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Lecture 7: Purpose

The purpose of this lecture is to make a transition from the biostatistics
part of the course to
Marketa Zvelebil & Jeremy Baum: Understanding bioinformatics.

2008, Garland Science.

(to be referred to as ZB) in the sense that the lecture deals with basics
of the Markov statistical models underlying some of chapter 6 and
other sections of ZB.
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Lecture 7: Contents

an introductory example of a Markov chain: McCabe’s library

Markov chain concepts: transition probability, Markov property, state
diagram, trellis

Markov chains and genomic sequence analysis

Hidden Markov Model (HMM) and sequence analysis
1 HMM for sequence heterogeneity
2 HMM for Protein families

Algorithms for Hidden Markov Models (are named)
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A generic introduction, neither biostatistics nor

bioinformatics involved here

Learning outcomes:

state

state diagram/graph

trellis

transition

transition probability

Markov property
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Introduction: Linnea’s library

Linnea has a set of three books on a bookshelf. These are (1) L. Råde &
B. Westergren: BETA, (2) G. Blom: Probability och Statistics, (3)
F. Gustafsson & N. Bergman: MATLABR for Engineers.
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Linnea’s library

Every time Linnea has consulted one of these books, she will insert the
book back on the shelf as the first one from the left. The figure depicts
the change in the order of the books after Linnea has sought advice and
inspiration from the book by G. Blom and put it back to the shelf.
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Linnea’s library

Linnea never takes two or three books from the shelf at a time and neither
does she introduce new books on the shelf or lets anyone else tamper with
the valuable books. Let us assume that the popularities (or the relative
frequencies) for Linnea to pick each and every of the three books can be
described by the distribution pi > 0, i = 1, 2, 3, respectively,
p1 + p2 + p3 = 1. In addition we assume that Linnea picks up the books
independently of each other.
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Linnea’s library: a sequence of transitions

Suppose that the books are initially ordered as MβB . Linnea picks up
then books in the sequence

β β B M B β

and returns them. The order of three books in the shelf changes as follows:

MβB 7→ βMB 7→ βMB 7→ BβM 7→ MBβ 7→ BMβ 7→ βMB

This sequence of orders (read from the left) of the books depicts a
sequence of transitions between randomly chosen triplets.
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Linnea’s library: states and state space

We shall refer to the triplets of books as states. We call

S = {βBM, βMB ,BβM,BMβ,MβB ,MBβ}

the state space.
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Linnea’s library: state graph

The states are visualized as nodes in the state graph.
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Linnea’s library: state graph & transitions

The possible transitions from βBM are depicted by an arrow with the
corresponding probability
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Linnea’s library: state graph & transitions

The possible transitions from βBM and from βMB are depicted by an
arrow with the corresponding probability
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Linnea’s library: state graph & transitions

All possible transitions are depicted by an arrow with the corresponding

probability
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Library: a Matrix

p1 = Pr(β), p2 = Pr(B), p3 = Pr(M)
β BM β MB B β M BM β M β B M B β

β BM p1 0 p2 0 p3 0
β MB 0 p1 p2 0 p3 0
B β M p1 0 p2 0 0 p3
BM β p1 0 0 p2 0 p3
M β B 0 p1 0 p2 p3 0
M B β 0 p1 0 p2 0 p3

.
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Linnea’s library: Transition probability Matrix

To be understood as follows: take a state in the left column. Say, e.g., β

MB. In the row corresponding to β MB you find the conditional

probabilities of transition to any other state.
β BM β MB B β M BM β M β B M B β

β BM p1 0 p2 0 p3 0
β MB 0 p1 p2 0 p3 0
B β M p1 0 p2 0 0 p3
BM β p1 0 0 p2 0 p3
M β B 0 p1 0 p2 p3 0
M B β 0 p1 0 p2 0 p3

.
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Transition probability

The conditional probabilities of the next state given the current state
are called transition probabilities.
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Linnea’s library: Transition probability Matrix

The sum of transition probabilities on every row is = 1.
β BM β MB B β M BM β M β B M B β

β BM p1 0 p2 0 p3 0
β MB 0 p1 p2 0 p3 0
B β M p1 0 p2 0 0 p3
BM β p1 0 0 p2 0 p3
M β B 0 p1 0 p2 p3 0
M B β 0 p1 0 p2 0 p3

.
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Trellis in gardening

A trellis is a structure, usually made from an open framework or lattice
of interwoven or intersecting pieces of wood, bamboo or metal that is
usually made to support and display climbing plants.
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Trellis in mathematics & engineering

A trellis is a graph whose nodes are ordered into vertical slices (time),
and with each node at each time connected to at least one node at an
earlier and at least one node at a later time.
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Trellis: shows all possible paths of state transitions
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Trellis: shows all possible paths of state transitions
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A sequence of states visualized in the trellis

Start with BβM, pick up books in the sequence β B M. The sequence
of states is the green path in the trellis:
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A bit more on trellises later in this lecture

There will be more about trellises of Markov chains, when we mention
the problem of the most probable path of a Hidden Markov model.

TK () Biostatistics 17.09.2014 23 / 103



The probability of a sequence of states

Start with MβB , pick up books in the sequence β β B M B β

Then the corresponding sequence of states is

MβB 7→ βMB 7→ βMB 7→ BβM 7→ MBβ 7→ BMβ 7→ βBM

The probability of the sequence is

Pr (MβB 7→ βMB 7→ βMB 7→ BβM 7→ MBβ 7→ BMβ 7→ βBM)

= p1p1p2p3p2p1

We multiply the transition probabilities as Linnea picks up the books
independently.
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Linnea’s library: random variables

Let us set

Xn
def
= the state after Linnea has returned a book for the nth time

The values of Xn are in S = {βBM, βMB ,BβM,BMβ,MβB ,MBβ}.

Xn is a random variable whose values are not numbers !

the random variables X0,X1, . . . ,Xn, . . . are NOT independent.
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Linnea’s library: random variables

Xn = the state after Linnea has returned a book for the nth time and then
we have, e.g,

Pr (Xn+1 = MBβ | Xn = BβM) = p3

e.t.c..
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Linnea’s library: random variables

Pr (MβB 7→ βMB 7→ βMB 7→ BβM 7→ MBβ 7→ BMβ 7→ βMB)

= p1p1p2p3p2p1

= Pr (X1 = βMB | X0 = MβB)Pr (X2 = βMB | X1 = βMB)Pr (X3 = BβM | X2 = βMB)

·Pr (X4 = MBβ | X3 = BβM)

·Pr (X5 = BMβ | X4 = MBβ)Pr (X6 = βBM | X5 = BMβ)
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Linnea’s library: random variables

Pr(X0 = MβB,X1 = βMB,X2 = βMB,X3 = BβM,X4 = MBβ,X5 = BMβ,X6 = βMB) =

Pr (X1 = βMB | X0 = MβB)Pr (X2 = βMB | X1 = βMB)

·Pr (X3 = BβM | X2 = βMB)Pr (X4 = MBβ | X3 = BβM)

·Pr (X5 = BMβ | X4 = MBβ)Pr (X6 = βBM | X5 = BMβ)

We should multiply this by a start probability Pr(X0 = MβB), but we
take this for simplicity as = 1.

TK () Biostatistics 17.09.2014 28 / 103



Markov property (1)

Consider the following:

X0X1 . . .Xn−1
︸ ︷︷ ︸

Past

Xn
︸︷︷︸

Present

Xn+1
︸ ︷︷ ︸

Future

Or, to be more concrete

X0 = MβB ,X1 = βMB ,X2 = βMB ,X3 = BβM,X4 = MBβ
︸ ︷︷ ︸

Past

X5 = BMβ
︸ ︷︷ ︸

Present

X6 = βBM
︸ ︷︷ ︸

Future

Then we want to find

Pr (X6 = βBM | Present, Past) .

This can be seen as a prediction of the future given present and past.
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Markov property (2)

By definition of conditional probability

Pr (X6 = βBM | Present, Past) =
Pr(X6 = βBM, Present, Past)

Pr(Present, Past)

From the above this is equal to

=
p1p1p2p3p2p1

p1p1p2p3p2
= p1 = Pr (X6 = βBM | X5 = BMβ)

Note that the zero transition probabilities can be handled by canceling
zeros in the numerator and denominator.
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Markov property (3)

We found that

Pr (X6 = βMB | Present, Past) = Pr (X6 = βMB | X5 = BMβ)

= Pr (X6 = βMB | Present)

Because Linnea picks up a new book independently of each other, the
sequence X1, . . . ,Xn, . . . lacks memory (of the past). This is what is
known as the Markov property: for finding the probability of any the
future state it is enough to know the present state, the past plays no role.
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The frog pond, where the frog jumps from leaf to leaf and

loses memory (suffers amnesia) at each jump
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Real name = McCabe’s library

The preceding library stuff is a special case of a known model for
self-organization of linear lists of data records and is called McCabe’s

library. It is of interest in computer science as dynamic file

management and cache management.
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End of introduction
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Markov chains

Think of any state space S with a finite number of discrete states. Let
X0,X1, . . . ,Xn−1,Xn,Xn+1, . . . be a sequence of r.v.’s with values in S
and such that if

X0X1 . . .Xn−1
︸ ︷︷ ︸

Past

Xn
︸︷︷︸

Present

Xn+1
︸ ︷︷ ︸

Future

thenMarkov property holds.

Pr (Future | Present,Past) = Pr (Future | Present) .

Then we call X0,X1, . . . ,Xn−1,Xn,Xn+1, . . . aMarkov chain.
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Markov chains

Learning outcomes:

You can invent Markov chains for your purposes by giving the
state graph !

In bioinformatics the state graph is often called the architecture of
the model.
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Example: A terminating Markov chain (1)

This is a terminating Markov chain. All states are transient (i.e. if the
chain leaves a state, it will not return to it), except one (=STOP) which is
absorbing, i.e., where the chain terminates. The length of the sequence at
termination is random.

START 

STOP 

pp p p p
N 1234

p

1−p

p

1−p 1−p

p p

1−p 1−p

p
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A terminating Markov chain (2)

This architecture is used for length modeling in gene prediction (with a
hidden Markov model).

Munch, Kasper and Krogh, Anders: Automatic generation of gene
finders for eukaryotic species, BMC bioinformatics, 2006, vol. 7,nr. 1,
pp. 263,

START 

STOP 

pp p p p
N 1234

p

1−p

p

1−p 1−p

p p

1−p 1−p

p
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A binary Markov chain

Consider a binary M.c., i.e., each Xn is either 0 or 1.

1−p 1−q0 1

q

  p 
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A binary Markov chain

This Markov chain has the transition matrix
(

1− p p

q 1− q

)

,

where 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1, i.e.,

p = Pr(X1 = 1 | X0 = 0), q = Pr(X1 = 0 | X0 = 1)

As in the case of Linnea’s library, these do not depend on n,

p = Pr(Xn+1 = 1 | Xn = 0), q = Pr(Xn+1 = 0 | Xn = 1)

The chain is called (time)homogenous.
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A binary Markov chain

This Markov chain has no state of termination and generates a sequence
of bits.

1−p 1−q0 1

q

  p 
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Trellis

The trellis of the binary M.c..

0 0 0

1 1 1

n=0 n=1 n=2
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Markov chains & genomic sequences

Learning outcomes:

genomic sequence as a linear sequence

Markov chain for DNA sequences

transition probability

probability of a sequence

estimation of the transition probabilities
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Markov chains and DNA
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Markov chains for DNA sequences

We disregard for the current purposes the double helix structure and think
of a linear sequence of nucleotides read from left to right. Here X1 = T

says that the nucleotide at site 1 is = T . We shall now regard this as an
outcome of a random variable.

T C C G T A G

0
X X X X XX X XX 1 2 3 4 5 6 7

A
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Markov chains for DNA sequences

Now we set, e.g.,

Pr (Xn+1 = A | Xn = T ) = pT|A

(does not depend on n)

T C C G T A G

0
X X X X XX X XX 1 2 3 4 5 6 7

A
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Transition graph

A

C

G

T

p
A|G
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Markov Model: transition probabilities

A C G T
A pA|A pA|C pA|G pA|T

C pC|A pC|C pC|G pA|T

G pG|A pG|C pA|G pG|T

T pT|A pT|C pT|G pT|T
We have pA|A + pA|C + pA|G + pA|T = 1 and the same holds for all other
rows.
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Markov Model: probability of a sequence

The probability of, e.g., the sequence ATCGAT is now

Pr (X0 = A,X1 = T ,X2 = C ,X3 = G ,X4 = A,X5 = T ) =

Pr(A)pA|TpT|CpC|GpG|ApA|T
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Recall: DNA dice model

We have earlier seen the DNA dice with independent tosses. There

Pr (X0 = A,X1 = T ,X2 = C ,X3 = G ,X4 = A,X5 = T )

= Pr(A)Pr(T )Pr(C )Pr(G )Pr(A)Pr(T )
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Markov Model: probability of a sequence

The Markov property means now that,

Pr (X5 = T | X0 = A,X1 = T ,X2 = C ,X3 = G ,X4 = A) = pA|T

The third order Markov property

Pr (X5 = T | X0 = A,X1 = T ,X2 = C ,X3 = G ,X4 = A)

= Pr (X5 = T | X2 = C ,X3 = G ,X4 = A)

(a memory of length = 3) has often turned out to be more useful. Fifth
order memory is also found. These require larger transition matrices,
probabilities for all transitions of triplets or quintets of nucleotides to one
nucleotide.
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Markov chain of fifth order (c.f. p. 370 in ZB)

2 3 1 2 3 1

3 1 2 3 1 2

1 2 3 1 2 3
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Frame Dependent Markov Chains

A coding region is read as successive non-overlapping codons, which are
instances of 3-symbol words. Since several different codons can code for
the amino acid, the bases may have different importance depending on
their position with respect to the codon partition.
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Frame Dependent Markov Chains GeneMark

Therefore a Markov chain of order k with three transition probability
matrices, P1,P2,P3 is considered. Here Pm has for m = 1, 2, 3 the entries

P (X3t+m = j3t |X3t−k+m = j3t−k+m, . . . ,X3t−1+m = j3t−1+m) .

TK () Biostatistics 17.09.2014 54 / 103



Frame Dependent Markov Chains GeneMark

The index m represents the position of the symbol inside the codon. This
is illustrated for k = 5 in the figure below. The circles represent
consecutive DNA bases, the numbers indicate the codon position. The
three arrows carry with them the different transition probability matrices
for each m. For each m the next base is generated by a distribution
conditioned on the five previous bases and depending on the codon
position m.
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Frame Dependent Markov Chains GeneMark

2 3 1 2 3 1

3 1 2 3 1 2

1 2 3 1 2 3
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Frame Dependent Markov Chains GeneMark

The kth order 3-phase Mc model is augmented by a first order Mc for
non-coding regions and is also learned together with a kth order 3-phase
Mc model for the other strand of the DNA sequence. Hence the task of
learning this type of model from data requires the estimation of seven
transition matrices with orders that are equal to k = 5 for coding regions
of prokaryotic DNA.
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Frame Dependent Markov Chains GeneMark

The probability of an observed fragment is calculated and the posterior

probability Pr(Model | Data) of each hypothesis about the coding region
is computed. The relevant algorithms and their implementation in software
are known as GeneMark1

1ZB pp. 368−370

TK () Biostatistics 17.09.2014 58 / 103



HMM = Hidden Markov Model
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HMM

Learning outcomes:

hidden state, emission

You can invent hidden Markov chains for your purposes by
designing the architecture ! .
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Contents

First we discuss an examples of HMM: Modelling DNA heterogenity

Then we give a general definition of HMM

Gene finding

Modelling protein families: Profile HMM
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The topic: GC -content

In molecular biology and genetics, GC-content (or guanine-cytosine
content) is the percentage of nitrogenous bases on a DNA molecule that
are either guanine or cytosine. This may refer to a specific fragment of
DNA or RNA, or that of the whole genome. There is vast variation in
GC-content, both amongst species and within a given species’ own
genome. Genes are often characterised by having a higher GC-content in
contrast to the background GC-content for the entire genome2.
We shall now try to propose a simple statistical model for this by means of
hidden Markov models (HMM)

2ZB pp. 238 - 239, 386, 387
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HHM for GC - content

Xn; n = 0, 1, 2, . . . is a Markov chain with with the (binary) state
space S = {0, 1}

an emitted process Yn; n = 0, 1, 2, . . . with values
O = {A,T ,G ,C},

X
n+1

Y
n+1Y

n
Y

 n-1

X
n

X
n-1

Y

X
0

0
YN

X
N.......

 ........

........

.........
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HHM for GC - content

The probabilities of the emissions are conditional probabilites that
depend on the state of Xn; n = 0, 1, 2, . . .

Pr(Yn | Xn)

X
n+1

Y
n+1Y

n
Y

 n-1

X
n

X
n-1

Y

X
0

0
YN

X
N.......

 ........

........

.........
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Modelling heterogeneity of DNA sequences

The M.c. Xn; n = 0, 1, 2, . . . is hidden and we see only the emissions
Yn; n = 0, 1, 2, . . ..

0
X X X X XX X XX 1 2 3 4 5 6 7

A T C GC T GC

2 2 2 1 1 1 1 1

Y Y Y Y Y Y Y Y
0 1 2 3 4 5 6 7
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Modelling heterogeneity of DNA sequences

DICE 1 

DICE 2 

CURTAIN 

MARKOV TRANSITIONS

OBSERVER 
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Modelling heterogeneneity of DNA sequences

The hidden Markov chain has the transition matrix

A =

(
1− p p

q 1− q

)

,

where 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1. Connect this to the emission probability
matrix

B =

(
1− ǫ −w w ǫ/2 ǫ/2

ǫ/2 ǫ/2 r 1− ǫ − r

)

,

where ǫ > 0, 0 ≤ w + ǫ ≤ 1 and 0 ≤ r + ǫ ≤ 1.
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Modelling heterogeneity of DNA sequences

The emission probability matrix

B =

(
1− ǫ −w w ǫ/2 ǫ/2

ǫ/2 ǫ/2 r 1− ǫ − r

)

.

is read like r = P (Y = G | X = 1), w = P (Y = T | X = 0) e.t.c. .
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Modelling heterogeneity of DNA sequences

The value of p is chosen close to 0 and q is taken close to 0. Hence the
state 0 of the hidden Markov chain persists, once the chain has entered it,
and GC has a high probability of being emitted, assuming that ǫ is small,
thus generating DNA sequences with GC -rich segments (and AT -rich
segments, when the state is 1).
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S.R. Eddy:What is a hidden Markov model? Nature

Biotechnology 22, 1315 - 1316 (2004)
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Meta MEME HMM

START END 

1.0 1.0 1.0 1.01.0 1.01.0

1

1 2 3

2

4 5 6

3

Motif-based hidden Markov models (HMMs) of families of related
biosequences. The program takes as input a set of DNA or protein motif
models constructed by MEME and produces as output a single HMM
containing the given motifs. linear models, in which the motifs areTK () Biostatistics 17.09.2014 71 / 103



Hidden Markov Models (HMM)

HMM is a model for a sequence of symbols from an alphabet
O = {o1, o2, . . . oK}. The model uses the idea of a hidden sequence of
state transitions.
HMM has a definition with parts I−III.
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Hidden Markov Models (HMM) I

(I) Hidden Markov Chain {Xn}
∞
n=0 is a Markov chain assuming values in a

finite state space S= {1, 2, . . . , J} with J states. The time-homogeneous
conditional probabilities are

ai |j = P (Xn = j |Xn−1 = i) , n ≥ 1, i , j ∈ S

and the transition probability matrix is

A =
(

ai |j

)J,J

i=1,j=1
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Hidden Markov Models (HMM) I

A matrix
A =

(
ai |j

)J,J

i=1,j=1

with the constraints

ai |j ≥ 0,
J

∑
j=1

ai |j = 1.
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Hidden Markov Models (HMM) II

(II) Emitted Random Process A random process {Yn}
∞
n=0 with a finite

state space O = {o1, o2, . . . oK}, where K can be 6= J. The
processes {Yn}

∞
n=0 and {Xn}

∞
n=0 are for any fixed n related by the

conditional probability distributions

bj (k) = P (Yn = ok |Xn = j) .
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Hidden Markov Models (HMM) II

We set
B = {bj (k)}

J,K
j=1,k=1

and call this the emission probability matrix. This satisfies

bj (k) ≥ 0,
K

∑
k=1

bj (k) = 1.
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Hidden Markov Models (HMM) III

(III) Probabilty of an emitted sequence given a state path For any
sequence of states j0j1 . . . jn the probability of the sequence o0o1 . . . on
is

P (Y0 = o0, . . . ,Yn = on | X0 = j0, . . . ,Xn = jn,B) =

n

∏
l=0

bjl (l) .
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1−rrw1−w

CGAT AT      CG

1 2

  p 

o o

1−q1−p

q

b(o|1) b(o|2)
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Gene Finding

Hidden Markov models have been extensively used for modelling genes.
Ab initio HMM gene finders for eukaryotes include software platforms like
Genscan, Augustus, HMMgene, GeneMark.HMM-E, Genie, TigrScan and
GlimmerHMM, Unveil and Exonomy, SNAP and others.
In gene finding, the states in the hidden Markov chain correspond to
intergenic regions and gene structure elements, e.g. coding regions and
introns. Each state emits nucleotides that constitute the DNA sequence in
corresponding regions. The emissions of bases may be conditional on the
occurrence of neighbouring bases within the sequence. This enables the
HMM to model higher order dependencies of base frequencies.
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Intergenic DNA

Exon

Exon Gene on reverse strand 

0 1 2

02 1

Gene  on forward strand 
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1 2 3 4
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Prob(Data | Model)
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Hidden Markov Chains: Modeling Protein Families

The perhaps main application of Hidden Markov Chains in bioinformatics is

detection of remote homologies using the Haussler-Krogh topology of the state

space.
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HMM: Profile HMM

One main application of HMM in bioinformatics is detection of remote homologies using the Profile HMM.
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Modelling Protein Families

Proteins are categorized into families that share common function and evolutionary ancestry. Identifying distantly related

homologs is a difficult problem, primarily because sequence identity between them is sparse. When these families are considered

in the context of a homology search, it becomes possible to identify amino acid variability, which is common to the family

members. Distantly related proteins can be found even with low sequence identity, if the similarities and differences are common

to the family members.
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Modelling Protein Families

This type of analysis is powerful because the function of divergent proteins
is conserved through evolution even though sequence elements are free to
change in some areas. Family-based searches take advantage of the fact
that individual members of a family serve as examples of how tolerant this
class of proteins is to change, and where. HMMs are one of several
family-based search methods.
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Modelling Protein Families

HMM is used to statistically describe a protein family’s consensus
sequence. This statistical description can be used for sensitive and
selective database searching.
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Modelling Protein Families
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The model consists of a linear sequence of
nodes with a begin state and an end state. although a typical model can
contain hundreds of nodes. Each node between the beginning and end
states corresponds to a column in a multiple alignment.
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Modelling Protein Families
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Each node in an HMM has a match state (M), insert state (I)

and delete state (D) with position-specific probabilities for transitioning into each of these states from the previous node.
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Modelling Protein Families
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In addition to a transition probability, the match state also has

position-specific probabilities for emitting a particular residue.The insert state has probabilities for inserting a residue at the

position given by the node. There is also a chance that no residue is associated with a node. That probability is indicated by the

probability of transitioning to the delete state.
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Modelling Protein Families

Both transition and emission probabilities can be estimated from a
multiple alignment of a family of sequences. An HMM can be compared
(that is, aligned) with a new sequence to determine the probability that
the sequence belongs to the modeled family.
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Modelling Protein Families
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The most probable path through the HMM (i.e.,
which transitions were taken and which residues were emitted at match
and insert states) is taken to generate a sequence similar to the new
sequence determines the similarity score.
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Topology

The profile HMM in the figure expresses the Haussler-Krogh topology of

the state space

m
0

m
1

m
2 m

3
m

4

i i i i

d d d

0 1 2 3

1 2 3

TK () Biostatistics 17.09.2014 98 / 103



Topology

The profile HMM in the figure has another topology , HMMER - 7.
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HMM-TOP

Five structural parts were defined in membrane proteins: membrane helix
(h), inside and outside helix tail (i and o), inside and outside loop (I and
O). Two connected tails form a short loop associated with the membrane,
while the tail-loop-tail sequence forms a long loop in the cytosol or in the
extra-cytosol. Topology is determined by partitioning amino acid sequence
in a way that product of the relative frequencies of amino acids in these
structural parts along the sequence should be maximal. This task can be
solved by the hidden Markov model (HMM), in which biological
constraints can be taken into account by the architecture of HMM. The
structural parts correspond to the five states used by the model.
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The model uses two type of states: one for structural parts, whose length
can not be arbitrary (fixed-length type, FL), and one for arbitrary long
structural parts (non-fixed-length type, NFL). In the later type there are
two possible transitions: one to the same state (elongation) and one to the
next state (termination). In case of inside loop the next state is inside tail,
and in case of outside loop the next state is outside tail. Structure of FL
type states is more complex. Let be the maximum length of an FL type
state MAXL, and minimum length MINL. Then let’s define MAXL
substates.
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There is only one possible transition from the first MINL substates:
transition to the next substate. There are two or three possible transitions
between the substate MINL and the substate MAXL: one to the next
substate (elongation), one to the next state (termination) and in case of
tail following helix the third possibility is to transit to the next tail leaving
out the loop state.
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TMHMM

method to model and predict the location and orientation of alpha helices
in membrane-spanning proteins is presented. It is based on a hidden
Markov model (HMM) with an architecture that corresponds closely to the
biological system. The model is cyclic with 7 types of states for helix core,
helix caps on either side, loop on the cytoplasmic side, two loops for the
non-cytoplasmic side, and a globular domain state in the middle of each
loop. The two loop paths on the non-cytoplasmic side are used to model
short and long loops separately, which corresponds biologically to the two
known different membrane insertions mechanisms. The close mapping
between the biological and computational states allows us to infer which
parts of the model architecture are important to capture the information
that encodes the membrane topology, and to gain a better understanding
of the mechanisms and constraints i
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