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Why ?

Why should there be probabilistic modelling in analysis of biological
databases ?
In the literature on data mining and machine learning (Baldi and Brunak 1998)
we frequently find Bayesian probability advocated as the fundamental tool of
uncertain reasoning.

P. Baldi and S. Brunak (1998): Bioinformatics. The Machine Learning
Approach. A Bradford Book. The MIT Press. Cambridge Massachusetts,
London, England.
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Why ?

The Cox-Jaynes axioms1 of uncertain reasoning are often cited in this context,
cf. (Arnborg and Sjödin 2000), and would thus seem to provide rationale for the
infusion of probability in bioinformatics.

S. Arnborg and G. Sjödin. (2000): On the Foundations of Baeysianism.
MaxEnt 2000: The Twentieth International Workshop on Bayesian Inference
and Maximum Entropy Methods in Science and Engineering. American
Institute of Physics,pp. 61−71.

1http://omega.albany.edu:8008/JaynesBook.html
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Ewens and Grant

The text by Ewens and Grant does not subscribe to much of a Bayesian
view of statistics. They do not refer to machine learning or data mining.
We are going to learn about, e.g., significance of the BLAST score, about
p-values , e.t.c. .
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Alphabet, Sequence

X and Y are two discrete alphabets, whose generic elements are called
symbols and denoted by xi and yj , respectively.

X = {x1, · · · , xL},Y = {y1, · · · , yJ}.

| X | def= the number of elements in X = cardinality of X = L ≤ ∞,
| Y |= J ≤ ∞. Unless otherwise stated the alphabets considered here are
finite.
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Alphabet, Sequence

In analysis and modelling of DNA sequences the alphabet is

X = {A,T ,C ,G}.

These are the four bases present in subunits of DNA called nucleotides:
adenine (A), thymine (T), cytosine (C) and guanine (G). The particular
order of these bases arranged along the sugarphosphate backbone is
called the DNA sequence.
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DNA
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Alphabet, Sequence

A sequence or a string x of length m is an ordered list of m symbols from
an alphabet X written contiguously from left to right

x = xl1xl2 . . . xli . . . xlm ; xli ∈ X , i = 1, . . . ,m.

The length of the symbol is denoted by |x| = m. The empty sequence ∅
has length 0 and contains no symbols taken from X .
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Alphabet, Sequence

DNA’s genetic code can be represented as a single alphabetic sequence composed of these four symbols. It is by means of this

code that the gene controls the formation of other substances in the cell. Progress of biotechnology as well as of computer

hardware and software have made it possible to determine the nucleotide sequences for large and increasing number of

organisms. Such data are now available in computer-readable form, so it is possible to look for and analyze patterns within

sequences using probabilistic modelling and computer algorithms.
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Probabilistic Models

There are numerous model families assigning a probability P (x) to a
string (or by extension to a set of strings) that have been applied in
bioinformatics. The model families and the methods of probabilistic
modeling often used in bioinformatics are presented in this course.
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Random Variables (R.V’s)

X is a (discrete) random variable that assumes values in X and Y is a
(discrete) random variable that assumes values in Y .
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R.V’s, Distributions

Events are often simply written as

{X = xi} : X assumes the value xi

{Y = yj} : Y assumes the value yj .

Then the probability of the event {X = xi} is

fX (xi )
def
= P(X = xi ).

The probability of the event {Y = yj} is

fY (yj )
def
= P(Y = yj ).
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R.V’s, Distributions

Furthermore
fX

def
= (fX (x1), · · · , fX (xL))

designates a discrete probability distribution on X and

fY
def
= (fX (y1), · · · , fY (yJ))

designates a discrete probability distribution on Y .
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R.V’s, Distributions

fX (xi ) ≥ 0 (1)
L

∑
i=1

fX (xi ) = 1 (2)

and similarly for fY .
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R.V’s, Distributions

If A ⊆ X then

PX (A)
def
= ∑

xi∈A
fX (xi ) (3)

is the probability of the event that X assumes a value in A, a subset of X .
If x1 ≤ x1 ≤ . . . ≤ xL, these are real numbers,

FX (x) = ∑
i :xi≤x

fX (xi ),

is called the distribution function.
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R.V’s, Distributions

If x1 ≤ x1 ≤ . . . ≤ xL, real numbers,

FX (x) = ∑
i :xi≤x

fX (xi )

is called the distribution function.

0 ≤ FX (x) ≤ 1.

x ≤ x
′
, FX (x) ≤ FX (x

′
)
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R.V’s, Distribution function

A ⊆ X

PX (A)
def
= ∑

xi∈A
fX (xi )

From this one easily finds the complement rule

P (Ac) = 1− P(A), (4)

where Ac is the complement of A, i.e. those outcomes that do not lie in
A. Also

P
(
A
⋃

B
)
= P(A) + P(B)− P(A

⋂
B), (5)

is immediate.
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R.V’s, Distributions

The notation fX encompasses tabular probability distributions, which are simply

tables of numbers with the stated properties, and algorithmic distributions, which

are algorithms for computing probabilities. There are both sorts of probability

distributions in bioinformatics as well as combinations thereof.
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R.V’s, Distributions

A parametric distribution is a special kind of algorithmic distribution: it consists

of a few numerical parameters and a relatively simple algorithm, usually a formula

for computing probabilities given some specific values of these parameters. The

examples immediately following belong to the parametric type.
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Bernoulli R.V’s

Consider the binary alphabet X = {0, 1}. Let p be a number between zero and
one. If X is a random variable assuming values in {0, 1} and if

fX (1) = P (X = 1) = p

then we call X a Bernoulli random variable with the probability of success p. We
write

X ∈ Be(p).

We refer to p as a parameter of the distribution fX .
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Geometric R.V’s

Consider an infinite sequence of Bernoulli random variables {Xn}∞
n=1 with a common probability of success p. This models an

infinite sequence of zeros and ones. Let

X = the number of trials before the first failure not including this.

Then X = {0, 1, 2, 3, . . . , ∞}. We say that X has a geometric probability distribution if

fX (k) = (1− p) · pk ; k = 0, 1, . . . ,

This is written as X ∈ Ge(p).
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Geometric-Like R.V’s

Suppose x ∈ {0, 1, 2, 3, . . . , } and suppose that

1− FX (x − 1) ∼ Cpx

for some fixed constant C , 0 < C < 1. We say that X has a
geometric-like probability distribution.
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Geometric-Like R.V’s

1− FX (x − 1) ∼ Cpx

We say that the function f is asymptotic to function g , as t → ∞, and
write f ∼ g , if

lim
t→∞

f (t)

g(t)
= 1.

TK Biostatistics 02.08.2018 23 / 77



Uniform R.V’s

Let X = {x1, x2, . . . , xL} be a finite alphabet and

fX (xk) =
1

L
; k = 1, 2, . . . , L.

This is called the uniform probability distribution.
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Uniform R.V’s

If X is a random variable assuming values in this alphabet and
P (X = k) = 1

L , then we say that

’X is selected at random’

and we write
X ∈ U (1, L) .
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Uniform R.V’s: DNA Dice

U(1, 4): DNA sequences
are not generated like this !
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Poisson distributed R.V’s

Let

fX (k) = e−λ · λk

k !
, k = 0, 1, 2, . . . .

This is a probability distribution on the non-negative integers called the Poisson
distribution. A random variable X with this distribution is said to be Poisson
distributed and we write

X ∈ Po(λ).
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Binomial R.V’s

Let A be some event defined in terms of some basic experiment. Introduce the
random variable X= the number of times the event A occurs in n repetitions of
some basic experiment. Then the alphabet of X is X = {0, 1, · · · , n}. If the
repetitions are modeled as independent (?), then X has the binomial distribution:

fX (k) = P(X = k) =

(
n
k

)
pk (1− p)n−k .
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Binomial Distribution: The Conditions

A binomial distribution results from a procedure that meets all the
following conditions:

The procedure has a fixed number of random events.

1

The events have outcomes in two categories.

2

The events are independent.

3

The probabilities are constant for each event.

4

TK Biostatistics 02.08.2018 29 / 77



Binomial R.V’s

fX (k) = P(X = k) =

(
n
k

)
pk (1− p)n−k .

(Recall that

(
n
k

)
= n!

(n−k)!k ! (the binomial coefficients), 0! def
= 1). We say that

X is a binomial random variable with parameters p and n and write

X ∈ Bin(n, p).
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Binomial R.V’s

Clearly the distibution of X is such that

X = X1 + X2 + . . . + Xn,

as an equality in distribution, where X1,X2, . . . ,Xn are independent Be (p)
- variables as in the preceding example.
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Binomial R.V’s in Bioinformatics

The number of matches in a sequence comparison ?

X = X1 + X2 + . . . + Xn,

where X1,X2, . . . ,Xn are independent Be (p) - variables.
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Alignment of Sequences & series of random events

We wish to compare two sequences x and y with 15 nucleotides in each.

x

y
=

G

C

↓
A

A

T

A

↓
A

A

↓
A

A

G

T

↓
C

C

↓
C

C

↓
C

C

↓
C

C

T

A

↓
G

G

↓
T

T

↓
C

C

↓
T

T

We say that we have a match, if the paired nucleotides are the same in
both sequences. We have eleven matches indicated by ↓.
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Alignment of Sequences & Binomial Distribution

x

y
=

G

C

↓
A

A

T

A

↓
A

A

↓
A

A

G

T

↓
C

C

↓
C

C

↓
C

C

↓
C

C

T

A

↓
G

G

↓
T

T

↓
C

C

↓
T

T

If we are willing to assume that the nucleotides are random (DNA die !)
and independent, and that the probabilities are the same at each site, then
the probabilities of the number of matches (=successes) follow a
binomial distribution with parameters n = 15, p = 1

4 . Then we can
compute how probable or likely it is to get 11 matches in a sequence of 15
nucleotides. This is a case of the question of significance (p-value) in
evaluating sequence alignments.
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Rare Event Rule

If, under a given assumption, the probability of an observed event is
extremely small (≈ 0), we conclude that the assumption is likely not
correct.

In the example with alignment of sequences, the probability of 11 matches
in two sequences of 15 nucleotides under the assumption of independent
tosses of the DNA die is 1.0297e − 04. (A computation done using a
Matlab function for the binomial probability binopdf(x,n,p) with
n = 15, p = 1

4 , x = 11).
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Binomial R.V’s

If np is small, i.e. if the event A occurs ’rarely‘, the binomial distribution
can be approximated by a Poisson distribution Po(λ) with λ = np (the
law of small numbers). The approximation Bin(n, p) ≈ Po(np), or more
appropriately its generalizations have turned out to be useful for a number
of problems in bioinformatics.
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Negative Binomial R.V’s

Same setting as in Binomial R.V.’s but the number of successes is fixed in
advance at m and the number of experiments up to and including the mth
success is a random variable X .

fX (n) = P(X = n) =

(
n− 1
m− 1

)
pm(1− p)n−m.

n = m,m+ 1, . . . ,. X is a negative binomial random variable with parameters p

and m.
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Generalized Geometric R.V’s

The number of failures is fixed in advance at k + 1 and the number of
experiments up to and not including the k + 1st failure is a random variable X .
Then as in the above

fX (x) = P(X = x) =

(
x
k

)
px−k (1− p)k+1.

x = k, k + 1, . . . ,. This reduces to a geometric distribution when k = 0, hence

this is a generalized geometric distribution.
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Hypergeometric R.V’s

n balls in an urn, r are red and n− r are black. Introduce for m ≤ n the random
variable X= the number of red balls is k, if m balls are chosen at random and
with replacement, X has the hypergeometric distribution:

P(X = k) =

(
r
k

)(
n− r
m− k

)
(

n
m

) .

X ∈ Hyp(n,m, r).
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Hypergeometric R.V’s

R. Román-Roldán, P. Benaola-Galván and J.L. Oliver: Sequence Compositional

Complexity of DNA through an entropic segmentation method. Physical Review

Letters, 80 (6), 1344−1347.
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Expectation

If X is a discrete alphabet and a finite set of real numbers we define the
expectation, E (X ), of the random variable X as

E (X )
def
=

L

∑
i=1

xi fX (xi ).

In case L = ∞ we require absolute convergence of the series.
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Expectation

If X is an arbitrary alphabet and g(·) is a map (function) of X to R,
g : X 7−→ R,

E (g(X ))
def
=

L

∑
i=1

g(xi )fX (xi ).

TK Biostatistics 02.08.2018 42 / 77



Variance

Let X be a real and finite alphabet and let the variance, Var(X ), of X be

Var(X )
def
= E

(
[X − E (X )]2

)
=

L

∑
i=1

(xi − E (X ))2fX (xi ) (6)

Hence Var(X ) = E (X 2)− (E (X ))2.
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Chebysjev’s inequality

Chebysjev’s inequality is another partial intuitive interpretation of variance.
For k > 0,

P (| X − E (X ) |> k) ≤ Var(X )

k2
.
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Chebysjev’s inequality: proof

Var (X ) =
L

∑
i=1

(xi − E (X ))2fX (xi ) =

= ∑
{xi ||xi−E (X )|>k}

(xi − E (X ))2fX (xi ) +

+ ∑
{xi ||xi−E (X )|≤k}

(xi − E (X ))2fX (xi )

≥ k2 ∑
{xi ||xi−E (X )|>k}

fX (xi )

= k2P(| X − E (X ) |> k), (7)

where we have used the fact that ∑{xi ||xi−E (X )|≤k}(xi − E (X ))2fX (xi ) ≥ 0.
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Factorial Moments

X is an integer-valued discrete R.V.,

µ[r ]
def
= E [X (X − 1) · · · (X − r + 1)] =

= ∑
x :integer

(x(x − 1) · · · (x − r + 1)) fX (x).

is called the r :th factorial moment.
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Binomial Moments

X is an integer-valued discrete R.V..

E

(
X
r

)
= E [X (X − 1) · · · (X − r + 1)] /r !

is called the binomial moment.
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CONTINUOUS R.V’s

Discrete random variables are in ways more relevant to bioinformatics than
continuous random variables. But:

Continuous variables are needed for approximations.

Continuous variables are needed in Bayesian statistics.
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CONTINUOUS R.V’s

A distribution function FX (x)
def
= P (X ≤ x) such that

FX (x) =
∫ x

−∞
fX (t)dt

where fX (x) is a density function,

fX (x) ≥ 0.∫ ∞
−∞ fX (x)dx = 1.
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CONTINUOUS R.V’s

Expectation, E (X ), is defined as

E (X ) =
∫ +∞

−∞
xfX (x)dx
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CONTINUOUS R.V’s

Variance Var(X ) is defined as

Var(X ) =
∫ +∞

−∞
(x − E (X ))2fX (x)dx

Var(X ) = E (X 2)− (E (X ))2.
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CONTINUOUS R.V’s

The random variable Y = g(X ) has the expectation

E [Y ] = E [g(X )] =
∫ +∞

−∞
g(x)fX (x)dx .
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Uniform R.V’s

Let a < b and

fX (x) =

{
1

b−a a < x < b

0 elsewhere.

The X ∈ U(a, b), uniformly distributed.
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Uniform R.V’s

If a < b and X ∈ U(a, b),

fX (x) =

{
1

b−a a < x < b
0 elsewhere

E (X ) =
a+ b

2
,V (X ) =

(b− a)2

12
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Normal R.V’s

X has the density φ(x ; µ, σ) defined by

φ(x ; µ, σ)
def
=

1√
2πσ2

e−
(x−µ)2

2σ2 ,

X has a normal distribution N(µ, σ2).
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Normal random variables

X has a normal distribution N(µ, σ2).

E (X ) = µ,V (X ) = σ2.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1
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0.5

0.6

0.7

0.8
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Exponential R.V’s

fX (x) =

{
λe−λx 0 < x < ∞

0 elsewhere.

FX (x) = 1− e−λx

X ∈ Exp(λ).
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Exponential and Geometric R.V’s

X ∈ Exp(λ)
Y = bX c

k = 0, 1, . . . ,,
Prob (Y = k) = Prob (k ≤ X < k + 1)

=
(

1− e−λ
)
e−λk .

Hence Y ∈ Ge
(
e−λ

)
.
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Density of the Fractional Part

X ∈ Exp(λ)
D = X − bX c

D is the fractional part of X .

fD(d) =

{
λe−λd

1−e−λ 0 < d < 1

0 elsewhere.
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Gamma Density

fX (x) =

{
λkxk−1e−λx

Γ(k) 0 < x < ∞
0 elsewhere.

λ and k are positive parameters. Γ(k) is Euler’s Gamma function. (See
Westergren & Råde: BETA. Mathematics Handbook for facts and
formulae about Euler’s Gamma function.)
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Gamma Function

Γ(z) =
∫ ∞

1
tz−1e−tdt

Γ(z + 1) = zΓ(z)
Γ(k) = (k − 1)!, if k is a positive integer.

Γ
(

1
2

)
=
√

π.
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Gamma Density

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

fX (x) =

{
λk xk−1e−λx

Γ(k) 0 < x < ∞
0 elsewhere.
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Chi-Square Density

λ = 1/2, k = (1/2)ν, Gamma density becomes

fX (x) =

 x
1
2 ν−1λe−

1
2 x

2
1
2 νΓ( 1

2 ν)
0 < x < ∞

0 elsewhere.

Chi-Square with ν degrees of freedom. This is important in statistical
testing.
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Beta Density

fX (x) =

{
Γ(α+β)

Γ(α)Γ(β)
xα−1x β−1 0 < x < 1

0 elsewhere.

X ∈ Beta (α, β). This density is important in Bayesian statistics.
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Probability Generating Function

Let X have values k = 0, 1, 2, . . . ,.

G (t) = E
(
tX
)
=

∞

∑
k=0

tk fX (k)

is called the probability generating function.

TK Biostatistics 02.08.2018 65 / 77



Prob. Gen. Fnct: Properties

d

dt
G (1) =

∞

∑
k=1

ktk−1fX (k) |t=1

= E [X ]

µ[r ] = E [X (X − 1) · · · (X − r + 1)] =
d r

dtr
G (1)

TK Biostatistics 02.08.2018 66 / 77



Prob. Gen. Fnct: Properties

Z = X + Y , X and Y integer valued, independent (?),

GZ (t) = E
(
tZ
)
=

E
(
tX+Y

)
= E

(
tX
)
· E
(
tY
)
= GX (t) · GY (t).
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Prob. Gen. Fnct: Examples

X ∈ Be(p)
GX (t) = 1− p + pt.

Y ∈ Bin(n, p)
GY (t) = (1− p + pt)n
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Probability Generating Function

G (t) = E
(
tX
)
=

∞

∑
k=0

tk fX (k)

is also known as called the Mellin transform.
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Moment Generating Function

φX (s)
def
= E

(
esX
)
=

{
∑xi

esxi fX (xi ) X discrete∫ ∞
−∞ esx fX (x)dx X continuous

is called the moment generating function.
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Moment Gen. Fnctn: Properties

d

ds
φ(0) = E [X ]

φ(0) = 1

dk

dsk
φ(0) = E

[
X k
]

.
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Moment Gen. Fnctn: Examples

X ∈ N
(
µ, σ2

)
φX (s) = eµs+ 1

2 σ2s2

Y ∈ exp (λ)

φY (s) =
λ

λ− s
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A Thm for Bioinformatics

Let X be a discrete R.V. with moment generating function φX (s). Say that X
can take at least one negative value (say −a) with positive probability fX (−a)
and at least one positive value (say b) with positive probability fX (b), and that
the expectation of X is nonzero. Then there exists a unique nonzero value s∗

such that
φX (s

∗) = 1.
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Proof (1)

Proof: Assume φX (s) is defined for all s.

φX (s) > fX (−a)e−as , φX (s) > fX (b)e
bs

Hence φX (s)→ ∞, as s → ∞ and also as s → −∞.
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Proof (2)

d2

ds2
φ(s) = ∑ x2esx fX (x) ≥ 0.

Hence φ(s) is convex as function of s. φ(0) = 1 and the the expectation
d
ds φ(0) = E [X ] is nonzero by assumption. If E [X ] is negative, then the graph of

φX (s) must be as in the Figure below:
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Proof (3)

1

s
*

φ
X

(s)

Similarly for E [X ] positive.
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End of Lecture
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