 144.990052411 144.9900524098
c6 1313.5045345 1313.50453459 1313.504534589
c7 14477.286477 14477.286474 14477.2864745
c8 188779.2160 188779.21610 188779.216094
c9 2847988.186 2847988.1842 2847988.1840
c10 48824018.02 48824018.1 48824018.06
c11 937401747 937401745 937401745
c12 19919500790 19919500900 19919500897
c13 463960187000 463960184000 463960182900
c14 11750211900000 11750212300000 11750212227000
c15 321405170000000 321405165600000 321405167400000

Table 2.2: Constants cn for varying the number of points n used for the integral in Cauchy’s integral
formula.

2.3 Numerical Results
We have now gathered all the essential parts to finally find an approximation of B(x). The formula
(1.40) uses the constants from section 2.2.6 and gives us the approximation.

Comparing our final approximation, B(x), of B(x) with the true values for some x gives the
following table. Note that B(x) was calculated using c1 from [6], knowing that it is the Landau-
Ramanujan constant and has previously been determined to very high precision. Here S(x) denotes
the approximation using the two first constants calculated by Shanks in [5]. The exact number of
relevant digits that were used in the constants were 9.

20



x B(x) S(x) B(x) B(x)/B(x) B(x)/S(x)
1 · 102 43 40 787 0.0546 1.0720
5 · 102 177 168 367 0.483 1.0559
1 · 103 330 315 465 0.709 1.0467
5 · 103 1443 1399 1532 0.9419 1.0316
1 · 104 2749 2677 2832 0.9708 1.0268
5 · 104 12460 12241 12547 0.99307 1.0179
1 · 105 24028 23662 24117 0.99630 1.0155
5 · 105 111379 110161 111499 0.99893 1.0111
1 · 106 216341 214267 216488 0.999321 1.00968
5 · 106 1017155 1009630 1017309 0.999849 1.00745
1 · 107 1985459 1972275 1985644 0.9999067 1.00668
5 · 107 9423222 9373333 9423396 0.9999815 1.00532
1 · 108 18457847 18368583 18458002 0.99999162 1.00486
5 · 108 88210025 87859100 88210129 0.99999882 1.00399
1 · 109 173229058 172591375 173228787 1.00000156 1.00369
5 · 109 832229729 829644038 832228161 1.00000188 1.00312
1 · 1010 1637624156 1632873167 1637621253 1.00000177 1.00291

Table 2.3: Approximation and true values of B for some values of x.

x B(x)−B(x) (B(x)−B(x))/(
√
x/log(x))

1 · 102 -744 -343
5 · 102 -190 -52.7
1 · 103 -135 -29.6
5 · 103 -89.0 -10.7
1 · 104 -82.6 -7.61
5 · 104 -87.0 -4.21
1 · 105 -89.2 -3.25
5 · 105 -120 -2.22
1 · 106 -147 -2.03
5 · 106 -154 -1.0620
1 · 107 -185 -0.9443
5 · 107 -174 -0.437
1 · 108 -155 -0.285
5 · 108 -104 -0.0931
1 · 109 271 0.177
5 · 109 1567 0.495
1 · 1010 2902 0.668

Table 2.4: Table of the absolute error and how it correlates to
√
x/log(x)

2.3.1 Approximation for Large Numbers
It is also possible to study the increase in error for intervals at higher values of x. That is we
calculate B(x2) − B(x1) and compare this to B(x2) −B(x1). First we introduce a space saving
measure in the form of some notation. We write B(x2, x1) = B(x2)−B(x1) and similarly for the
various approximations. Now, let us study intervals on the form x2 − x1 = 10l and x1 = 10n. The
following results are procured.
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l n B(x2, x1) S(x2, x1) B(x2, x1) S(x2, x1)/B(x2, x1) B(x2, x1)/B(x2, x1)
7 15 1303275 1302504 1303974 0.999408 1.000537
7 17 1224128 1223346 1224414 0.999361 1.000234
7 19 1159086 1157376 1157888 0.99852 0.99897
8 15 13037695 13025040 13039744 0.999029 1.000157
8 17 12244597 12233464 12244152 0.999091 0.9999637
8 19 11581362 11570432 11578624 0.999056 0.999764
9 15 130396995 130250396 130397443 0.99888 1.00000344
9 17 122439484 122334640 122441524 0.999144 1.0000167
9 19 115787287 115704832 115784960 0.999288 0.9999799
10 15 1401395794 1302503874 1303974345 0.99886 1.00000475
10 17 1224414229 1223346414 1224415260 0.999128 1.000000842
10 19 1157861020 1157046528 1157852416 0.999297 0.99999257

Table 2.5: Approximation and the true values of the increase in B(x) for large x.
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Chapter 3

Discussion

3.1 Discussion of numerical results
Specifications on the implementations of built-in functions of SageMath were hard to find and
therefore the accuracy of the calculated constants can only be discussed by comparing them with
ones that are already known. In [6] the constant c1 has been calculated with high precision and
we denote this value by c∗1

c∗1 = 0.76422365358922066299... (3.1)
The error of the calculated c1 is

|c1 − c∗1| < 10−13. (3.2)
Moreover the quotient of the first and second constant is calculated by Shanks in [5] to(

c2
c1

)∗
= 0.581948659. (3.3)

With the constants calculated here the first digits of the quotient are
c2
c1

= 0.58194865931. (3.4)

We see that all digits that Shanks calculated are the same. This should hopefully convince the
reader that the higher order constants have decent accuracy as well. These approximate constants
seem to be quite accurate but the authors still are not quite so sure of how an integral evaluation
of 100 points gives just as good a value as 10000 points. The improved approximation for large x
also hint at the correctness of the constants

3.2 Further studies
Studying the numerical results and obtaining quantitative information on how accurate the calcu-
lated values of cn are exactly is a very interesting and relevant topic for future study. As previously
mentioned priorities would lie elsewhere. Also using the lower incomplete Γ function to create cn(x)
as described in equation (1.36) would yield some interesting results and should be implemented.

Another future continuation of this study would be to derive a proper error term when discussing
the analytic extension of β and translating the left contour down to Re(s) = 1/4. After that
calculating some of the correction terms from this shift, taken from eq 1.58. Calculating these
terms and numerically checking if they give a better approximation would also be interesting to
see.

One should try and remove the assumption that all zeros are simple. That would give us some
other terms in the final formula but it will take some to determine to order of the zeros.

Discussing the possibility of extending β(s)2 down to s=0 does not seem impossible with the
formula from equation (2.6). If one were to succeed bounding the error of the vertical part of the
contour close to Re(s) = 1/4 by O(x1/4+ε) the contour may again be shifted even further to the
left!

Moreover the reader might have thought that maybe one could utilize that the function g is
the square-root of a product where many of the individual factors have derivatives that can be

23



calculated separately and then use the product rule on g. This would let us gain even more accurate
results. Only the Euler product would have to be differentiated using Cauchy’s integral formula
and the rest can be done analytically, in fact they are implemented in SageMath.
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Appendix A

Code

A.1 Code for Finding B(x)
The following code is written in C++ and made for calculating B(x). The variable length needs
to be defined in the same file and as a const of type size_t. It is x. The given bitset will be
filled to match b(n). Sum this up to get B(x).

void make_b(std::unique_ptr<std::bitset<length>>& b)
{

for (std::size_t x = 0; x < sqrtl(length/2) + 1; ++x)
{

for (std::size_t y = x; y < sqrtl(length) + 1; ++y)
{

std::size_t z = x * x + y * y;
if (z < length)
{

b->set(z);
}
else {

break;
}

}
}

}

A.2 Code for Finding B(x2, x1)
The following code is written in C++ and made for calculating B(x2, x1). It is a slight variation
of the code from the previous section. The variables begVal and endVal need to be defined in the
same file and as consts of type size_t. They are x1 and x2 respectively. The given bitset will
be filled to match b(n) in this interval. Sum this up to get B(x2, x1).

void makeInterval_b(std::unique_ptr<std::bitset<endVal - begVal>>& b)
{

for (std::size_t x = 0; x < sqrtl(endVal/2) + 1; ++x)
{

std::size_t num = sqrtl(begVal - x * x) - 1;
num = std::max(num, x);
for (std::size_t y = num; x*x + y*y < endVal + 1; ++y)
{

std::size_t z = x * x + y * y;
if (z < endVal && z >= begVal)
{

b->set(z - begVal);
}

}
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}
}

A.3 Code for Finding g(n)(0)
The following SageMath code is for finding the constants g(n)(0). Call the function cauchy_deriv_g
with the argument n.

from sage.libs.lcalc.lcalc_Lfunction import *
from math import isnan
chi=DirichletGroup(4)[1]
L=Lfunction_from_character(chi, type="int")

def euler_product(t):
s = 1-t
ret = 1
factors = log(125/abs(s.real()), 2)
for i in range(1, factors + 1):

temp = 1
temp = (temp * zeta((2**i) * s))
temp = (temp * (1 - 2**(-s * (2 ** i))))
temp = (temp / L.value((2**i) * s))
temp = (temp ** ((1/2) ** i))
if(isnan(ComplexField(100)(temp).real()) or isnan(ComplexField(100)(temp).imag())):

return ret
ret = ret * temp

return ret

def h(t):
return sqrt(L.value(1-t) * euler_product(t))/(pi * (1-t) * sqrt(1-2**(t-1)))

def g(t):
return sqrt(-t * zeta(1-t)) * h(t)

def cauchy_deriv_g(n, r=1/4, points=100):
ret = factorial(n)/(2*pi)
sum = 0
for i in range(points):

x = 2*pi*i/points
width = 2*pi/points
sum = sum + width * g(r*exp(x*I))/((r*exp(x*I))**n)

ret = ret * sum
return ret

A.4 Code for Approximating B(x)
This last section of code is written in Matlab for comparing B(x) with its various approximations.
The general form of the various approximations can be found in the following function. The input
variables x, c and gamma_inc are x, a row vector with the constants cn and a boolean specifying
whether to use the incomplete gamma function or not.

function [ ret ] = f( x, vec, gamma_inc )
logs = ones(length(x), length(vec));
logaritms = 1./log(x);
for i = 1:length(vec)

logs(:, i) = logaritms.^(i-1);
end
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ret = x.*log(x).^(-0.5);

if gamma_inc
gamma = zeros(length(vec), length(x));
for i = 1:length(vec)

gamma(i, :) = vec(i) * gammainc(log(x’)/2, i-1/2);
end
ret = ret.*diag(logs*gamma);

else
ret = ret.*(logs*vec’);

end
end

The final code segment simply uses the previously defined function f to calculate the various
approximations. The relative and absolute errors are also calculated. To run this code 7 vectors
need to present in the workspace. Of these five are column vectors. These five are a vector with
the values of x named x, one with the corresponding B(x) and name B, one with l with name l,
one with n with name n and one with the corresponding B(x2, x1) with the name B_diff. The
last two are row vectors containing the values of cn with the name c and one with the values of
Daniel Shanks constants, cn, with the name c_shanks.

format long g

f_shanks = f(x, c_shanks, false);
f_normal = f(x, c, false);
f_incomplete = f(x, c, true);

results = [x B f_shanks f_normal f_incomplete];
relative = [x B./f_shanks B./f_normal B./f_incomplete];
absolute = [x B-f_shanks B-f_normal B-f_incomplete];
interesting = [x (B-f_normal).*log(x)./sqrt(x)];

f_shanks_diff = f(10.^n + 10.^l, c_shanks, false) - f(10.^n, c_shanks, false)
f_normal_diff = f(10.^n + 10.^l, c, false) - f(10.^n, c, false)
f_incomplete_diff = f(10.^n + 10.^l, c, true) - f(10.^n, c, true)

results_diff = [l n B_diff f_shanks_diff f_normal_diff f_incomplete_diff];
relative_diff = [l n B_diff./f_shanks_diff B_diff./f_normal_diff

B_diff./f_incomplete_diff];
absolute_diff = [l n B_diff-f_shanks_diff B_diff-f_normal_diff B_diff-f_incomplete_diff];
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Appendix B

Further Proofs

B.1 Uniform Absolute Convergence of β(s) on any Closed Half Plane
Defined by Re(s)≥ c>1

Let s = σ + it be any complex number such that σ ≥ c. Then first of all β(s) is absolutely
convergent. This is because we can use integral convergence test on the sum of absolute values

∞∑
n≥1
|b(n)
ns
| ≤

∞∑
n≥1
| 1
nσ
| ≤ 1 +

∫ ∞
2

(x− 1)−σdx = 1 +
[ (x− 1)1−σ

(1− σ)
]∞
2 = 1 + 1

σ − 1 . (B.1)

The series converges absolutely in the specified domain. Rearranging is now allowed. Now for
proving uniform convergence we use a similar method. For any ε > 0 there exists a Nε such that∑∞
n>Nε

| 1
nc | < ε since c is a fix number greater than 1. Now one can use that for every s in our

right half-plane has an even greater real part. This implies that for any such s

|(
Nε∑
n≥1

b(n)
ns

)− β(s)| = |
∞∑

n>Nε

b(n)
ns
| ≤

∞∑
n>Nε

|b(n)
ns
| ≤

∞∑
n>Nε

| 1
ns
| =

∞∑
nNε

| 1
nσ
| ≤

∞∑
nNε

| 1
nc
| < ε. (B.2)

Therefore the convergence is uniform. �
Note that each partial sum is a sum of analytic functions and is therefore analytic itself. β(s)

is the uniform limit of analytic functions and therefore analytic itself.

B.2 Rewriting β(s) in the Right Half Plane
Let s = σ + it be any complex number such that σ ≥ c > 1. For any given s in our half-plane of
convergence we have that the series of partial sums converges absolutely and uniformly by appendix
B.1. Now let q and p always denote some prime

S(N) =
N∑
n=1

b(n)
ns

P (N) = (
N∑
n=0

2−ns)
( ∏
q≡43
q≤N

N∑
n=0

q−2ns)( ∏
p≡41
p≤N

N∑
n=0

p−ns
) (B.3)

The sum of two squares theorem and unique prime factorization implies that P (N) is also a partial
sum of β(s). Given any n such that b(n) = 1, 1

ns will be a term in the P (N) for a large enough
N . But it is clearly a reordering. Absolute convergence allows this kind of rearranging. Now we
can choose ε > 0, Nε and Mε such that |S(Nε) − β(s)| < ε and S(Nε) is a partial sum of P (Mε).
In other words we have

|P (Mε)− β(s)| ≤ |S(Nε)− β(s)| < ε. (B.4)

And therefore P (N) converges to β(s) absolutely and uniformly since we never specified anything
depending on s.
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Now we want to be able to manipulate each of the three factors independently. Let

X(N, s) = (
N∑
n=0

2−ns) → X(s) = (1− 2−s)−1

Y (N, s) =
∏
q≡43
q≤N

N∑
n=0

q−2ns → Y (s) =
∏
q≡43

(1− q−2s)−1

Z(N, s) =
∏
p≡41
p≤N

N∑
n=0

p−ns → Z(s) =
∏
p≡41

(1− p−s)−1

. (B.5)

These are all clearly absolutely convergent to something. Note that the formula for geometric sums
was used to simplify the expressions. It is clear that for each N all three are analytic. Repeat
the procedure described in appendix B.1 to prove that the all three series converge absolutely and
uniformly on any half-plane defined by Re(s) ≥ c > 1 to some analytic function X(s), Y (s), Z(s)
respectively. Now it is well-known that as long as all limits are well-defined the product of limits
is the limit of the product and therefore

β(s) = X(s)Y (s)Z(s). (B.6)

B.3 Residue of 1√
s

The residue of a pole 1√
s
is∫

C

1√
s
ds =

∫ 2π

0

ireiθ

r1/2eiθ/2
dθ =

∫ 2π

0
ir1/2eiθ/2dθ = ir1/2

∫ 2π

0
eiθ/2dθ = −2ir1/2. (B.7)

As r → 0 this expression becomes 0. Thus the residue of this pole is 0.
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