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1 Contents

1.1 Course material

Textbook Warren J. Ewens & Gregory R. Grant: Statistical Methods in Bioinformatics. An Introduction.
Second Edition (EG) Springer Verlag, New York 2005.

Other Handouts, Lecture slides

1.2 Course topics

• Probability (1) Chapter 1.1− 1.10, 1.13 in EG

• Probability (2) Chapter 1.12, 2.1 −2.11 in EG

• Probability (3) Chapter 2.12−2.13 in EG

• Probabilistic inference and measures of information Chapter 3.9−3.10, kapitel 1.14, 8.3 in
EG

• Markov chains Chapter 4 in EG

• Markovian models of DNA, Hidden Markov chains Chapter 4, Chapter 5. 5.2 - 5.3 in EG
chapter 12 in EG

• Random Walks and BLAST in EG Chapter 7
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• Markov chains in continuous time Chapter 11.7, 4.1

• Molecular evolution and learning of trees Chapter 14 Chapter 15 Chapter 13

• Additional Power laws, Dynamic Programming, Viterbi Algorithm, McMC

1.3 Formulas

A number of formulae and results in probability calculus are quickly recapitulated. This constitutes a very
brief summary of the probability calculus to the extent required for these lectures. In a restricted sense
this summary makes this self contained. Of course, it does no harm to have more extensive knowledge
about the issues touched upon here.

1.4 Formulae

A number of formulae and results in probability calculus are quickly recapitulated. This constitutes a very
brief summary of the probability calculus to the extent required by these lectures. In a restricted sense this
summary makes this self contained. Of course, it does no harm to have more extensive knowledge about
the issues touched upon here.

In addition there is a set of additional exercises, i.e., exercises not found in the Texbook by Ewens and
Grant.

2 Recommended Exercises and Homework:

2.1 In the Textbook (Ewens and Grant)

• 1.17, 1.18, 1.19, 1.27, 1.29, 1.31 To be submitted: 1.13, 1.14, 1.25

• 2.1., 2.2, 2.3, 2.10, 2.15, 2.22 To be submitted: 2.17, 2.20

• 3.3., 3.10, 8.2, 8.3 To be submitted: 3.1

• 4.4, 4.5, 4.9, 4.10, 5.5 (i) -(iii) To be submitted: 4.6

• 12.1, 12.4, 11.1, 11.2, 11.4 To be submitted: 12.3, 12.5

• 7.2, 7.3, 7.4, 14.2, 14.3, 14.5 To be submitted: 7.5
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2.2 In the Set of Problems in Section 19

TBA

3 Formulae and Definitions

3.1 Alphabet, Sequence

X and Y are two discrete alphabets, whose generic elements are called symbols and denoted by xi and yj,
respectively.

X = {x1, · · · , xL},Y = {y1, · · · , yJ}.

| X | := the number of elements in X = cardinality of X = L ≤ ∞, | Y |= J ≤ ∞. Unless otherwise
stated the alphabets considered here are finite.

Example 3.1. In analysis and modelling of DNA sequences the alphabet is

X = {A, T, C,G}.

These are the four bases present in subunits of DNA called nucleotides: adenine (A), thymine (T), cytosine
(C) and guanine (G). The particular order of these bases arranged along the sugarphosphate backbone is
called the DNA sequence.

More formally we define a sequence as follows.

Definition 3.1. A sequence or a string x of length m is an ordered list of m symbols from an alphabet X
written contiguously from left to right

x = xl1xl2 . . . xli . . . xlm ;xli ∈ X , i = 1, . . . ,m.

The length of the symbol is denoted by |x| = m. The empty sequence ∅ has length 0 and contains no
symbols taken from X .

A DNA sequence of length 15 is thus for example

x = AAAACGTTTAAAAAA

DNA’s genetic code can be represented as a single alphabetic sequence composed of these four symbols. It
is by means of this code that the gene controls the formation of other substances in the cell. Progress of bio-
technology as well as of computer hardware and software have made it possible to determine the nucleotide
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sequences for large and increasing number of orgganisms. Such data are now available in computer-readable
form, so it is possible to look for and analyze patterns within sequences using probabilistic modelling and
computer algorithms.

Tehre are numerous model families assigning a probability P (x) to a string (or by extension to a set
of strings) that have been applied in bioinformatics. The model families and the methods of probabilistic
learning are in this text presented in an order of increasing complexity and flexibility from the multinomial
processes to the Markov chains to hidden Markov models. For each of the model families some of its
applications in biological sequence analysis are presented.

3.2 Random Variables and their Distributions

X is a (discrete) random variable that assumes values in X and Y is a (discrete) random variable that
assumes values in Y .

Remark 3.1. These are measurable maps X(ω), ω ∈ Ω, from a basic probability space (Ω,F , P ) (=
outcomes, a sigma field of of subsets of Ω and probability measure P on F). For the most part in the
current text this foundational piece of mathematics is suppressed. A very readable survey of these ideas is
given by Gray and Davisson (1986), available at
http://ee.stanford.edu/̃gray/sp.html.

Events of the form {ω ∈ Ω | X(ω) = xi} are thus more simply written as

{X = xi} : X assumes the value xi

{Y = yj} : Y assumes the value yj.

Then the probability of the event {X = xi} is

fX(xi) := P (X = xi). (3.1)

The probability of the event {Y = yj} is

fY (yj) := P (Y = yj). (3.2)

Furthermore
fX := (fX(x1), · · · , fX(xL))

designates a discrete probability distribution on X and

fY := (fX(y1), · · · , fY (yJ))
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designates a discrete probability distribution on Y . This means that

fX(xi) ≥ 0 (3.3)
L∑
i=1

fX(xi) = 1 (3.4)

and similarly for fY . If A ⊆ X then

PX(A) :=
∑
xi∈A

fX(xi) (3.5)

is the probability of the event that X assumes a value in A, a subset of X . From (3.5) one easily finds the
complement rule

P (Ac) = 1− P (A), (3.6)

where Ac is the complement of A, i.e. those outcomes that do not lie in A. Also

P
(
A
⋃

B
)

= P (A) + P (B)− P (A
⋂

B), (3.7)

is immediate. This constitutes a powerful calculus, since it applies ad verbatim also to compound alphabets
with elements that are in turn sequences from finite alphabets or products of other alphabets.

The notation fX encompasses tabular probability distributions, which are simply tables of numbers
with the stated properties, and algorithmic distributions, which are algorithms for computing probabili-
ties. There are both sorts of probability distributions in bioinformatics as well as combinations thereof. A
parametric distribution is a special kind of algorithmic distribution: it consists of a few numerical parame-
ters and a relatively simple algorithm, usually a formula for computing probabilities given some specific
values of these parameters. The examples immediately following belong to the parametric type.

Example 3.2 (Bernoulli random variables). Consider the binary alphabet X = {0, 1}. Let p be a number
between zero and one. If X is a random variable assuming values in {0, 1} and if

fX(1) = P (X = 1) = p

then we call X a Bernoulli random variable with the probability of success p. We write

X ∈ Be(p).

We refer to p as a parameter of the distribution fX . The parameter p will be called the chance of success.

Example 3.3 (Geometric random variables). Consider an infinite sequence of Bernoulli random variables
{Xn}∞n=1 with a common probability of success p. This models an infinite sequence of zeros and ones. Let

X = the first time (= n) at which success occurs.
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Then X = {1, 2, 3, . . . ,∞}. It can be proved (Helms 1997) that X is a well defined random variable with
respect to a suitable probability space. We say that X has a geometric probability distribution if

fX (k) = p · (1− p)k−1 ; k = 1, 2, . . . , (3.8)

This is written as
X ∈ Ge(p).

Example 3.4 (Uniform random variables). Let X = {x1, x2, . . . , xL} be a finite alphabet and

fX (xk) =
1

L
; k = 1, 2, . . . , L. (3.9)

This is called the uniform probability distribution. If X is a random variable assuming values in this
alphabet and P (X = k) = 1

L
, then we say that

’X is selected at random’

and we write
X ∈ U (1, L) .

Example 3.5 ( Poisson distributed random variable). Let

fX(k) = e−λ · λ
k

k!
, k = 0, 1, 2, . . . .

This is a probability distribution on the non-negative integers called the Poisson distribution. A random
variable X with this distribution is said to be Poisson distributed and we write

X ∈ Po(λ).

3.3 Joint Probability Distributions

A two dimensional joint (simultaneous) probability distribution is a probability defined on the alphabet
X × Y

fX,Y (xi, yj) := P (X = xi, Y = yj). (3.10)
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Hence 0 ≤ fX,Y (xi, yj) and
∑L

i=1

∑L
j=1 fX,Y (xi, yj) = 1.

Marginal distribution for X:

fX(xi) =
J∑
j=1

fX,Y (xi, yj). (3.11)

Marginal distribution for Y :

fY (yj) =
L∑
i=1

fX,Y (xi, yj). (3.12)

These notions can be extended to define the joint (simultaneous) probability distribution and the marginal
distributions of n random variables.

3.4 Conditional Probability Distributions

The conditional probability for X = xi given Y = yj is

fX|Y (xi | yj) :=
fX,Y (xi, yj)

fY (yj)
. (3.13)

The conditional probability for Y = yj given X = xi is

fY |X(yj | xi) :=
fX,Y (xi, yj)

fX(xi)
. (3.14)

Here we assume fY (yj) > 0 and fX(xi) > 0. If for example fX(xi) = 0, we can make the definition of
fY |X(yj | xi) arbitrarily through fX(xi) · fY |X(yj | xi) = fX,Y (xi, yj). In other words

fY |X(yj | xi) =
prob. for the event {X = xi, Y = yj}

prob. for the event {X = xi}
. (3.15)

Hence
L∑
i=1

fX|Y (xi | yj) = 1.

3.5 A Chain Rule

Let Z be a (discrete) random variable that assumes values in Z = {z1, z2, · · · , zK}. In view of (3.15) we
have also, if fZ(zk) > 0,

fX,Y |Z(xi, yj | zk) =
fX,Y,Z(xi, yj, zk)

fZ(zk)
.
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Then we get as an identity

fX,Y |Z(xi, yj | zk) =
fX,Y,Z(xi, yj, zk)

fY,Z(yj, zk)
· fY,Z(yj, zk)

fZ(zk)

and again by definition of conditional probability the right hand side equals

= fX|Y,Z(xi | yj, zk) · fY |Z(yj | zk).

In other words,
fX,Y |Z(xi, yj | zk) = fX|Y,Z(xi | yj, zk) · fY |Z(yj | zk). (3.16)

This chain rule (with extensions) will be invoked in numerous situations.

3.6 Independence

X and Y are independent random variables if and only if

fX,Y (xi, yj) = fX(xi) · fY (yj) (3.17)

for all pairs (xi, yj) in X × Y . In other words all events {X = xi} and {Y = yj} are to be independent.
We say that X1, X2, . . . , Xn are independent random variables if and only if the joint distribution

fX1,X2,...,Xm(xi1 , xi2 . . . , xim) = P (X1 = xi1 , X2 = xi2 , . . . , Xm = xim) (3.18)

equals
fX1,X2,...,Xm(xi1 , xi2 . . . , xim) = fX1(xi1) · fX2(xi2) · · · fXm(xim) (3.19)

for every m, 2 ≤ m ≤ n, and every xi1 , xi2 . . . , xim ∈ Xm. We are here assuming for simplicity that
X1, X2, . . . , Xn take values in the same alphabet. One way of assigning a probability to a sequence x =
xi1xi2 . . . xin is thus by

P (x) = fX1(xi1) · fX2(xi2) · · · fXn(xin) =
n∏
l=1

fXl(xil).

3.7 Conditional Independence

The random variables X, Y Y are called conditionally independent given Z if

fX,Y |Z(xi, yj|zk) = fX|Z(xi|zk) · fY |Z(yj|zk)· (3.20)

for all triples (zk, xi, yj) ∈ Z × X × Y (cf. (3.16)). We write (3.20) symbolically as

X ⊥ Z|Y.

We may also say that X −→ Z −→ Y forms a Markov Chain. Conditional independence is a core element
of the definition of a hidden Markov model.
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3.8 Probability Models with Independence

Example 3.6 (Independent Bernoulli random variables). Let {Xi}ni=1 be independent Bernoulli random
variables Be (p) (example 3.2). Then

fX1,X2,...,Xn(xi1 , xi2 . . . , xin) = P (X1 = xi1 , X2 = xi2 , . . . , Xn = xin) =

= p
∑n
j=1 xij · (1− p)n−

∑n
j=1 xij = pk · (1− p)n−k .

if
∑n

j=1 xij = k. We may reformulate this statement as X1, . . . , Xn being conditionally independent given
p.

Example 3.7 (Binomial random variables). Let A be some event defined in terms of some basic expe-
riment. Introduce the random variable X= the number of times the event A occurs in n repetitions of
some basic experiment. Then the alphabet of X is X = {0, 1, · · · , n}. If the repetitions are modeled as
independent, then X has the binomial distribution:

fX(k) = P (X = k) =

(
n
k

)
pk(1− p)n−k. (3.21)

(Recall that

(
n
k

)
= n!

(n−k)!k!
(the binomial coefficients), 0! := 1). We say that X is a binomial random

variable with parameters p and n and write

X ∈ Bin(n, p).

Clearly the distibution of X is such that

X = X1 +X2 + . . .+Xn,

as an equality in distribution, where X1, X2, . . . , Xn are independent Be (p) - variables as in the preceding
example.

If np is small, i.e. if the event A occurs ’rarely‘, the binomial distribution can be approximated by a
Poisson distribution Po(λ) with λ = np (the law of small numbers). The approximation Bin(n, p) ≈
Po(np), or more appropriately its generalizations have turned out to be useful for a number of problems
in computational biology (Waterman 1995). Poisson approximation is the topic of the exercises 10 - 12.
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3.9 Multinomial Probability Distribution

Let X1, X2, . . . , Xn be independent random variables assuming values in

X = {x1, · · · , xL}

with the common distribution
pl = P (Xi = xl) , l = 1, 2, . . . , L.

Thus
P (X1 = xi1 , X2 = xi2 , . . . , Xn = xin) = pi1 · pi2 · · · pin .

Let for l = 1, 2, . . . , L

nl = the number of times the symbol xl is found in x = xi1xi2 . . . xin .

Thus n1 + n2 + . . .+ nL = n. Then from the preceding

P (x) = P (X1 = xi1 , X2 = xi2 , . . . , Xn = xin) = pn1
1 · pn2

2 · · · p
nL
L .

If we introduce the random variables Y1, Y2, . . . , YL as functions of the random variables X1, . . . , Xn by

Yl = the number of times Xi = xl, i = 1, 2, . . . , n,

then the joint distribution of Y1, Y2, . . . , YL is

P (Y1 = n1, Y2 = n2, . . . , YL = nL) = C (n1, n2, . . . , nL) · pn1
1 · · · p

nL
L . (3.22)

This is by independence (symmetry) just the sum of probabilities of all those outcomes of X1, . . . , Xn that
have exactly n1, n2, . . . , nL as their frequency counts. Therefore a combinatorial argument (Briggs 1993,
p. 97) shows that

C (n1, n2, . . . , nL) =
n!

n1!n2! . . . nL!
, (3.23)

which is called the multinomial coefficient. The probability in (3.22) is called the multinomial distribution.
Note that the binomial distribution is a special case. The Whittle distribution is a generalization of the
multinomial distribution for Markov chains.

In the sequel we shall frequently regard the probability assignment

P (x) = P (X1 = xi1 , X2 = xi2 , . . . , Xn = xin) = pn1
1 · pn2

2 · · · p
nL
L ,

as a statement of conditional independence

P
(
x | p

)
= P

(
X1 = xi1 , X2 = xi2 , . . . , Xn = xin | p

)
= pn1

1 · pn2
2 · · · p

nL
L ,

where p = (p1, p2, · · · , pL) is seen as an outcome of a continuous random variable. Since p is an unknown
parameter, it is supposed constant and is therefore in some literature called a random element.
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3.10 A Weight Matrix Model for a Family of Sequences

A weight matrixM is a simple model often used in biological modelling as a representation for a family of
sequences. The sequences are supposed to have equal length (=n) and to have no gaps (i.e. no positions are
blank). A weight matrix M has as entries the tabular probabilities pi (xj) of a string having the symbol
xj at position i:

M :

p1 (x1) . . . pn (x1)
p1 (x2) . . . pn (x2)

...
...

...
p1 (xL) . . . pn (xL) .

(3.24)

Thus
∑L

j=1 pi (xj) = 1 for every column i. The assignment of probabilities for a string x = xl1xl2 . . . xln
conditioned on M is now given by

P (x|M) =
L∏
j=1

n∏
i=1

pi (xj)
Ii,xj (x) , (3.25)

where the indicator Ii,xj (x), a function of x, is 0 if xj 6= xli i.e. if the symbol xj does not appear in
position i in the string x and is 1 otherwise. Thus the symbols in the different positions are conditionally
independent given the model M.

A sequence of strings x1, . . . ,xt, which are also taken as mutually independent conditioned on M, is
by multiplication of the expressions in (3.25) assigned the probability

P
(
x1, . . . ,xt|M

)
=

t∏
s=1

P (xs|M) =
L∏
j=1

n∏
i=1

pi (xj)
ni(xj) , (3.26)

where ni (xj) is the number of times the symbol xj appears on position i in x1, . . . ,xt.
The weight matrix model is in bioinformatics often known as a profile (Gusfield 1997, ch. 14). In

practice the probabilities pi (xj) are estimated or learned using a set of sequences known to belong to a
family of sequences e.g. a family of proteins (L = 20). One important application is in database searching
(Gusfield 1997, ch. 15).

3.11 Simplifying Notations

For ease of writing we are sometimes going to drop the symbols in the argument and to write for (3.13)

fX|Y =
fX,Y
fY

, (3.27)

for (3.14)

fY |X =
fX,Y
fX

, (3.28)
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and for (3.17)
fX,Y = fY · fX . (3.29)

Eq. (3.29) implies thus

X and Y are independent ⇐⇒
{
fX|Y = fX and
fY |X = fY .

Conditional independence (3.20) becomes thus

fZ,X|Y = fZ|Y · fX|Y . (3.30)

Furthermore this is equivalent to
fZ|X,Y = fZ|Y . (3.31)

Independence of X1, X2, . . . , Xn gives
n∏
l=1

fXl .

4 Learning and Bayes’ Rule

4.1 Bayes’ Rule

Since
fX,Y = fX|Y · fY = fY |X · fX

we have in a formal way

fX|Y =
fY |X · fX

fY
.

But the marginal distribution fY is from (3.12) and (3.28) written as

fY (yj) =
L∑
i=1

fY |X(yj | xi)fX(xi). (4.1)

Hence we have obtained
Bayes’ Rule

fX|Y (xi | yj) =
fY |X(yj | xi) · fX(xi)∑L
i=1 fY |X(yj | xi)fX(xi)

. (4.2)

Bayes’ rule gives a fundamental operation for up-date of probability distributions in response to observed
information. The rule shows how knowledge about the occurrence of the event Y = yj is to be used to
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transform probabilities on X . In this context we note the possibility of interpreting probability as a degree
of rational belief, which makes (4.2) a rule for inductive reasoning.

Terminology for Bayes’ Rule :

fX : A Prior Distribution on X .
fX|Y : A Posterior Distribution on X . If X and Y are independent, then the prior distribution and
posterior distribution are identical and there is no learning about X from Y and vice versa. Bayes’ rule
can be seen as just a formal identity derived from certain premises and definitions. One of the stages
of probabilistic modelling and learning is to find explicit forms of the distributions, appropriate in some
specific application, to be used in Bayes’ rule.

4.2 A Missing Information Principle and Inference

Let us suppose that we have a pair of random variables (X, Y ). These are thought to occur simultaneously
and to assume values in X × Y . Let us now suppose that we have observed the event {Y = yj} but are
missing information about the corresponding outcome of X (so that X is hidden from us).

The missing information principle says for our purposes that the posterior fX|Y (x | yj) contains all
the probabilistic information about X. This missing information principle is a cornerstone of probabilistic
modelling of biological sequences as will become evident in the sequel.

In many situations we want to summarize the posterior fX|Y (x | yj) by a single symbol (’estimate’) in
the alphabet X . This operation of probabilistic inference is called (point) estimation. The following two
methods of estimation would seem natural:
Maximum Posterior (MAP) Estimate, X̂MAP , of X given Y = yj :

X̂MAP = argmax
x∈X

fX|Y (x | yj). (4.3)

Maximum Likelihood (ML) Estimate, X̂ML, of X given Y = yj :

X̂ML = argmax
x∈X

fY |X(yj | x). (4.4)

5 Some Distributions for DNA Analysis

5.1 Fragment Accuracy

One interesting application of the probability calculus presented so far is the method for evaluating the
accuracy of shotgun sequencing given in (Churchill and Waterman 1992). In shotgun sequencing a large
DNA molecule is broken into a collection of fragments. The fragments are cloned and sequenced individu-
ally. The fragments are then assembled by determining their relative orientations and overlaps and aligned
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(the technical meaning of this phrase is made more precise in exercise 9. to form a column-by-column
matrix.

Suppose that a collection of fragment sequences x1, . . . ,xm has been aligned by some procedure (more
on alignment is found in example 9 in the exercises). The symbol ∅ is used as a place holder for nonaligned
positions beyond the ends of the fragment. The depth of coverage of position i is defined as the number
of fragments contributing sequence information at position i i.e.

d =
t∑
l=1

I
(
xli 6= ∅

)
,

where I
(
xli 6= ∅

)
= 1 if xli 6= ∅ and zero otherwise. Let in addition

p =
∑

xj 6=xl,xj∈X

P
(
xli = xj | xl

)
,

where P
(
xli = xj | xi

)
is the conditional probability that the shotgun sequenced fragment xl equals xj in

position i, given that the true sequence symbol is xl. It is assumed that p is the same for all xl and i.
For a position covered at depth d, we compute the probability that at most one half of the bases are

correct. This is the binomial probability (see example 3.7) given by

P (error|d) =

bd/2c∑
k=0

(
d
k

)
pd−k(1− p)k,

where the probability of success is taken as 1−p and bd/2c is largest integer smallaer than or equal to d/2.
In shotgun sequencing the distribution of d can according to (Churchill and Waterman, 1992) be taken as
Po (λ). Positions not covered by any fragments are ignored and thus d is at least 1. Then we get

P (error) =
1

1− e−λ
∞∑
d=1

λd

d!
e−λP (error|d) (5.5)

as a practical measure of the accuracy of shotgun sequencing.

5.2 The Distribution of the Number of Fragments

The distribution of fragment lengths from restriction digests in DNA is important in many algorithms
used in bioinformatics. The fragment lengths are revealing for DNA polymorphisms (roughly speaking,
variations in different DNA sequences (Gusella 1986)) and have thus been used for constructing gene
maps. In (Bishop et.al. 1983) the distribution of the number of fragments is presented. Let N designate
the number of fragments of length greater than x base pairs. Fragments shorter than this will not be
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detected. Let the number of cuts of the DNA occurring within the probe used (Gusella 1986) be a random
variable with the distribution Po(P/m). Here P is the length of the probe and m is the mean length of the
fragments. We condition on there being N = n− 1 cuts within the probe. Then the probability of seeing
i fragments of length greater than x is given (by a well known result independently due to many different
authors) as

P (i gaps |n) =

(
n
i

) n−i∑
j=0

(−1)j
(
n− i
j

)(
1− (i+ j)

x

P

)n−1

+
(5.6)

where
a+ = max(a, 0).

A short proof of (5.6) is found e.g. in (Holst 1980 p.624). Therefore, by the preceding rules of probability
calculus we get the probability of i fragments of length greater than x as

P (N = i) =
∞∑
n=1

(P/m)n−1e−P/m

(n− 1)!
P (i gaps |n)

(5.7)

=
∞∑
j=0

(−1)j

i!j!mi+j
[P − (i+ j)(x−m)] (1− (i+ j)x)i+j−1

+ e−(i+j)/m.

6 Expectation

If X is a discrete alphabet with a finite set of real numbers as symbols (i.e. xi ∈ X ⊂ R) we define the
expectation, E(X), of the random variable X as

E(X) :=
L∑
i=1

xifX(xi). (6.8)

In case L = ∞ we require absolute convergence of the series. If X is an arbitrary alphabet and g(·) is a
map (function) of X to R, g : X 7−→ R,

E(g(X)) :=
L∑
i=1

g(xi)fX(xi). (6.9)

A speciality of information theory is the use of the following particular case of (6.9) with g(·) =− log2(fX(·)),

H(X) := E[− log2(fX(X))] := −
L∑
i=1

log2(fX(xi)), fX(xi) (6.10)
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H(X) is the entropy of X or of fX , and

H(Y ) := E[− log2(fY (Y ))] := −
J∑
j=1

log2(fY (yj))fY (yj). (6.11)

Note even the same principle in (the simultaneous entropy)

H(X, Y ) := E [− log2 (fX,Y (X, Y ))]

= −
L∑
i=1

J∑
j=1

fX,Y (xi, yj) log2 (fX,Y (xi, yj)) (6.12)

and in (mutual information)

I(X;Y ) := E

(
log2

(
fX,Y (X, Y )

fX(X)fY (Y )

))
=

L∑
i=1

J∑
j=1

fX,Y (xi, yj) log2

(
fX,Y (xi, yj)

fX(xi)fY (yj)

)
. (6.13)

7 Jensen’s Inequality

Let φ(·) is a convex function on a convex subset of the real line, φ : X 7−→ R. Convexity means by definition
that

φ (λ1x1 + λ2x2 + . . .+ λnxn) ≤ λ1φ (x1) + λ2φ (x2) + . . .+ λnφ (xn) ,

where λ1 ≥ 0, λ2 ≥ 0,. . ., λn ≥ 0 and λ1 + λ2 + . . . + λn = 1. The basic analytic properties of convex
functions and criteria of convexity are found in (Khuri 1993 pp. 78 - 87). But using the language of
expectation and the formula (6.9) this is

Jensen’s Inequality

φ (E (X)) ≤ E (φ(X)) , (7.14)

if X is a discrete random variable assuming values in X .

Example 7.1. φ(x) = − log x is a convex function. Then, if X is a random variable with positive real
values, we have

log (E (X)) ≥ E (log(X)) .
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8 Conditional Expectation

Conditional Expectation of X (X is real valued) given Y = yj is

E [X|Y = yj] =
L∑
i=1

xifX|Y (xi|yj). (8.15)

From the preceding defintions we obtain the useful formula

E(X) =
J∑
j=1

E [X|Y = yj] · fY (yj).

Conditional Expectation of g(X), g : X 7−→ R, given Y = yj is

E [g(X)|Y = yj] =
L∑
i=1

g(xi)fX|Y (xi|yj). (8.16)

Since this is another expectation we have for convex φ Jensen’s inequality

φ (E[X|Y = yj]) ≤ E [φ(X)|Y = yj] . (8.17)

An information theoretical example of this is given with g(·) = − log2 fX|Y (·|yj),

H(X|Y = yj) := −
L∑
i=1

log2

(
fX|Y (xi|yj)

)
· fX|Y (xi|yj),

which is called the conditional entropy of X given Y = yj.

9 Law of Large Numbers

Let X be a real and finite alphabet and let the variance, V ar(X), of X be

V ar(X) := E
(
[X − E(X)]2

)
=

L∑
i=1

(xi − E(X))2fX(xi) (9.18)

(by (6.9)). Hence V ar(X) = E(X2)− (E(X))2 ((E(X) is given in (6.8)). Chebysjev’s inequality is another
partial intuitive interpretation of variance.
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Proposition 9.1 (Chebysjev’s inequality). For k > 0,

P (| X − E(X) |> k) ≤ V ar(X)

k2
. (9.19)

Proof of (9.19):

V ar(X) =
L∑
i=1

(xi − E(X))2fX(xi) =

=
∑

{xi||xi−E(X)|>k}

(xi − E(X))2fX(xi) +

+
∑

{xi||xi−E(X)|≤k}

(xi − E(X))2fX(xi)

≥ k2
∑

{xi||xi−E(X)|>k}

fX(xi)

= k2P (| X − E(X) |> k), (9.20)

where we have used the fact that
∑
{xi||xi−E(X)|≤k}(xi − E(X))2fX(xi) ≥ 0 and the formula (3.5).

Let Xk be independent identically distributed copies of X, in the sense that fXk = fX , for k = 1, 2, · · · ,
and let X be a real alphabet. In other words fXk,Xl = fXk · fXl as well as for all higher order distributions.
Set µ = E(X), V ar(X) = σ2. Let

xN :=
1

N

N∑
k=1

Xk. (9.21)

Then, E(xN) = µ and

V ar(xN) =
1

N2

N∑
k=1

V ar(Xk) =
1

N2
Nσ2 =

1

N
σ2.

Hence Chebysjev’s inequality yields

P (|xN − µ| > k) ≤ V ar(xN)

k2

=
1

N

σ2

k2
. (9.22)

As N −→∞ we have thus obtained the following proposition.

Proposition 9.2. [Law of Large Numbers] If Xk are independent identically distributed copies of X, for
k = 1, 2, · · · , and if X is a real and finite alphabet and µ = E(X), V ar(X) = σ2. Then

P (|xN − µ| > k) −→ 0. (9.23)

for any k > 0.
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In words this means that the arithmetic mean of a sequence of independent, equally distributed random
variables converges to their common expectation = µ . The Law of Large Numbers (9.23) can also be stated
as for every ε > 0 there exists a Nε = N(ε, k, σ2) such that N > Nε implies

P (|xN − µ| > k) < ε.”

The law of large numbers for binomial random variables means here that

P

(
|X
n
− p| > k

)
−→ 0. (9.24)

as n increases to +∞ for any k > 0.

10 Some Formulas for Dirichlet Densities

10.1 Euler’s gamma function

The gamma function Γ(z) is defined for complex numbers z, whose real part is positive, by the definite
integral

Γ(z) =

∫ ∞
0

xz−1e−xdx. (10.1)

A special case, obtained by the substitution x = u2/2 is

Γ

(
1

2

)
=
√
π.

The recursion formula is
Γ(z) = (z − 1)Γ(z − 1). (10.2)

Hence, if z = n, where n is a positive integer, we have the factorial

Γ(n) = (n− 1)!. (10.3)

10.2 The Dirichlet density

Let SL ⊂ Rk be the simplex

SL =

{
(θ1, . . . , θL) |θi ≥ 0, i = 1, . . . , L,

L∑
i=1

θi = 1

}
. (10.4)
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Let for αi > 0

φ (θ1, . . . , θL) =

{ ∏L
i=1 θ

αi−1
i

Z
, if θ1, . . . , θL ∈ SL

0 otherwise.
(10.5)

Here

1

Z
=

Γ
(∑L

i=1 αi

)
∏L

i=1 Γ (αi)
. (10.6)

The density φ (θ1, . . . , θL) is called a Dirichlet density. We designate it symbolically by

Dir (α1, . . . , αL) . (10.7)

If α1 = α2 = . . . = αL = κ, then we talk about a symmetric Dirichlet density.∫
SL

φ (θ1, . . . , θL) dθ1 . . . dθL = 1 (10.8)

This means also that ∫
SL

L∏
i=1

θαi−1
i dθ1 . . . dθL =

∏L
i=1 Γ (αi)

Γ
(∑L

i=1 αi

) . (10.9)

10.3 Beta density

As a special case for L = 2 we obtain in (10.9) the Beta integral∫ 1

0

θα1−1(1− θ)α2−1dθ =
Γ (α1) · Γ (α2)

Γ (α1 + α2)
. (10.10)

Thus

f (θ) =

{
Γ(α1+α2)

Γ(α1)·Γ(α2)
θα1−1 (1− θ)α2−1 0 ≤ θ ≤ 1

0 elsewhere.
(10.11)

is a probability density called the Beta density and denoted by

Be (θ;α1, α2) .

Note the difference in the heuristic notation between Beta and Bernoulli Be(p). If θ = (θ1, . . . , θL) is a
random variable that assumes values in SL in (10.4) and has the symmetric Dir (α, . . . , α) distribution,
then the marginal density of any θi is given by

θi ∈ Be (θ;α, (L− 1)α) . (10.12)
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11 Miscellaneous Probability Results

11.1 Chebysjev’s inequality

Chebysjev’s inequality is another partial intuitive interpretation of variance. For k > 0,

P (| X − E(X) |> k) ≤ V ar(X)

k2
.

Proof :

V ar(X) =
L∑

i=1

(xi − E(X))
2
fX (xi) =

=
∑

{xi||xi−E(X)|>k}
(xi − E(X))

2
fX (xi) +

+
∑

{xi||xi−E(X)|≤k}
(xi − E(X))

2
fX (xi)

≥ k
2

∑
{xi||xi−E(X)|>k}

fX (xi)

= k
2
P (| X − E(X) |> k), (11.1)

where we have used the fact that
∑
{xi||xi−E(X)|≤k}(xi − E(X))2fX (xi) ≥ 0.

11.2 Factorial Moments

X is an integer-valued discrete R.V.,

µ[r]
def
= E [X(X − 1) · · · (X − r + 1)] =

=
∑

x:integer

(x(x− 1) · · · (x− r + 1)) fX(x).

is called the r:th factorial moment.

11.3 Binomial Moments

X is an integer-valued discrete R.V..

E

(
X
r

)
= E [X(X − 1) · · · (X − r + 1)] /r!

is called the binomial moment.
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11.4 Probability Generating Function

11.4.1 Definition

Let X have values k = 0, 1, 2, . . . ,.

G(t) = E
(
tX
)

=
∞∑
k=0

tkfX(k)

is called the probability generating function.

11.4.2 Prob. Gen. Fnct: Properties

•
d

dt
G(1) =

∞∑
k=1

ktk−1fX(k) |t=1

= E [X]

•
µ[r] = E [X(X − 1) · · · (X − r + 1)] =

dr

dtr
G(1)

11.4.3 Prob. Gen. Fnct: Properties

Z = X + Y , X and Y integer valued, independent (?),

•
pZ(t) = E

(
tZ
)

=

E
(
tX+Y

)
= E

(
tX
)
· E
(
tY
)

= GX(t) ·GY (t).

11.4.4 Prob. Gen. Fnct: Examples

• X ∈ Be(p)
pX(t) = 1− p+ pt.

• Y ∈ Bin(n, p)
pY (t) = (1− p+ pt)n

• Z ∈ Po (λ)
pZ(t) = eλ·(t−1)
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11.5 Moment Generating Functions

11.5.1 Definition

φX(s)
def
= E

(
esX
)

=

{ ∑
xi
esxifX(xi) X discrete∫∞

−∞ e
sxfX(x)dx X continuous

is called the moment generating function.

11.5.2 Moment Gen. Fnctn: Properties

•
d

ds
φ(0) = E [X]

•
φ(0) = 1

dk

dsk
φ(0) = E

[
Xk
]
.

Sn = X1 +X2 + . . .+Xn, Xi independent.

φSn(s) = E
(
esSn

)
=

E
(
es(X1+X2+...+Xn)

)
= E

(
esX1esX2 · · · esXn

)
=

E
(
esX1

)
E
(
esX2

)
· · ·E

(
esXn

)
= φX1(s) · φX2(s) · · ·φXn(s)

Xi I.I.D.,
φSn(s) = (φX(s))n .

11.5.3 Moment Gen. Fnctn: Examples

• X ∈ N (µ, σ2)

φX(s) = eµs+
1
2
σ2s2

• Y ∈ exp (λ)

φY (s) =
λ

λ− s

11.5.4 A Thm for Bioinformatics

Let X be a discrete R.V. with moment generating function φX(s). Say that X can take at least one negative value
(say −a) with positive probability fX(−a) and at least one positive value (say b) with positive probability fX(b),
and that the expectation of X is nonzero. Then there exists a unique nonzero value s∗ such that

φX(s∗) = 1.
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12 Some Distributions

12.1 Power Laws

A discrete probability mass function pk has a power-law tail or is a Power law, if it holds that

pk := P (X = k) ∼ k−γ, as k →∞. (12.1)

A probability density function can also have a power-law tail defined in an analogous manner.
Yuel-Simon Distribution

pk = δB (δ + 1, k) , k = 1, 2, . . . , . (12.2)

Here δ > 0 is real, B (δ + 1, k) is the Beta function
A probability distribution for a continuous random variable with the density

f(x) =

{
αqα

xα+1 x > q,
0 x ≤ q,

(12.3)

where q > 0, α > 0, is called a Pareto density with parameters q and α. The distribution function is
thus

F (x) =

∫ x

−∞
f(u)du =

{
1− qα

xα
x ≥ q,

0 x ≤ q.
(12.4)

12.2 Asymptotic Extreme Value Distribution (EVD)

Xmax = max (X1, X2, . . . , Xn), X1, X2, . . . , Xn, I.I.D.

lim
n→∞

P

(
Xmax −

log n

λ
≤ x

)
= e−e

−λx
.

Here log is the natural logarithm.
F (x) := e−e

−λx

is a probability distribution function:

• F (x)→ 1, as x→∞,

• F (x)→ 0, as x→ −∞,

• F (x) is an increasing function, since d
dx
F (x) = λe−λx−e

−λx
> 0

The distribution is known as Gumbel’s distribution.

24



12.3 Asymptotic Distributions

In general, if F1(x), F2(x), F3(x), F4(x), . . . are distribution functions, and

lim
n→∞

Fn(x) = F (x).

where F (x) is a distribution function.
We assume that

F (x) = 1− V (x)e−λx

for large x, where limx→∞ V (x) = 1 is assumed for simplicity. In words, the tail of the distribution function

1− F (x) = V (x)e−λx

vanishes exponentially.

12.3.1 Gumbel’s distribution

• Gumbel Distribution Function

P (Xmax ≤ x) ≈ e−e
−u

= G(u)

• Gumbel density

f(u) =
d

du
G(u) = e−u−e

−u

12.3.2 p-value

The p-value of an observed value x of Xmax is the probability P (Xmax > x) under some model for the
underlying random variables. If these are exponential, then

p−value ≈ 1− e−ne−λx .

The smaller the p-value, the less likely is the hypothesis that the model is the correct one.

13 Statistical Inference or Learning

There is one type of learning: inferring, analysing and using a family of models indexed by parameters.
Let X1, X2, . . . , Xn be independent random variables assuming values in

X = {x1, · · · , xL}
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with the common distribution
θl = P (Xi = xl) , l = 1, 2, . . . , L.

Hence θ1 + θ2 + . . .+ θL = 1. Let x = xi1xi2 . . . xin be a string of symbols from X and let for l = 1, 2, . . . , L

nl = the number of times the symbol xl is found in xi1xi2 . . . xin .

We set
θ = (θ1, θ2, . . . , θL)

and consider Θ as a random variable (element) that assumes values in the simplex

SL = {θ | θ1 + θ2 + . . .+ θL = 1, θl ≥ 0, l = 1, . . . , L}.

THE MODEL FAMILY:

CONDITIONED ON Θ = θ, THE SYMBOLS IN x ARE INDEPENDENT.

Thus, as shown before,
P (x | θ) = θi1 · θi2 · · · θin = θn1

1 · θn2
2 · · · θ

nL
L .

Again we find a prior φΘ (θ) for Θ. Let us consider the Dirichlet prior given by

φΘ (θ) =

{
Γ(α)

Γ(
∏L
j=1 αqj)

∏L
j=1 θ

αqj−1
j θ ∈ SL

0 elsewhere,

where the hyperparameters are α > 0, qj ≥ 0,
∑L

j=1 qj = 1, Γ (z) is Euler’s gamma function as given in the
appendix. The prior φΘ is in (10.7) in the appendix given the symbol

Dir (αq1, . . . , αqL) .

By extension of Bayes’ rule we get the posterior

φΘ|x (θ|x;α) =
P (x | Θ = θ) · φΘ (θ)∫

SL
P (x | Θ = θ) · φΘ (θ) dθ

, θ ∈ SL (13.1)

and zero elsewhere. Using the Dirichlet integral

Proposition 13.1. The posterior density φΘ|x (θ|x;α) is a Dirichlet density

Dir (n1 + αq1, . . . , nL + αqL)

or

φΘ|x (θ|x;α) =
Γ (n+ α)∏L

i=1 Γ (αqi + ni)

L∏
i=1

θni+αqi−1
i . (13.2)

This property says that the posterior density is in the same family of densities as the prior. Hence the
prior is called closed under sampling or a conjugate prior.
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13.1 Mean Posterior Estimate

One useful property of the Dirichlet density is that we can compute explicitly the expectation of any θi
with respect to the posterior density. In fact this expectation is by (10.9) and (13.2)

θ̂i =

∫
SL

θiφ (θ1, . . . , θL|x;α) dθ1 . . . dθL =
ni + αqi
n+ α

. (13.3)

This result can be seen as a regularization adding pseudocounts αqi to the vector of observed counts n and
then normalising so that

∑L
i=1 θ̂i = 1. If we have n = 0, the estimate is simply qi.

Wilson (1927) says that the value of α depends on ‘our readiness to to gamble on the typicalness of
our experience’.

13.2 Maximum Likelihood

The maximum likelihood estimate of θ (a finite table of probabilities) is by a familiar principle given by

θ̂ML = argmaxθ∈SLP (x | θ) = argmaxθ∈SLθ
n1
1 · θn2

2 · · · θ
nL
L .

The presence of SL imposes a constrained problem of maximization. We take the natural logarithm of
P (x | θ), which gives us the loglikelihood function

l (θ1, θ2, . . . , θL) = logP (x | θ)

We may equivalently seek the maximum of l (θ1, θ2, . . . , θL).

Proposition 13.2. The maximum likelihood estimate θ̂ML of θ is

θ̂ML =
(n1

n
,
n2

n
, . . . ,

nL
n

)
.

13.3 Kullback distance

D (f |g)
def
=

{ ∑
x∈X f(x) log f(x)

g(x)
, f , g discrete∫∞

−∞ f(x) log f(x)
g(x)

dx f , g continuous

D (f |g) ≥ 0

This is proved using the IT−lemma:

ln(x) ≤ (x− 1), x > 0.
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14 Markov Chains

14.1 Markov Property

A sequence of random variables {Xn}∞n=0 with the state space S is called a Markov chain,(MC), if for
all n ≥ 1 and j0, j1, . . . , jn ∈ S = {1, . . . , J},

P (Xn = jn|Xn−1 = jn−1, . . . , X1 = j1, X0 = j0) = P (Xn = jn|Xn−1 = jn−1) .

pij = P (Xn = j|Xn−1 = i)

P = (pij)
J,J
i=1,j=1

P (X0 = j0, X1 = j1, . . . , Xn = jn) = pX0 (j0)
n∏
l=1

pjl−1jl .

14.2 Chapman-Kolmorogorov Equations

For all m,n ≥ 1 and i, j ∈ S,

pi|j(m+ n) =
J∑
k=1

pi|k(m) · pk|j(n).

14.3 More Properties, Equilibrium Distribution

π(n) = (p (Xn = 1) , . . . , p (Xn = J))

π(n) = π(n− 1)P = π(0)P n.

Every invariant (equilibrium) distibution satisfies the equation

π = πP

with the restrictions
J∑
j=1

πj = 1, πj ≥ 0.

15 Hidden Markov Models (HMM)

15.1 Definitions

(I) At time n = 0 the state X0 is specified by the initial probability distribution πj(0) = P (X0 = j)
with

π (0) = (π1(0), . . . , πJ(0)) .
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πj(n) = P (Xn = j)
π (n) = (π1(n), . . . , πJ(n)) .

(II) Observable Random Process A random process {Yn}∞n=0 with a finite state spaceO = {o1, o2, . . . oK},
where K can be 6= J . The processes {Yn}∞n=0 and {Xn}∞n=0 are for any fixed n related by the condi-
tional probability distributions

bj (k) = P (Yn = ok|Xn = j) .

We set
B = {bj (k)}J,Kj=1,k=1

and call this the emission probability matrix. This is another stochastic matrix in the sense that

bj (k) ≥ 0,
K∑
k=1

bj (k) = 1.

(III) Conditional independence For any sequence of states j0j1 . . . jn the probability of the sequence
o0o1 . . . on is

P (Y0 = o0, . . . , Yn = on | X0 = j0, . . . , Xn = jn, B) =

n∏
l=0

bjl (l) .

15.2 A Formalism

An HMM is designated by
λ = (A,B, π(0)) .

UNDER THE HMM ASSUMPTIONS THE STRING o = o0 . . . on HAS THE PROBABILITY

P (o) = P (Y0 = o0, . . . , Yn = on;λ) =

J∑
jo=1

. . .
J∑

jn=1

P (Y0 = o0 . . . , Yn = on, X0 = j0, . . . , Xn = jn;λ)

J∑
jo=1

. . .

J∑
jn=1

P (Y0 = o0 . . . , Yn = on, X0 = j0, . . . , Xn = jn;λ)

where
P (Y0 = o0, . . . , Yn = on, X0 = j0, . . . , Xn = jn;λ) =

πj0 (0) ·
n∏
l=0

bjl (l)

n∏
l=1

ajl−1|jl .
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16 Random Walks

Let for n = 1, . . . ,

Si =

{
1 with probability p
−1 with probability q = 1− p.

Hence Si are (transformed) I.I.D. Bernoulli R.V’s. We take W0 = h. Let

Wn = h+
n∑
i=1

Si.

This is a random motion of a particle that inhabits one of the integer points of the real line. We record the motion
of the particle as the sequence {(n,Wn)|n =, 1, . . . , }, if these are joined by solid lines between neighbors, the
graph is called the path of the particle.
We call this the simple random walk. The classical simple random walk is defined by p = q = 1/2.

One interpretation of random walk in terms of bioinformatics is as an accumulated similarity score for two
local segments of sequences:

Wn(= s (x[j : l],y[j : l])) =

l∑
i=j

s (xi, yi) .

where

s(x, y) =

{
+1 if x = y
−1 x 6= y.

16.1 Absorption probabilities: the m.g.f. method

Let a and b be two integers, a < b. We take these points as barriers of absorption in the sense that when the
simple random walk hits either of these points it will terminate there. This is a Markov chain, whose state space
is the set of integers = {a, . . . , b} and the transition probability matrix of which is of the form

1 0 0 0 . . . 0
q 0 p 0 . . . 0
0 q 0 p . . . 0
...

...
...

...
...

...
0 0 . . . q 0 p
0 0 0 . . . 0 1


.

We will be interested in two problems

(i) finding the probability that the walk stops at b rather than at a.

(ii) finding the mean number of steps until the walk terminates.
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We use the moment generating functions for both of these problems. The m.g.f. of any single step S is obviously

m (θ) = qe−θ + peθ.

We recall a theorem from page 35 in the textbook to show that there exists θ∗ such that

m (θ∗) = 1.

In fact this is a quadratic equation solved by

θ∗ = log

(
q

p

)
.

Let
N = min{n ≥ 0 |Wn = a or Wn = b}.

Then N is the random number of steps until the simple random walk terminates and is an example of a Markov
time. The m.g.f. of the total displacement

TN =

N∑
i=1

Si

after N steps is, since single steps are I.I.D., by a previous result

m (θ)N =
(
qe−θ + peθ

)N
Hence

m (θ∗)N =
(
qe−θ

∗
+ peθ

∗
)N

= 1.

We get also
wh = P (WN = b) = P (TN = b− h) ,

and
uh = P (WN = a) = P (TN = a− h) = 1− wh.

The moment generating function of TN is thus

mTN (θ) = wh · e(b−h)θ + uhe
(a−h)θ (16.1)

= wh · e(b−h)θ + (1− wh)e(a−h)θ.

Then also
mTN (θ∗) = m (θ∗)N = 1,

which gives
wh · e(b−h)θ∗ + (1− wh)e(a−h)θ∗ = 1

⇔
wh ·

(
ebθ
∗ − eaθ∗

)
= ehθ

∗ − eaθ∗
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⇔
wh =

ehθ
∗ − eaθ∗

(ebθ∗ − eaθ∗)
.

Hence we have found the answer to (i) above.

Proposition 16.1. The probability of absorption at b is

wh =
ehθ
∗ − eaθ∗

(ebθ∗ − eaθ∗)
. (16.2)

E [TN ] = E [N ] · E[S].

Hence

E [N ] =
E [TN ]

E[S]
.

The expected time to absorption is thus the ratio of the expected displacement at absorption to the expected step
size. But we know that

E [TN ] = wh(b− h) + uh(a− h),

and
E(S) = p− q.

Hence we have found the solution to (ii) above.

Proposition 16.2. The mean time to absorption is

E [N ] =
wh(b− h) + uh(a− h)

p− q
. (16.3)

16.2 An Asymptotic Case

Let us suppose h = 0, a = −1 and let b = y. We are going to let y → +∞. By this we want to compute

(iii) the distribution of the maximum value of the walk before it hits a = −1.

(iv) the mean number of steps until the walk eventually terminates at a = −1.
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We are going to assume that we are dealing with the case in the theorem from page 35 in the textbook showing
that there exists θ∗ such that

m (θ∗) = 1

with θ∗ > 0: Then we have

0 < θ∗ = log

(
q

p

)
. (16.4)

⇔
1 <

q

p
⇔ p < q ⇔ 0 < q − p,

which means that the random walk has a negative drift.
We discuss (iii), i.e., the maximum value of the walk ever reaches before hitting −1. In (16.2) we have

wh =
ehθ
∗ − eaθ∗

(ebθ∗ − eaθ∗)
,

which with h = 0, a = −1 and b = y yields

w0 =
1− e−θ∗

(eyθ∗ − e−θ∗)
.

Hence we can see that for large y, since θ∗ > 0 is assumed in (16.4),

w0 ∝
(

1− e−θ∗
)
e−yθ

∗
.

Hence, if Y is the maximum of the walk,

Prob (Y ≥ y) ∼
(

1− e−θ∗
)
e−yθ

∗

as y →∞, this is a geometric-like probability, where we put

C
def
=
(

1− e−θ∗
)
. (16.5)

For (iv) we let

A
def
= E [N ] . (16.6)

Then with a = −1, h = 0 and b = y

A =
wh(b− h) + uh(a− h)

p− q
becomes

A =
w0y − u0

p− q
=
u0 − w0y

q − p
.

In the expression above w0y → 0, as y →∞ and u0 = 1− w0 → 1, since w0 → 0 Hence

A =
1

q − p
as y →∞.

A and C will be the quantities we shall concentrate upon in the sequel in more general random walks, since
these are needed in BLAST calculations.
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17 Markov chains in Continuous Time

Let X = {X(t) | t ≥ 0} be a family of random variables taking values in a discrete, countable, alphabet or state
space X . The variable t is called time. We denote the generic elements of X by j, i, . . . ,. The special case we have
in mind is the finite state space X = {A, T,C,G}.

17.1 The Markov property

The process X = {X(t) | t ≥ 0} is called a continuous-time Markov chain if it satisfies the following definition.

Definition 17.1. X = {X(t) | t ≥ 0} satisfies the Markov property, if

P (X(tn) = j|X(t1), X(t2), . . . , X(tn−1)) = P (X(tn) = j|X(tn−1)) (17.1)

for j ∈ X , i ∈ X , and any sequence t1 < t2 < . . . < tn−1 < tn of times.

The evolution of continuous-time Markov chains can be described in very much the same terms as those used for
Markov Chains.

The general situation is as follows. For Markov Chains we wrote the n-step transition probabilities in matrix
form and expressed them in terms of the one-step matrix P. In continuous time there is no analogue for P, since
there is no implicit unit length of time. Some differential calculus enables us to see that there is a matrix Q, called
the generator of the continuous-time chain, which takes over the role of P.

17.2 The transition probability

Definition 17.2. The time-homogeneous transition probability is denoted by Pij(t) and is defined as

Pij(t) = P (X(t) = j|X(0) = i) (17.2)

or
Pij(t− s) = P (X(t) = j|X(s) = i) (17.3)

for j ∈ X .

This is most readily presented in a matrix form.

P(t) = {Pij(t)}i∈X ,j∈X .

17.3 Chapman - Kolmogorov equations

Proposition 17.1. The family {P(t)|t ≥ 0} satisfies

(a) P(0) = I (= the identity matrix).
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(b) P(t) is a stochastic matrix.

(c) the Chapman - Kolmogorov equations
P(t+ s) = P(t)P(s). (17.4)

Assumption 17.1. We shall now assume that the transition probabilities Pij(t) are continuous functions of t.
We shall also assume that

P(t)→ I, as t ↓ 0. (17.5)

This is to say that
Pij(t)→ 0, i 6= j, Pii(t)→ 1, i = j, as t ↓ 0.

17.4 The generator

We make another assumption.

Assumption 17.2. We assume that
Pij(h) = qijh+ o(h), i 6= j, (17.1)

and
Pii(h) = 1 + qiih+ o(h), (17.2)

where o(h) (‘small ordo’) is a function such that o(h)/h→ 0,as h→ 0.

The numbers qij are known as the instantaneous transition rates or intensities of the continuous-time Markov
chain. We are here assuming that the probability of two or more transitions in an interval t, t + h is small. This
can in fact be proved in a more rigorous treatment. Note that we are also implicitly thinking that the transition
rates are not infinite (−∞).

From (17.1) and (17.2) we get

1 =
∑
j∈X

Pij(h) = h
∑

j∈X ,j 6=i
qij + 1 + qiih+ o(h), (17.3)

and this implies

h
∑

j∈X ,j 6=i
qij = −qiih+ o(h)

or, by dividing by h and letting h go to zero, ∑
j∈X ,j 6=i

qij = −qii (17.4)
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or ∑
j∈X

qij = 0 (17.5)

We introduce the symbol qi by

qi
def
=

∑
j∈X ,j 6=i

qij . (17.6)

The assumption (17.2) gives thus

lim
h↓0

Pii(h)− 1

h
= qii = −qi, (17.7)

and the assumption (17.2)

lim
h↓0

Pij(h)

h
= qij , i 6= j. (17.8)

We introduce the square matrix
Q = (qij)i,j∈X . (17.9)

In matrix form (17.7) and (17.8) are

lim
h↓0

P(h)− I

h
= Q. (17.10)

The matrix Q is called the generator.
The generator for a Markov chain on a state space with four elements is in general

Q =


−q1 q12 q13 q14

q21 −q2 q23 q24

q31 q32 −q3 q34

q41 q42 q43 −q4

 .

17.4.1 An Example: the Poisson process

Let X = {X(t) | t ≥ 0} be a process that has the set of non-negative integers as the state space. One way of
defining X as a Poisson process is to assume the following ((1)−(3)).

(1) The increments of the process are independent or

P (X(t)−X(s), X(u)−X(v)) = P (X(t)−X(s)) · P (X(u)−X(v))

for v < u ≤ s < t.

(2) X(0) = 0.

(3) X(t)−X(s) ∈ Po(λ(t− s)).
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By these assumptions X is a continuous-time Markov chain. This is found by

P (X(tn) = jn|X(t1) = j1, X(t2) = j2, . . . , X(tn−1) = jn−1) =

= P (X(tn)−X(tn−1) = jn − jn−1|X(t1) = j1, X(t2) = j2, . . . , X(tn−1) = jn−1)

= P (X(tn)−X(tn−1) = jn − jn−1)

by assumptions (1) and (2), and this equals

= P (X(tn)−X(tn−1) = jn − jn−1|X(tn−1)−X(0) = jn−1)

= P (X(tn) = jn|X(tn−1) = jn−1) ,

again by assumption (1). By assumption (3)

Pij(t) = P (X(t+ s) = j|X(s) = i) = P (X(t+ s)−X(s) = j − i)

= e−λt
(λt)j−i

(j − i)!
.

Then from (17.7) we get

lim
h↓0

Pii(h)− 1

h
= lim

h↓0

e−λh − 1

h
= −λ,

and from (17.8)

lim
h↓0

Pij(h)

h
= lim

h↓0

e−λh (λh)j−i

(j−i)!

h

=

{
λ, j = i+ 1
0 otherwise.

We have the generator

Q =


−λ λ 0 0 . . .
0 −λ λ 0 . . .

0 0 −λ λ
. . .

...
...

...
. . .

. . .

 .

A Poisson proces is thus a continuous time Markov chain with qi = λ, so that from (17.6) and (17.4) we have

Pii(h) = 1− λh+ o(h),

or
1− Pii(h) = λh+ o(h),

so that the total intensity of leaving i is λ. But, by (3), λ is the intensity of one jump upwards for the proces X.
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17.4.2 A Binary Process

Let Y ∈ Be(1/2) and N = {N(t)|t ≥ 0} be a Poisson process like in the previous example, and let Y be independent
of N . Set

X(t) = (−1)Y+N(t) .

Then X = {X(t) | t ≥ 0} is a continuous-time Markov chain, as esentially follows by the same argument as used
in the preceding example. The transition matrix is

P(t) =

(
1
2

(
1 + e−2λt

)
1
2

(
1− e−2λt

)
1
2

(
1− e−2λt

)
1
2

(
1 + e−2λt

) ) .
The sample paths of X are sequences of −1 and 1, each digit prevailing a random (exponentially distributed time).

17.5 Forward and backward equations

The meaning of the notion of a generator can be explained as follows. Suppose that X(0) = i, and by conditioning
X(t+ h) on X(t) we get by the Chapman-Kolmogorov equations

Pij(t+ h) = P (X(t+ h) = j|X(0) = i) =

=
∑
k∈X

Pik(t)Pkj(h)

= Pij(t) (1 + qjjh+ o(h)) +
∑

k∈X ,k 6=j
Pik(t) (qkjh+ o(h))

from (17.1) and (17.2). Then we get

= Pij(t) + h
∑
k∈X

Pik(t)qkj + o(h).

Thus we get that
Pij(t+ h)− Pij(t)

h
=
∑
k∈X

Pik(t)qkj + o(h)/h.

Hence we have, letting h→ 0, and letting P
′
ij(t) denote the first derivative with respect to t,

P
′
ij(t) =

∑
k∈X

Pik(t)qkj = (P(t)Q)ij .

Thus we have derived the following proposition.

Proposition 17.2.

P
′
ij(t) =

∑
k∈X

Pik(t)qkj , (17.1)

or the matrix forward equation
P
′
(t) = P(t)Q. (17.2)
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By a similar way, we can prove

Proposition 17.3.

P
′
ij(t) =

∑
k∈X

qikPkj(t), (17.3)

or the matrix backward equation
P
′
(t) = QP(t). (17.4)

Thus we have the system of differential equations

P
′
(t) = P(t)Q

with the initial conditions
P (0) = I.

In courses on differential equations the solution is often written using the exponential of a matrix

P(t) = eQt =
∞∑
l=0

tl

l!
Ql. (17.5)

17.6 Absolute probabilities

Definition 17.3. Let X = {X(t) | t ≥ 0} be continuous-time Markov chain. The probability

pi(t) = P (X(t) = i)

is called the absolute probability for the chain to be in state i ∈ X at time t. The vector p(t) is a row vector whose
components are pi(t). In particular p(0) is called the initial vector or the initial distribution.

The law of total probability gives

pi(t) = P (X(t) = i) =
∑
k∈X

P (X(t) = i|X(0) = k)P (X(0) = k) =

=
∑
k∈X

Pki(t)pk(0),

which we write in matrix form as
p(t) = p(0)P(t). (17.1)

This gives p
′
(t) = p(0)P

′
(t). If we multiply the forward equation (17.2) by p(0) from the left, we get

p
′
(t) = p(0)P

′
(t) = p(0)P(t)Q = p(t)Q. (17.2)
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If the state space is finite, this is a correct computation, in the case of countable state spaces there are things to
be checked. When the equation (17.2) is expressed elementwise, we get

p
′
j(t) =

∑
i∈X

pi(t)qij = pj(t)qjj +
∑

i∈X ,i 6=j
pi(t)qij

= −qjpj(t) +
∑

i∈X ,i 6=j
pi(t)qij .

This can be seen as a flow of probabilities. The probability pj(t) gets an increment that corresponds to the
probability that the process is in state i at time t, which is pi(t) multiplied by the instantaneous transition rate
from i to j, qij . This is summed over all states i 6= j. On the other hand pj(t) is depleted with the probability
that the chain is already in the state j multiplied by the instantaneous transition rate to leave the state, i.e., qj .
Inflow minus outfow equals the rate of change p

′
j(t).

17.7 Stationary distribution

17.7.1 Definition & the global balance equations

Definition 17.4. The vector π = (πi)i∈X is a stationary distribution of the chain if

π = πP(t) for all t ≥ 0

and
∑

i∈X πi = 1 and πi ≥ 0.

Thus, (17.1) yields that if p(0) = π, then the absolute probabilities are

p(t) = π

for all t ≥ 0.

Proposition 17.4.
π = πP(t)⇔ πQ = 0. (17.1)

Here 0 is matrix of zeros.

Proof:
πQ = 0

⇔

πQn = 0 for all n ≥ 1

⇔
∞∑
n=1

tn

n!
πQn = 0 for all t ≥ 0
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⇔

π

∞∑
n=0

tn

n!
Qn = π for all t ≥ 0

⇔

πP(t) = π for all t ≥ 0 ,

as was claimed.
If we write πQ = 0 elementwise we get ∑

i∈X
πiqij = 0, for every j,

and this we write as ∑
i∈X ,i 6=j

πiqij = −πjqjj = πjqj . (17.2)

The left hand side is interpreted as the flow into the state j, since qij is the instantaneous transition rate from i
to j and this is weighted by πi, which is the probability that the chain is in the state i. These are summed over
all states i 6= j. In the same way the right hand side is flow out from the state j, since qj =

∑
k 6=j qjk is the total

instantaneous transition rate out from that state. A stationary state is reasonably described by inflow being equal
to outflow. The system of equations πQ = 0 is called the global balance equations. The global balance equations
or (17.2) will be used in several evolutionary biological contexts in the next lecture.

17.8 A special generator

We shall next compute the solution to πQ = 0 and eQt, when the generator is of the form

Q =


−(u− u1) u2 u3 u4

u1 −(u− u2) u3 u4

u1 u2 −(u− u3) u4

u1 u2 u3 −(u− u4)

 , (17.1)

where
u = u1 + u2 + u3 + u4. (17.2)

17.9 Rate of change

Proposition 17.5. If X is a continuous time Markov chain with the generator Q in (17.1), then

πQ = 0

has the solution
π =

(u1

u
,
u2

u
,
u3

u
,
u4

u

)
(17.3)
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The proof is left to the reader.

Proposition 17.6. If X is a continuous time Markov chain with the generator Q in (17.1), then the rate of
change is

R = lim
h↓0

P (X(t+ h) 6= X(t))

h
= u

(
1−

∑
i∈X

π2
i

)
. (17.4)

where u is given in (17.2).

17.9.1 The exponential of a generator

Now we find
P(t) = eQt,

when the generator is given in (17.1). For this a couple of smart observations are needed. We introduce the matrix

A =


π1 π2 π3 π4

π1 π2 π3 π4

π1 π2 π3 π4

π1 π2 π3 π4

 .

One notes that
Q = −u (I−A) . (17.5)

The interesting thing about A is, that it is idempotent, i.e.,

An = A, for n ≥ 1.

This is easily verified by a computation

A2 =


π1(π1 + π2 + π3 + π4) . . . . . . π4(π1 + π2 + π3 + π4)
π1(π1 + π2 + π3 + π4) . . . . . . π4(π1 + π2 + π3 + π4)
π1(π1 + π2 + π3 + π4) . . . . . . π4(π1 + π2 + π3 + π4)
π1(π1 + π2 + π3 + π4) . . . . . . π4(π1 + π2 + π3 + π4)


= A.

Thus An = A for all n ≥ 1.
Next we recall that

e−utI =
∞∑
l=0

(−ut)l

l!
Il = I

∞∑
l=0

(−ut)l

l!
= e−utI.

Then we have
eQt = e−ut(I−A) = e−utIeutA
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= e−utI

∞∑
l=0

(ut)l

l!
Al = e−utI

[
I +

∞∑
l=1

(ut)l

l!
Al

]

= e−utI

[
I + A

∞∑
l=1

(ut)l

l!

]
= e−utI

[
I + A(e−ut − 1)

]
= e−utI + A

(
1− e−ut

)
.

To summarize
P(t) = eQt = e−utI + A

(
1− e−ut

)
, for Q in (17.1). (17.6)

If we write this elementwise, we get
Pij(t) = e−utδi,j +

(
1− e−ut

)
πj , (17.7)

where δi,j is the Kronecker delta defined by

δi,j =

{
1 i = j
0 i 6= j.

(17.8)

17.10 Separation of Species

We are still assuming Q in (17.1), and make the additional assumption of reversibility. We assume namely first
that

πiPij(t) = πjPji(t) for all t, i, j X . (17.9)

This implies by (17.8) even that
πiqij = πjqji.

We see immediately that this is satisfied for Q in (17.1).
Let us now suppose that we have two continuous-time Markov chains X and Y , with the same generator Q

in (17.1), assuming reversibility, and such that

X(0) = Y (0).

Then we have

Proposition 17.7. Assume two continuous-time Markov chains X and Y , with the same generator Q in (17.1),
assuming reversibility, and such that

X(0) = Y (0) ∈ π,

but evolving independently thereafter. Then

P (X(t) = i, Y (t) = j) = πiPij(2t) =

=

{
πi
(
1− e−2ut

)
πj i 6= j,

πie
−2ut + πi

(
1− e−2ut

)
πj i = j.

(17.10)
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17.10.1 Fraction of divergence

Next we compute
P (X(t) 6= Y (t)) .

From the preceding proposition we get

P (X(t) 6= Y (t)) =
∑
i 6=j

P (X(t) = i, Y (t) = j)

=
∑
i 6=j

πiPij(2t) =
∑
i 6=j

πi
(
1− e−2ut

)
πj ,

in view of (17.10). The right hand side equals

=
(
1− e−2ut

)∑
i 6=j

πiπj .

Here the sum
∑

i 6=j πiπj is actually a double sum∑
i 6=j

πiπj =
∑
i∈X

πi
∑

j∈X ,j 6=i
πj =

=
∑
i∈X

πi(π1 + π2 + . . . πi−1 + πi+1 + . . .) =

=
∑
i∈X

πi(1− πi) =
∑
i∈X

πi −
∑
i∈X

π2
i = 1−

∑
i∈X

π2
i .

Now we recall the rate of change from (17.4), and get

P (X(t) 6= Y (t)) =
R

u

(
1− e−2ut

)
.

18 Phylogenetic Trees

18.1 Likelihood of a Tree with Sequence Data at the Leaves (I)

A rooted binary phylogenetic tree T
x

(l)
i is the base at site i for the extant species l, a

(k)
i is the base at site i for the ancestral species k.
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The leaves are l = {1, 2, 3, 4}, the root r is labelled by r = 7 (= 2 · 4− 1).
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The joint probability of the bases (ancestral and extant) at site i in the tree is computed as

P
(
x

(1)
i , x

(2)
i , x(3), x

(4)
i , a

(5)
i , a

(6)
i , a

(7)
i |T

)
=

π
a
(7)
i

· P
(
a

(5)
i |a

(7)
i

)
· P
(
x

(1)
i |a

(5)
i

)
· P
(
x

(2)
i |a

(5)
i

)
P
(
a

(6)
i |a

(7)
i

)
· P
(
x

(3)
i |a

(6)
i

)
· P
(
x

(4)
i |a

(6)
i

)
.

π is the equilibrium probability.
Note the assumption inherent in this: the probabilities are of the form

P ( child | parent)

one for each branch of the tree, all are multiplied together. This implies a Markov property on the binary tree
under consideration.

We eliminate the unknown ancestral sequences {a(5),a(6),a(7)}, by marginalization. The subscript av refers to
the resulting probability of a site pattern:

Pav

(
x

(1)
i , x

(2)
i , x(3), x

(4)
i | T

)
=
∑

a
(7)
i ∈X

∑
a
(6)
i ∈X

∑
a
(5)
i ∈X

π
a
(7)
i

· Φ

Φ = P
(
a

(5)
i |a

(7)
i

)
· P
(
x

(1)
i |a

(5)
i

)
· P
(
x

(2)
i |a

(5)
i

)
P
(
a

(6)
i |a

(7)
i

)
· P
(
x

(3)
i |a

(6)
i

)
· P
(
x

(4)
i |a

(6)
i

)
.
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Figur 1: Site patterns

18.2 Likelihood of a Tree with Sequence Data at the Leaves (II)

18.2.1 Notations

Let again T be a binary rooted phylogenetic tree. We let T designate even its topology. The number of leaves
(=number of species) is designated by L =| l |.

For each of the nodes we have a string x(k) of N letters from an alphabet X = {x1, . . . , xK}, or

x(k) =
(
x

(k)
1 . . . x

(k)
N

)
for k = 1, . . . , L. The index i corresponds to a site in the genome.

In the internal nodes v and at the root the strings are denoted by

a(v) =
(
a

(v)
1 . . . a

(v)
N

)
,

with a
(k)
i ∈ X .

The index i corresponds to a site in the genome. The situation is depicted in Figure 1. The vector

x
(1)
i x

(2)
i . . . x

(L)
i

is often called a site pattern.
The sequences at the internal nodes are not a part of the data available for calculating the likelihood of the

tree, which can only depend on the x(k).

Assumption 18.1. For any site the site patterns x
(0)
i , . . . , x

(L)
i are outcomes of random variables that are inde-

pendent of any other site.
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We wish to compute the joint probability of the sequences x(k), k = 1, . . . , L under a fixed tree topology.
Let us denote by

P
(
x(1), . . . ,x(N)|Tr

)
(18.1)

the joint probability of the data at the leaves of the tree Tr, where r ranges from 1 to Ψr(L) = the number of
rooted trees with L leaves.

The assumption 18.1 implies that

P
(
x(1), . . . ,x(N)|Tr

)
=

N∏
i=1

P
(
x

(1)
i x

(2)
i . . . x

(L)
i |Tr

)
. (18.2)

The probability of a generic site pattern

P
(
x

(1)
i x

(2)
i . . . x

(L)
i |Tr

)
.

19 Exercises

1. Basic properties of conditional independence Show that

a)
X ⊥ Y |Z ⇐⇒ (X,Z) ⊥ (Y,Z) |Z.

b) If U = u(X) is a function of X and X ⊥ Y |Z then

(i)
U ⊥ Y |Z.

(ii)
X ⊥ Y | (Z,U) .

c) If X ⊥ Y |Z and X ⊥W | (Y,Z), then
X ⊥ (W,Y ) |Z.

(Dawid 1980)

2. A Markov chain A sequence of random variables, {Xn}∞n=0 assumes values in a finite state space S=
{1, 2, . . . , J} with J states. We set

Yt = (Xt+1, Xt+2 . . .)

as the future of the chain and
Zt = (. . . , Xt−2, Xt−1)

for the past of the chain. Then the Markov property can be stated as

Yt ⊥ Zt|Xt.
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In particular
(Xt, Xt+1) ⊥ Zt−1|Xt−1.

Show using this and the results above that

Xt ⊥ (Zt−1, Yt+1) | (Xt−1, Xt+1) .

This is the nearest-neighbor property of a Markov chain: given the states at all times other than t, the
conditional distribution of Xt is in fact determined by the states at times t− 1 and t+ 1 only.
Hint: Convince yourself of the following

Xt ⊥ Zt−1| (Xt−1, Xt+1) ,

also
(Zt−1, Xt) ⊥ Yt+1|Xt+1,

so that (why ?)
Xt ⊥ Yt+1| (Xt−1, Xt+1, Zt−1)

and then use the properties of conditional independence established in the preceding exercise.(Dawid 1980)

3. Fisher’s Device: Let Y1, Y2, . . . , Yk be independent Poisson distributed random variables. Let Yj ∈ Po(Ψj),
Ψj > 0, j = 1, 2, . . . , k. Let

N = Y1 + Y2 + . . .+ Yk.

Show that

P (Y1 = n1, . . . , Yk = nk|N = n) =
n!

n1! · · ·nk!
θn1

1 · · · θ
nk
k

where

θj =
Ψj∑k
j=1 Ψj

.

4. Trinomial Probabilities: The trinomial distribution is

P (n1, n2, n3) =
n!

n1!n2!n3!
θn1

1 θn2
2 θn3

3 .

Show that

P (n2, n3|n1) =

(
n2 + n3

n2

)
πn2

2 (1− π2)n3 ,

where

π2 =
θ2

θ2 + θ3
.

Hint: Note that the claimed distribution is a binomial distribution.
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5. Consider the alphabet X= {1, 2, 3, . . .} consisting of the positive integers, i.e. xj = j, j = 1, 2, 3, . . .. Explain
why the function fX(j) defined for each j ≥ 1 as

fX(j) =
1

j(j + 1)
=

1

j
− 1

j + 1

can be regarded as a probability distribution for some random variable X? If X is a random variable with
this distribution, does X have an expectation E[X] ?

6. Let X ∈ U(0, 100). Given that X = x, an integer Y ∈ U(0, x). Compute the expectation E[Y ] and the
variance V ar[Y ].

7. Mullen’s ratio theorem Let X is a random variable assuming values in a finite discrete alphabet of real
numbers. The values of X are always positive. Show that

E

(
1

X

)
≥ E (1)

E (X)
.

(K. Mullen, The American Statistician, Vol. 21, 1967, pp. 30-31.)

8. Two strings x and y with |x| = |y| = n of symbols from an alphabet X = {x1, . . . , xJ} are considered.
Hence e.g.

x = (xl1xl2 . . . xli . . . xlm) ;xli ∈ X , i = 1, . . . ,m.

We define S (x,y) be the number of matches, or of positions, where xli and yli are equal, 1 ≤ i ≤ n.

Let P (S (x,y) = k) be the probability that the number of matches of x and y equals k, assuming that the
two strings are chosen by some random rule. Assume in fact that x is selected by independent sampling
with replacement from X with the probabilities

p
(1)
j =

n
(1)
j

n
, j = 1, . . . , J

and y is selected (independently of x) by independent sampling with replacement from X with the proba-
bilities

p
(2)
j =

n
(2)
j

n
, j = 1, . . . , J.

Prove that

P (S (x,y) = k) =

(
n

k

)
pk (1− p)n−k ,

where

p =

J∑
j=1

n
(1)
j · n

(2)
j

n2
.

9. Null Model for Pairwise Alignments
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Definition 19.1. A (global) alignment of two sequences x and y is obtained by first inserting chosen spaces
(’-’), either into or at ends of x and y, and then placing the two resulting sequences one above the other so
that every symbol or space in every in either sequence is opposite to a unique symbol or a unique space in
the other sequence. We denote the aligned sequences by x∗ and y∗.

Example 19.1. Let x = ATAAGC, y = AAAAACG. To obtain an alignment in the sense defined, one of
the many possible ones, we may write

x∗

y∗
=
−
A

A

A

T

A

A

A

A

A

G

−
C

C

−
G

(19.1)

This means in the first place that two aligned sequences have same length. By the qualifier global we mean
that all of the symbols in x and y are in the alignment. In a local alignment we seek to find substrings that
are well matched to each other.

Two strings x and y with |x| = n and |y| = m, n ≤ m, of symbols from an alphabet X = {x1, . . . , xJ} are to
be aligned. Let us suppose that the sequences are selected as in the preceding exercise with the probabilities
for x being

p
(1)
j =

n
(1)
j

n
, j = 1, . . . , J

and y is selected (independently of x) and by independent sampling with replacement from X with the
probabilities

p
(2)
j =

n
(2)
j

m
, j = 1, . . . , J.

Let us suppose that g1 and g2 spaces ′−′ are inserted to x and y, respectively, to get the pairwise alignment.

Let us define P (S (x∗,y∗) = k) as the probability that the number of matches (e.g. A
A above) in x∗ and y∗

equals k. Show that

P (S (x∗,y∗) = k) =

(
m− g1

k

)
pk (1− p)m−g1−k ,

where

p =

∑J
j=1 n

(1)
j · n

(2)
j

n ·m
.

10. Variation distance. Let X and Y be two random variables with the non-negative integers as alphabet.
Define d (X,Y ) as

d (X,Y ) :=
1

2

∞∑
m=0

|P (X = m)− P (Y = m) |. (19.2)

Show that this is a distance function or a metric between the random variables X and Y . A metric is a
function such that
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1. d(X,Y ) ≥ 0, with equality d(X,Y ) = 0 iff X = Y (with probability one, i.e. P (X 6= Y ) = 0).

2. d(X,Y ) = d(Y,X). (symmetry”)

3. d(X,Z) ≤ d(X,Y ) + d(Y,Z). (triangle inequality”)

11. Contraction. Let X, Y and Z be three random variables with the non-negative integers as alphabet. Z is
independent of (X,Y ). Show that the metric in (19.2) has the property

d (X + Z, Y + Z) ≤ d (X,Y ) . (19.3)

Hint: Use the identity

P (X + Z ∈ A) =
∞∑
m=0

P (X ∈ A−m,Z = m) ,

where A is any subset (event) of the set of non-negative integers, and A−m is the event A with m excluded.

12. Poisson Approximation.

a) Let X ∈ Be(p), 0 < p < 1 and Y ∈ Po(p). Show using the metric in (19.2) that

d (X,Y ) ≤ 1

2
p2. (19.4)

Hint: Compute first that d (X,Y ) = p · (1− e−p).
b) Let X1, . . . , Xn be independent and identically distributed Ui ∈ Be(p), so that X = X1 + . . . + Xn

∈ Bin(n, p). Let Y ∈ Po(nλ). Show using the metric in (19.2) that

d (X,Y ) ≤ 1

2
n · p2.

Hint: Use an inductive extension of (19.3).

The argument used for this exercise is taken from (Serfling 1978). Poisson approximation can be
generalized to deal with sums of dependent Bernoulli distributed variables. The bound on d (X,Y )
in (19.4) can be improved, see (Serfling 1978). Applications of Poisson approximation to technical
problems in bioinformatics are found in (Waterman 1995, chapter 12.3).

13. Fragment Accuracy. Can the sum in (5.5)

P (error) =
1

1− e−λ
∞∑
d=1

λd

d!
e−λP (error|d)

be given a closed form expression?

14. Number of Fragments.

a) Prove the result in (5.7).
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b) Show that the mean and variance of N , the number of fragments of length greater than x, are given
by

E [N ] = h(1), V ar [N ] = h(2) + h(1)− h(1)2,

where

h(r) =
[P − r(x−m)]

mr
[P − rx]r−1 e−r/m.

In fact h(r) is the descending factorial moment (Blom et.al. 1994, p. 24)

h(r) = E [N(N − 1) · · · (N − r + 1)] .

(Bishop et.al. 1983).

15. On the Probability Generating Function (p.g.f.) of the Luria-Delbrück
Distribution

– Problems 1. − 3.

1. Consider a stochastic variable X with values in X = {0, 1, 2, 3, . . .} and with the probability mass
function

fX(0) = P (X = 0) = 0,

(19.5)

fX(k) = P (X = k) =
1

k(k + 1)
, k = 1, 2, . . . .

(a) Verify that this is in fact a probability mass function. Aid: It may be helpful to use the identity

1

k(k + 1)
=

1

k
− 1

k + 1
.

(b) Show that the probability generating function (p.g.f.) G(t) = E
[
tX
]

=
∑∞

k=0 fX(k)tk of the
distribution in (19.5) is

G(t) = 1 +
(1− t) ln(1− t)

t
. (19.6)

Aid: You may perhaps find it useful to consider the series expansion (from BETA)

∞∑
k=1

tk

k
= − ln(1− t), −1 ≤ t < 1.

2. Let N be a stochastic variable with values in {0, 1, 2, 3, . . .}. Let

fN (k) = P (N = k) , k = 0, 1, 2, . . .

Let P (t) be the the p.g.f. of fN .
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Let X1, X2, . . . , Xn, . . . be independent and identically distributed random variables with values in
{0, 1, 2, 3, . . .} and with the probability mass function

fX(k) = P (X = k) , k = 0, 1, 2, . . .

Note that this is an arbitrary probability mass on {0, 1, 2, 3, . . .} and need not be the distribution in
(19.5). In words, every Xi has the distribution fX . Let Q(t) be the p.g.f. of fX . N is independent of
X1, X2, . . . , Xn, . . ..

Consider a sum of a random number of random variables

SN = X1 +X2 + . . .+XN , S0 = 0. (19.7)

The p.g.f. of SN is
GSN (t) = E

[
tSN
]
.

Find an explicit expression for GSN (t) using the method of Double expectation.

Answer:
GSN (t) = P (Q(t)). (19.8)

Aid: The answer and one solution to this exercise is found in Ewens & Grant pp. 78−79 (2001 edition)
and p. 90 (2005 edition), in the subsection with the title ’Random n‘. You are, however, expected to
use the method in the lecture notes, which is a bit different from the one found in the textbook.
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3. Let now N ∈ Po(m), m > 0, and let X1, X2, . . . , Xn, . . . be independent and identically distributed
random variables with the distribution in (19.5), and let N be independent of X1, X2, . . . , Xn, . . .. We
set

SN = X1 +X2 + . . .+XN , S0 = 0. (19.9)

(a) Find the p.g.f. of SN in (19.9).
Aid: Use exercises 1. and 2. above. You will obviously need the p.g.f. of a Poisson random variable,
which is found in Problem 1.11 in Ewens & Grant pp. 78−79 (2001 edition) and in Problem 1.17
(2005 edition).

(b) Show that
P (SN = 0) = em

using the p.g.f. established in (a).

In the preceding you have worked out the details of a simple (and formal) mathematical derivation of the
p.g.f. of the Luria-Delbrück distribution. There are other derivations that rely on more detailed modelling
of mutations.

Those interested in the experiments and analysis underlying the distribution and performed by Salvador
E. Luria and Max Delbrück1 can check Qi Zheng (2010) The Luria-Delbrück Distribution, CHANCE, 23:2,
15-18.

16. A probability model for sequences generated as independent samples from the alphabet

{A,C,T,G}

is
P (C) = P (G) = 0.275, P (A) = P (T) = 0.225.

Find the information content of the distribution.

17. A sequence of 6 independent letters is is drawn from the alphabet

{A,C,T,G}

under the probability model

P (C) = P (G) = 0.275, P (A) = P (T) = 0.225.

a) What is the probability of getting exactly the sequence
GTTACA ?

1The 1969 Nobel Prize in Medicine was awarded to Luria and Delbrück jointly with Alfred D. Hershey for ‘their discoveries
concerning the replication mechanism and the genetic structure of viruses’, see
http://nobelprize.org/nobel−prizes/medicine/laureates/1969/
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b) What is the probability of getting a sequence with twice T, twice A, once G and once C ?

c) What is the conditional probability of getting T twice, A twice given that we have gotten G once and
C once ?

18. Let Zi, i = 1, 2, . . . , be independent random variables with

Zi =

{
1 with probability 1/4
0 with probability 3/4.

Let

Yi = Zi −
1

9
(1− Zi)

The interpretation is that Yi is the score at the ith position of a pairwise global alignment. The score is 1
for match, −1

9 for mismatch. Zi, i = 1, 2, . . . , is model for background noise for random DNA sequences.

Find the moment generating function of the score over a finite segment

Y1 + Y2 + . . .+ Yn.

18. In a paper in the journal CABIOS, Vol.5, (1989) R. Staden introduced and used probability generating
functions, e.g., for calculating the probabilities of scores of DNA words with respect to Position Specific
Scoring Matrix (PSSM) W.

The matrixW has as entries the scores (e.g. frequencies) wij of nucleotide i at position j of aligned (binding)
sites.

We write
{1, 2, 3, 4} = {A, T,C,G}

and

W :

A w11 . . . w1j . . . w1n

T w21 . . . w2j . . . w2n

C w31 . . . w3j . . . w3n

G w41 . . . w4j . . . w4n

The generating function Gj(t) for column j in W is given by

Gj(t) =
4∑
i=1

pit
wij

where pi is the relative frequency (probability) of nucleotide i. The probability generating function F (t)
w.r.t. PSSM W is given by

F (t) =
n∏
j=1

Gj(t).

Hence the columns regarded as independent random units.
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(a) What is the interpertation of the coefficient of tk in F (t) ?

(b) Consider n = 5 and a nucleotide count matrix

W :

A 9 1 1 10 7
T 0 0 7 0 0
C 1 9 1 0 0
G 0 0 1 0 3

Find the probability of getting PSSM score = 0 from columns 1 and 2 using F (t) (or the appropriate
factors).

19. Bayes factor
We wish to compare two different model families Mi, i = 0, 1 proposed for a given sequence x. Under the
model family Mi the sequence is related to the parameters θi by a distribution fi (x | θi) and the prior
densities for the parameters are φi (θi) for i = 0, 1, respectively.

We compare the two families by computing the ratio of the posterior probabilities P (Mi | x) of the two
model families to the ratio of prior probabilities.

We introduce also

qi (x) =

∫
fi (x | θi) · φi (θi) dθi, i = 0, 1.

Then Bayes
′

factor, Bf is thus defined as

Bf =
posterior odds ratio

prior odds ratio
.

and Bayes
′

rule gives

=

P (M0|x)
P (M1|x)

P (M0)
P (M1)

=
q0 (x)

q1 (x)
,

where P (Mi) is the prior for Mi for i = 0, 1.

Consider now
M0 : Poisson distribution with unknown parameter

M1 : Geometric distribution with unknown parameter

– Poisson Distribution

f0 (x | θ0) = e−θ0
θx0
x!
, x = 0, 1, 2, . . . ,

xi|θ0 ∈ f0 (x|θ0) , I.I.D. ,

x = (x1x2 . . . xn)
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f0 (x | θ0) = e−nθ0
θ
∑n
i=1 xi

0∏n
i=1 xi!

– Geometric Distribution

f1 (x | θ1) = θ1 · (1− θ1)x , x = 0, 1, 2, . . . ,

xi|θ1 ∈ f1 (x|θ1) , I.I.D. ,

x = (x1x2 . . . xn)

f1 (x | θ1) = θn1 · (1− θ1)
∑n
i=1 xi

The prior densities are

– Gamma distribution

θ0 ∈ Ga (k, λ) ,

see Ewens & Grant.

– Beta distribution

θ1 ∈ Be (α1, β1)

a) Establish that the Bayes factor is

Bf =

λk

Γ(k)
∏n
i=1 xi!

· Γ(k+
∑n
i=1 xi)

(n+λ)k+
∑n
i=1

xi

Γ(α1+β1)
Γ(α1)Γ(β1) ·

Γ(n+α1)Γ(
∑n
i=1 xi+β1)

Γ(n+
∑n
i=1 xi+α1+β1)

.

b) Assume that
k = λ = 2,

and
α1 = β1 = 1.

Which distribution, known under another name, is this ? Assume that

x = (1, 1, 2, 0, 0, 0, 0, 1, 1, 1, 2, 3).

Which model family is now favoured by Bf? You may use the expression in a) even if you have not
obtained it.

19. Let {Xn}n≥0 be a finite Markov chain with stationary transition probabilities pi|j . It has been shown that
then

P (X0 = j0, X1 = j1, . . . , Xn = jn) = pX0 (j0)

n∏
l=1

pjl−1|jl .

Check that the right-hand side of this equality is in fact a probability distribution.
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20 A Model of Recombination Processes Incorporating Interference
Let us consider a genome and suppose that between any two markers there is an array of discrete positions
at which crossovers (of strands of homologus chromosomes) can occur. Think of the positions as ordered
from left to right. The following Markov model addresses a locking mechanism as vehicle of interference.

A position is said to be in state 0 if it is locked or unlocked with no crossover there, and in state 1 if a crossover
occurs there. When a position is locked, then a crossover occurs at the next position with probability p, or
no crossover occurs with probability 1− p. In absence of crossover, then the next position is unlocked.

When a crossover occurs, then with probability λ the next position is locked, and with probability 1−λ either
a crossover results (with probability p) or no crossover results (with probability 1− p). The recombination
process is then modeled as a two-state Markov chain on the state space S = {0, 1} governed by the transition
probability matrix

P =

(
1− p p

λ+ (1− λ)(1− p) (1− λ)p

)
a) Find the invariant distribution of this chain. (This is of importance for calculating the recombination

frequency between two loci with L intervening positions.)

b) Take λ = 0.7, and p = 0.2. If the distribution φ(0) at the leftmost position is (0.8, 0.2), what is the
probability of crossover at position n = 2?

21. Let a Markov chain with states S = {0, 1} have the transition probability matrix

P =

(
0.75 0.25
0.25 0.75

)
Take the initial distribution

φ(0) = (1, 0).

Show (using induction) that

φ(n) =

(
1

2

(
1 + 2−n

)
,
1

2

(
1− 2−n

))
Show that the invariant distribution is the limit of φ(n), as n→∞.

22. A simplified version of the Wright model of population genetics is as follows. Xn is the number of individuals
bearing the genetic configuration A in a population with N individuals and is a Markov chain {Xn}n≥0

with the state space S = {0, 1, . . . , N} and with the transition probabilities

pi|j = P (Xn+1 = j|Xn = i) =

(
N
j

)(
i

N

)j (
1− i

N

)N−j
In other words, Xn+1|Xn = i ∈ Bin

(
N, iN

)
.

(a) Is this Markov chain irreducible ? Hint: Check p0|0 and pN |N .
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(b) Compute
E [Xn+1|X0 = i0, X1 = i1, . . . , Xn−1 = in−1, Xn = i] .

23. Let {Xn}n≥0 be a finite Markov chain with stationary transition probabilities pi|j . Let x = j0j1 . . . jn. It has
been shown that the probability of this sequence w.r.t to a Makrov model is

P (x | Markov) = P (X0 = j0, X1 = j1, . . . , Xn = jn)

(19.10)

= pX0 (j0)
n∏
l=1

pjl−1|jl .

Check that the right-hand side of this equality is in fact a probability mass function.

24. Consider the transition probability matrix for a Markov chain with four states (like nucleotide bases)

P =


p1|1 p1|2 p1|2 p1|4
p2|1 p2|2 p2|3 p2|4
p3|1 p3|2 p3|3 p3|4
p4|1 p|2 p4|3 p4|4


We use now (19.10) (with four states) as the likelihood function for P, or

L (P) =

n∏
l=1

pjl−1|jl ∝ P (x | Markov) .

In other words L (|P) is regarded as a function of P (or of the probabilities in P) and we throw away
pX0 (j0).

Show that the maximum likelihood estimate p̂i|j of pi|j is

p̂i|j =
ni|j

ni
, for i = 1, 2, 3, 4 and j = 1, 2, 3, 4.

Here ni|j is the number of times the sequence x = j0j1 . . . jn contains the pair of bases (i, j) (in this order),
i.e., the number of transitions from i to j and ni is the number of times the base i occurs in the sequence.
Hint: Note that this separates to an independent constrained maximization problem for each row.

25. Consider the HMM with three hidden states S = {1, 2, 3}, the transition probability matrix A given by the
graph in in Figur 2, and with the emission alphabet O = {a, b}, and with the emission probability matrix
B given by

b1(a) = 0.5, b2(b) = 0.5,

b2(a) = 0.1, b2(b) = 0.9,

b3(a) = 0.9, b3(b) = 0.1.
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Begin End

3

2

1

0.3

0.1

0.3

0.3

0.2

0.3

0.5

0.4

0.40.3

0.2

0.4

0.3

Figur 2: HMM state transition graph and transition probabilities for exercises 1. and 2.

Let the observed sequence be o = bab. Find the Viterbi path j∗ = j0j1j2. Show your calculations.
Answer:

max
j0j1j2

P (o, j0, j1, j2) = 0.0052488

j∗ = 232

26. Consider the HMM in exercise 26. Find P (aab) using the forward algorithm. Show your calculations.
Answer:

P (aab) = 0.0132864.

27. Let {Xn|n = 0, 1, 2, . . .} be time homogeneous Markov chain with a finite state space S. Show, in pedantic
detail, that Xn+1 and Xn−1 are conditionally independent given Xn, or

P (Xn+1 = jn+1, Xn−1 = jn−1|Xn = i) =

P (Xn+1jn+1|Xn = i) · P (Xn−1 = jn−1|Xn = i)

for all triplets jn+1, i, jn−1 from S3.

if X has Bin(n, p) distribution with p ≤ 0.1, then X is approximatively
Poi(np).

28. A palindrome is a word, phrase, number, or other sequence of characters which reads the same backward
or forward. A restriction enzyme is cutting DNA at a palindromic site 6 nt long.
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Determine the probability that a circular chromosome, a double-stranded DNA molecule of length L =
84000 nt, will be cut by the restriction enzyme into exactly twenty fragments.

We assume the DNA die with independent tosses as the description of the DNA sequence. Approxi-
mation of a binomial distribution by a Poisson distribution is required.

29. A circular double-stranded DNA of L = 3400 nt long was cut by a restriction enzyme. A subsequent gel
electrophoresis separation indicated the presence of five DNA pieces. It turned out that the absent-minded
technician could not recall exact type of restriction enzyme that was used. Still, he knew that the chemical
was picked up from a box containing an equal number of 4-base cutters and 6-base cutters (restriction
enzymes that cut specific 4 nt long sites and specific 6 nt long sites, respectively).

What is the posterior probability that 4-nucleotide cutter was used?

We assume the DNA die with independent tosses as the description of the DNA sequence. Approxi-
mation of the number of restriction sites by a Poisson distribution is permitted.

30. C. Darwin has formulated the following problem2 on what might be called rare deviations:

Let it be assumed that, in a large population, a particular affection occurs . . . in one out of a
million, so that the á priori chance that an individual taken at random will be so affected is only
one in a million. Let the population consist of sixty millions, composed, we will assume, of ten
million families, each containing six members.

Darwin assumes without any doubt that a family has two parents and four children.

The Question (by Darwin)

What are the odds that there will not be even a single family in which at least one parent and two
children will be affected?

Let X = the number families thus affected, i.e., the number of families with in which at least one parent
and two children are affected. The total number of families is n = 107.

a) What is the probability in a certain family to have at least one parent and two children affected? Assume
independent draws from the overall population.

b) What is the distribution of X?

c) What is now P (X = 0)? Approximation of distribution expected.

d) What is P (X > 0)? The approximation P (X > 0) ≈ P (X = 1) is applicable.

e) Find the desired odds. Darwin continues (loc.cit)

Professor Stokes 3 has calculated for me that the odds will be no less than 8333 millions to 1.

2The variation of animals and plants under domestication. London: John Murray. 1st ed, 1st issue. Volume 2., Ch XII,
p. 5, c.f. http://darwin-online.org.uk/converted/published/1868 Variation F877/1868 Variation F877.2.html

3(maybe this is George Gabriel Stokes of the Stokes
′

formula fame ?)
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Compare now your answer with the result by Stokes.

f) Darwin states that such families do exist in England (he observes X = x > 0). What conclusion does
he/do you draw from this ?

31. Lander-Watermans statistisc foor shotgun sequencing

Method
Frederick Sanger was one of the laureates of the Nobel Prize in Chemistry
in 1980 for developing a method to sequence short regions of DNA. It was
the most widely used sequencing method for approximately 40 years since
its invention.

– If the sequence is larger than 500-1000 consecutive nucleotides, the rest
of it will not be read (?). There is no current technology to simply read
the whole genome sequence from one end to the other. The human
genome is 3 billion nucleotides long. Sequencing it using the Sanger
method requires breaking it into little pieces, sequencing the pieces
separately, and fitting them back together.

– Break DNA at random into many smaller pieces, and randomly select
a large number of these pieces to be sequenced. Approximately the
first 500 nucleotides are read from one end of the pieces. These small
sequenced regions are called reads. We do not know their location in
the genome or their strand. Combine overlapping reads into contigs.
Sequence alignment is used to detect the overlaps.

– Additional information (scaffolds) is used to place the contigs into the
proper order and direction on chromosomes.
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Notations and statistical assumptions

– G =genome length in nucleotides ≈ 3 billion in human

– L = read length in nucleotides (assume 500)

– N = number of reads sequenced

– NL = number of nucleotides in all sequenced reads

– a = N
GL is the coverage (=average number of times each nucleotide

in the whole genome is sequenced)

– In each chromosome, a read of length L could start anywhere except
the last L− 1 positions.

– In a genome of lengthG with c chromosomes, there areG−c·(L−1)
possible starting positions. For human, c · (L − 1) = 23(499) =
11477 << G so we will approximate that there are G possible
starting positions. (That is, we will ignore the end effects.) The
probability that one of the N reads starts at any specific nucleotide
is N/G.

– Assume reads are distributed uniformly through the genome and
independently of each other.

Note that the exercises to follow do not require any extensive calculations.

a) Let I be any interval of L consecutive nucleotides. Let X = number of reads starting in I.

a.i) Under the preceding assumptions, why is the distribution of X is binomial? Hint: success= a read
starts at a nucleotide.

a.ii) What are the parameters of the binomial distribution?

a.iii) What is the probability of no reads in I? What is the probability of at least one read starting
in I, i.e., the probability of a contig?

b) Approximate the binomial distribution in a) by the appropriate Poisson distribution.

b.i) What are now the answers to a.ii) - a.iii)?

b.ii) We need to define gaps:

The nucleotide r is in a gap, if no read starts within the interval [r − L + 1, r]. In b.i)
we found the probability of a gap.

What is your back-of-the-envelope estimate4 of the expected number of nucleotides in gaps? What
is your estimate of the expected number of nucleotides in contigs?

4A back-of-the-envelope calculation is a rough calculation, typically jotted down on any available scrap of paper such as
the actual back of an envelope.
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b.iii) Assume that 99% of the genome is in contigs and 1 % in gaps. What is the coverage of, e.g.,
the human genome? Comment on your finding.

c) Each of the contigs has a unique rightmost read. The probability that a read is the rightmost read equals
the probability that no other read starts within that read, and has been found in b.i). If you label the
rightmost read as success and others as failures. With Y = the number of successes, Y has a binomial
distribution.

c.i) What are the parameters of this distribution?

c.ii) What is the expected number of contigs expressed in terms of a, G and L ?

32. The transition probability matrix for a finite Markov chain is

P =

 0 1
2

1
2

1 0 0
1 0 0


Find P (2n) and P (2n−1) for all n ≥ 1, and discuss whether the chain can have an asymptotic distribution.

33. Let a Markov chain with states S = {0, 1} have the transition probability matrix

P =

(
0.7 0.3
0.4 0.7

)
a) Find the stationary/invariant distribution of this chain.

b) If the initial (start) distribution φ(0) is (0.8, 0.2), what is the probability of this chain visiting state 1
at time n = 3?

34. A Markov chain has the 4-state space S = {(0, 0), (0, 1), (1, 0), (1, 1)} and the transition matrix

P =

(0, 0) (0, 1) (1, 0) (1,1)
(0, 0) (1− α)b00 (1− α)b01 αb10 αb11

(0, 1) (1− α)b00 (1− α)b01 αb10 αb11

(1, 0) βb00 βb01 (1− β)b10 (1− β)b11

(1, 1) βb00 βb01 (1− β)b10 (1− β)b11

.

The state of the chain is the value of a two-dimensional random variable (Xn, Yn), such that, e.g.,

(1− α)b01 = P (Xn = 0, Yn = 1 | Xn−1 = 0, Yn−1 = 0) ,

and analogously for the arrays in the matrix P. Both Xn and Yn are binary variables. We require, of course,
that

0 ≤ α ≤ 1, 0 ≤ β ≤ 1, b00 ≥ 0, b01 ≥ 0, b10 ≥ 0, b11 ≥ 0

and
b00 + b01 = 1, b10 + b11 = 1,
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Note that the form of the matrix P implies that

P (Xn, Yn | Xn−1, Yn−1) = P (Xn, Yn | Xn−1) (19.11)

(Why ?) Check then that

P (Xn = 1 | Xn−1 = 0) = α, P (Xn = 0 | Xn−1 = 1) = β

35. A converse to the preceding
Assume that (Xn) is a Markov chain with the transition matrix

A =

(
1− α α
β 1− β

)
and the state space {0, 1}. Assume that (Yn) is random process with values in {0, 1}, and with the (emission)
probability matrix

B =

(
b00 b01

b10 b11

)
,

where bij = P (Yn = j|Xn = i).

Let the entries in A and B be combined as in P in exercise 34. above.

Assume that (Xn, Yn)n≥0 is an HMM with parameter λ = (A,B).

Show that (Xn, Yn)n≥0 is a Markov chain on the state space space S = {(0, 0), (0, 1), (1, 0), (1, 1)} with the
transition matrix P.

Comment: The statements here hold for all HMMs with finite state spaces. In other words, if we have an
HMM, we can always regard it as a two-component MC.

36. Global Similarity Alignment

The global similarity alignment is the optimal alignment of x with y corresponding to

S (x,y) = max
x∗,y∗

s (x∗,y∗) ,

where the maximum is computed over the set of all alignments of x with y and where

s (x∗,y∗) =

∞∑
i=1

s (x∗i , y
∗
i ) .

An example of a similarity function is

s(x, y) =

{
+1 if x = y
−1 x 6= y.

δ = s(x,−) = s(−, x) > 0,
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The recursion for global alignment is

Si,j = max {Si−1,j − δ, Si,j−1 − δ, Si−1,j−1 + s (xi, yj)}

with the notation for maximum similarity for prefixes and adding obvious start conditions.

Let x = CAGTATCGCA, y = AAGTTAGCAG be two sequences. Show that the maximum similarity
alignment with δ = 1 is

x∗

y∗
=
C

A

A

A

G

G

T

T

A

−
T

T

C

A

G

G

C

C

A

A

−
G

You are expected to display the dynamic programming table.

37. Reconsider exercise 34. above.

a) By loc.cit. we have

P (Xn = i, Yn = j | Xn−1 = x, Yn−1 = y) = bijP (Xn = i | Xn−1 = x) ,

where i ∈ {0, 1}, j ∈ {0, 1}, y ∈ {0, 1}, x ∈ {0, 1}, and Yn−1 = y needs not to be included necessarily.

Check that
bij = P (Yn = j | Xn = i) .

(Hint: It can be a smart idea to first show that

P (Yn = j | Xn = i) =

∑
y

∑
x P (Yn = j,Xn = i, Yn−1 = y,Xn−1 = x)

P (Xn = i)
.)

b) Show now that (Xn, Yn) is an HMM. (What remains to be shown is that Y0, Y1, . . . , Yn are conditionally
independent r.v.:s given X0, X1, . . . , Xn.)

38. Define an HMM λ = (A,B, π) with the following parameters.

The state space of the hidden chain is S = {S1, S2, S3}, and

A =

 0 1/2 1/2
1 0 0
0 1 0

 ,

π(0) = (1, 0, 0) ,

The emission alphabet is O = {1, 2, 3}, and

B =

 1/2 1/2 0
1/2 0 1/2
0 1/2 1/2

 ,

What are the possible state sequences for the following observed sequences o, and what is the corresponding
p (o|λ)?
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a) o = 123.

b) o = 131.

38. HMM as a multiple alignment
Consider the three amino acid sequences

WRCCTGC,WCCGGCC,WCGCC

Suppose that their respective paths through a protein HMM of length 8 are

m0 m1 i1 m2 m3 m4 m5 d6 m7 m8

m0 m1 m2 m3 m4 m5 m6 m7 m8

m0 m1 m2 d3 d4 m5 m6 m7 m8

.

Using the theory in Ewens and Grant to give the alignment of the sequences that these paths determine.

Uppgift 39. We have a Markov chain in continuous time applied as a model for substitution of nucleotides in DNA. We
assume independent sites and the same distribution over all sites. The state space S is reduced to two states
S = {+1,−1}, e.g., pyriminide 7→ +1 och purine 7→ −1. The transition probability matrix is

P(t) =

(
1
2

(
1 + e−2λt

)
1
2

(
1− e−2λt

)
1
2

(
1− e−2λt

)
1
2

(
1 + e−2λt

) ) .
(a) Verify that π = (1/2, 1/2) is the equilibrium distribution for this chain and check that the chain is

reversible. (Note! You need not necessarily have to derive Q for this.)

(b) Consider the tree in the Figure. Leaves have been marked by 1, 2, 3, and the only internal mode is 0.

1
t

1

t+

0

t

0
t

1
t

0

321

The expected number of substitutions = λt are weights on the edges and we simplify by λ = 1.
Therefore t0 + t1 is the weight on the path from the root to node number 3 and analogusly for the
other paths.

Compute the probability p(U) fo the sitepattern ’ U = (−1,+1,+1) in the Figure by the Markov
assumption on the tree, and the model of substitutions above.
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1
t+

0
t

t
0

1

t

+1+1−1

1
t

0

321

Suggestion for solution: p(U) = 1
2

(
1
4 −

1
4e
−4t1

)
40. Jerzy Neyman5 was perhaps the first statistician to consider molecular. Neyman considered a substitution

process with | X |= s different states (molecules). Here we express Neyman’s model with the matrix
semigroup

PNe(t) =
∞∑
k=0

PkP (N(t) = k) = e−λtIeλtP, (19.12)

where N = {N(t)|t ≥ 0} is again a Poisson process, molecular clock, with the intensity λ ≥ 1, I is the s× s
identity matrix, and the s× s transition probability matrix P of the discrete time Markov chain is

P =


0 1

s−1
1
s−1 . . . 1

s−1
1
s−1 0 1

s−1 . . . 1
s−1

1
s−1

1
s−1 0 . . . 1

s−1
...

...
...

. . .
...

1
s−1

1
s−1

1
s−1 . . . 0

 . (19.13)

The generator is thus for any λ ≥ 1
Q = λ (P− I) . (19.14)

In Neyman’s model the current molecule is substituted with a different molecule chosen from the uniform

distribution
(

1
s−1 ,

1
s−1 , . . . ,

1
s−1

)
at the ticks of the molecular clock N = {N(t)|t ≥ 0}.

Check that PNe(t) is elementwise given by

Pii(t) =
1

s

(
1 + (s− 1)e−

s
s−1

λt
)
, (19.15)

and

Pij(t) =
1

s

(
1− e−

s
s−1

λt
)
. (19.16)

41. Let Y ∈ Be(1/2) and N = {N(t)|t ≥ 0} be a Poisson process with intensity λ, and let Y be independent of
N . Set

X(t) = (−1)Y+N(t) .

5Polish-American statistician, 1894−1981,
http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Neyman.html
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Then X = {X(t) | t ≥ 0} is a continuous-time Markov chain. The transition matrix is

P(t) =

(
1
2

(
1 + e−2λt

)
1
2

(
1− e−2λt

)
1
2

(
1− e−2λt

)
1
2

(
1 + e−2λt

) ) .
The sample paths of X, the random telegraph, are sequences of −1 and 1, each digit prevailing a random
(exponentially distributed time).

a) Find the generator Q of the process X.

b) Find the equilibrium distribution of the process X.

c) Is the process X reversible ? Justify your answer.

1. Find a transition probability matrix P ∗ for a Markov chain X∗ such that

X(t) = X∗N(t)

where N(t) is a suitable Poisson process.

42. Consider the tree in the Figure

1 2 3

µ

µ

0

1

Compute the probability of the site pattern TCA using the Jukes-Cantor model for substitution along the
branches.

We assume that the branch lengths are such that µ0 = µ · t0, µ1 = µ · t1, (µ = α/4), and that the remaining
branch length is = µ0 + µ1.

Answer:
1

16

(
6− 6b2 − 12a2b2 + 12a2b3

)
,

where
a = e−

4
3
µ0 , b = e−

4
3
µ1 .
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