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Markov chains

A sequence of random variables {Xn}∞
n=0 is called a Markov chain,(MC),

if for all n ≥ 1 and j0, j1, . . . , jn ∈ S ,

P (Xn = jn|X0 = j0,X1 = j1, . . . ,Xn−1 = jn−1) =

P (Xn = jn|Xn−1 = jn−1) .
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The Markov property

If Xn = jn is a future event, then the conditional probability of this event
given the past history X0 = j0,X1 = j1, . . . ,Xn−1 = jn−1 depends only
upon the immediate past Xn−1 = jn−1 and not upon the remote past
X0 = j0,X1 = j1, . . . ,Xn−2 = jn−2.
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Hidden Markov Models (HMM)

HMM is a model family for a sequence of symbols from an alphabet
O = {o1, o2, . . . oK}. The model uses the idea of a hidden sequence of
state transitions.
HMM has a definition with parts I−III.
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Hidden Markov Models (HMM) I

(I) Hidden Markov Chain {Xn}∞
n=0 is a Markov chain assuming values in a

finite state space S= {1, 2, . . . , J} with J states. The time-homogeneous
conditional probabilities are

ai |j = P (Xn = j |Xn−1 = i) , n ≥ 1, i , j ∈ S

and the transition probability matrix is

A =
(
ai |j

)J,J

i=1,j=1
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Hidden Markov Models (HMM) I

A matrix
A =

(
ai |j
)J,J

i=1,j=1

with the constraints

ai |j ≥ 0,
J

∑
j=1

ai |j = 1.

is called a stochastic matrix.
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Hidden Markov Models (HMM) I

At time n = 0 the state X0 is specified by the initial probability
distribution πj (0) = P (X0 = j) with

π (0) = (π1(0), . . . , πJ(0)) .

πj (n) = P (Xn = j)

π (n) = (π1(n), . . . , πJ(n)) .
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Hidden Markov Models (HMM) II

(II) Observable Random Process A random process {Yn}∞
n=0 with a

finite state space O = {o1, o2, . . . oK}, where K can be 6= J. The
processes {Yn}∞

n=0 and {Xn}∞
n=0 are for any fixed n related by the

conditional probability distributions

bj (k) = P (Yn = ok |Xn = j) .
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Hidden Markov Models (HMM) II

We set
B = {bj (k)}J,K

j=1,k=1

and call this the emission probability matrix. This is another stochastic
matrix in the sense that

bj (k) ≥ 0,
K

∑
k=1

bj (k) = 1.
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Hidden Markov Models (HMM) III

(III) Conditional independence For any sequence of states j0j1 . . . jn the
probability of the sequence o0o1 . . . on is

P (Y0 = o0, . . . ,Yn = on | X0 = j0, . . . ,Xn = jn,B) =

n

∏
l=0

bjl (l) .
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A Formalism

An HMM is designated by

λ = (A,B, π(0)) .
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HMM Sequence Probability

UNDER THE HMM ASSUMPTIONS THE STRING o = o0 . . . on HAS
THE PROBABILITY

P (o) = P (Y0 = o0, . . . ,Yn = on; λ) =

J

∑
jo=1

. . .
J

∑
jn=1

P (Y0 = o0 . . . ,Yn = on,X0 = j0, . . . ,Xn = jn; λ)
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Hidden Markov Models, A Formalism (continued)

J

∑
jo=1

. . .
J

∑
jn=1

P (Y0 = o0 . . . ,Yn = on,X0 = j0, . . . ,Xn = jn; λ)

where
P (Y0 = o0, . . . ,Yn = on,X0 = j0, . . . ,Xn = jn; λ) =

πj0 (0) ·
n

∏
l=0

bjl (l)
n

∏
l=1

ajl−1|jl .
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The three problems of HMM 1

[1 ]The Evaluation or Scoring Problem Compute
P (Y0 = o0, . . . ,Yn = on; λ). Since the margnalization involves Jn+1

possible sequences, the total computational requirements are of the
order 2(n+ 1) · Jn+1 operations. The solution is known as the
forward-backward procedure
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The three problems of HMM 2

[2 ] The Decoding or Alignment Problem Find the most probable
state sequence that led to the observed sequence (o0 . . . on). This is
an alignment problem. Find the sequence j∗0 . . . j∗n that maximizes

P (X0 = j0, . . . ,Xn = jn,Y0 = o0, . . . ,Yn = on; λ)

for a fixed observed sequence o0 . . . on (Viterbi algorithm).
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The three problems of HMM 3

[3 ] The Learning or Training Problem Given an observed sequence
o = o0 . . . on, find the ’right’ model parameter values

λ = (A,B, π(0))

in a fixed topology that specify a model most likely to generate the
given sequence
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HIDDEN MARKOV MODELS: Conditional
Independence

Markov property and the conditional independence property III imply
useful expressions for smoothing, prediction, filtering and evaluation, and
these yield the solutions to the three problems stated above.
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Smoothing posterior probability

The smoothing posterior probability is defined as

π̂j (n|m) = P (Xn = j |Y0 = o0, . . . ,Ym = om)

for a standard HMM.
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Smoothing posterior probability

For n = 0, . . . ,N − 1 it holds that

π̂j (n|N) = π̂i (n|n) ·
J

∑
k=1

aj |k
π̂k (n+ 1|n) π̂k (n+ 1|N) .

We intend to explain this in some detail.
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Smoothing posterior probability

Here the typesetting is simplified e.g. by writing a conditional probability as

P (Ym = om, . . . ,YN = oN | Xn = jn . . . ,XN = jN)

simply as
P (Ym, . . . ,YN | Xn, . . . ,XN)

P (Y0, . . . ,Yn | X0, . . . ,Xn) =
n

∏
i=0

P (Yi | Xi ) .
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Proposition 1

Proposition

For all integers n and m such that 0 ≤ n ≤ m ≤ N

P (Ym, . . . ,YN | Xn . . . ,XN ) = P (Ym, . . . ,YN | Xm, . . . ,XN ) .
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Proposition 1.

Proof: The left hand side of the asserted identity can be expressed as

1

P (Xn , . . . ,XN ) ∑P (Ym , . . . ,YN | X0 . . . ,XN ) · P (X0 . . . ,XN ) ,

where the summation is over j0, . . . , jn−1 (i.e. the values of Xj0
, . . . ,Xjn−1

). If n = 0, there is no summation. By conditional

independence (and a marginalization argument)

P (Ym , . . . ,YN | X0 . . . ,XN ) = P (Ym |Xm) · . . . · P (YN |XN ) .

This can be taken outside the summation sign ∑, since m ≥ n.
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Proof

Then we are dealing with
N

∏
l=m

P (Yl |Xl )
1

P (Xn , . . . ,XN ) ∑P (X0 . . . ,XN ) ,

where the sum equals P (Xn , . . . ,XN ), since we are summing over j0, . . . , jn−1. Thus the whole last expression equals

=
N

∏
l=m

P (Yl |Xl ) ,

which is independent of n. Since the right hand side of the above is a special case of the left hand side for n = m, this proves
the assertion as claimed.
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Proposition 2.

Proposition

For all integers n = 0, . . . ,N − 1

P (Yn+1, . . . ,YN | X0, . . . ,Xn) =

P (Yn+1, . . . ,YN | Xn) .
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Proof of proposition 2.

Set
X (t) = (X0, . . . ,Xt ) ,Y (t) = (Y0, . . . ,Yt ) ,

Proof: The left hand side is
1

P
(
X (n)

) ∑P
(
X (N)

)
· P
(
Yn+1, . . . ,YN | X (N)

)
,

where the summation is over jn+1, . . . , jN . By the first proposition, (with m = n+ 1, n = 0), we have

P
(
Yn+1, . . . ,YN | X (N)

)
= P (Yn+1, . . . ,YN | Xn+1, . . . ,XN )

and using the same proposition and equation once more (with m = n+ 1) we have

P (Yn+1, . . . ,YN | Xn+1, . . . ,XN ) =

P (Yn+1, . . . ,YN | Xn , . . . ,XN ) .
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Proof of proposition2.

Thus

∑P
(
X (N)

)
· P
(
Yn+1, . . . ,YN | XN

)
=

∑P
(
XN

)
· P (Yn+1, . . . ,YN | Xn , . . . ,XN ) .

By conditional probability P
(
X (N)

)
=

P
(
Xn+1, . . . ,XN |X (n)

)
· P
(
X (n)

)
and by a consequence of Markov property we have

P
(
Xn+1, . . . ,XN |X (n)

)
= P (Xn+1, . . . ,XN |Xn) .
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Proof of proposition2.

Thus the sum equals, since we are summing over jn+1, . . . , jN ,

∑P
(
X (N)

)
· P (Yn+1, . . . ,YN | Xn , . . . ,XN ) =

= ∑
P (Yn+1, . . . ,YN ,Xn , . . . ,XN ) · P

(
X (n)

)
P (Xn)

.
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Proof of proposition 2.

= P
(
X (n)

)
∑

P (Yn+1, . . . ,YN ,Xn , . . . ,XN )

P (Xn)
.

And as we are summing over jn+1, . . . , jN , we have here that

∑
P (Yn+1, . . . ,YN ,Xn , . . . ,XN )

P (Xn)
=

P (Yn+1, . . . ,YN ,Xn)

P (Xn)
=
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Proof of proposition 2.

= P (Yn+1, . . . ,YN |Xn) .

We have that
1

P
(
X (n)

) ∑P
(
X (N)

)
· P
(
Yn+1, . . . ,YN | X (N)

)
=

1

P
(
X (n)

) P (Yn+1, . . . ,YN |Xn) · P
(
X (n)

)
,

which proves the assertion as claimed.
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Proposition 3.

Proposition

For all integers n = 0, . . . ,N

P (Y0, . . . ,Yn | X0, . . . ,XN) =

P (Y0, . . . ,Yn | X0, . . . ,Xn) .
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Proposition 4

Proposition

For all integers n = 0, . . . ,N

P (Y0,Y1, . . . ,YN | Xn) =

P (Y0,Y1, . . . ,Yn | Xn) · P (Yn+1, . . . ,YN | Xn) .
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Backward variable

The conditional probability P (Yn+1, . . . ,YN | Xn) is called the backward
variable. The next proposition is used to find a recursion for this
backward variable.
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A Proposition for the Backward variable

Proposition

For all integers n = 0, . . . ,N

P (Yn,Yn+1, . . . ,YN | Xn) =

P (Yn | Xn) · P (Yn+1, . . . ,YN | Xn) .
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One More Proposition

Proposition

For all integers n = 0, . . . ,N − 1

P (Y0,Y1, . . . ,YN | Xn,Xn+1) =

P (Y0,Y1, . . .Yn | Xn) · P (Yn+1, . . . ,YN | Xn+1) .
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Smoothing probability

π̂j (n|N) = P
(
Xn = j |Y (N)

)
.

By another marginalization we get

π̂j (n|N) =
J

∑
k=1

P
(
Xn = j ,Xn+1 = k |Y (N)

)
=

J

∑
k=1

P
(
Xn = j |Xn+1 = k,Y (N)

)
P
(
Xn+1 = k |Y (N)

)
=
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Smoothing probability

=
J

∑
k=1

P
(
Xn = j |Xn+1 = k,Y (N)

)
π̂k (n+ 1|N)

=
J

∑
k=1

P
(
Xn = j ,Xn+1 = k ,Y (N)

)
P
(
Xn+1 = k,Y (N)

) π̂k (n+ 1|N) .
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Smoothing probability

In the numerator inside the summation above we have

P
(
Xn = j ,Xn+1 = k ,Y (N)

)
=

P
(
Y (N)|Xn = j ,Xn+1 = k

)
P (Xn = j ,Xn+1 = k) =

= P
(
Y (n)|Xn = j

)
P (Yn+1, . . . ,YN |Xn+1 = k) · P (Xn = j) · aj |k

using the factorization in proposition 4 and the definition of aj |k .
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Smoothing probability

Then, since

P
(
Y (n)|Xn = j

)
P (Xn = j) =

P
(
Xn = j |Y (n)

)
P
(
Y (n)

)
,

we have obtained
P
(
Xn = j ,Xn+1 = k ,Y (N)

)
=

P
(
Xn = j |Y (n)

)
P
(
Y (n)

)
P (Yn+1, . . . ,YN |Xn+1 = k) · aj |k .
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Smoothing probability

For the denominator inside the summation for smoothing probability it holds that

P
(
Xn+1 = k,Y (N)

)
= P

(
Y (N) |Xn+1 = k

)
P (Xn+1 = k) =

= P
(
Y (n) |Xn+1 = k

)
P (Yn+1, . . . ,YN |Xn+1 = k)P (Xn+1 = k)

Next by P
(
Y (n) |Xn+1 = k

)
P (Xn+1 = k) = P

(
Xn+1 = k |Y (n)

)
P
(
Y (n)

)
we get

P
(
Xn+1 = k,Y (N)

)
=

P
(
Xn+1 = k |Y (n)

)
P
(
Y (n)

)
P (Yn+1, . . . ,YN |Xn+1 = k) .
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Smoothing probability

Therefore

π̂j (n|N) =
J

∑
k=1

P
(
Xn = j |Y (n)

)
· aj |k

P
(
Xn+1 = k |Y (n)

) π̂k (n+ 1|N) =

= π̂i (n|n) ·
J

∑
k=1

aj |k
π̂k (n+ 1|n) π̂k (n+ 1|N) ,

which is the result as claimed.
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Forward recursions for filtering and prediction posterior probabilities.

(a) Filtering posterior

π̂j (n|n) =

[
∑J
i=1 π̂i (n− 1|n− 1) · ai |j

]
· bj (on)

∑J
j=1 ∑J

i=1 π̂i (n− 1|n− 1) · ai |j · bj (on)
,

for j = 1, . . . , J.
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Filtering and Prediction

(b) Prediction posterior probability for an HMM:

π̂j (n|n− 1) =
J

∑
i=1

π̂i (n− 1|n− 1) · ai |j , j = 1, . . . , J,

Thus

π̂j (n|n) =
π̂j (n|n− 1) · bj (on)

∑J
j=1 π̂j (n|n− 1) · bj (on)

, j = 1, . . . , J.
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Evaluation/Scoring

The log likelihood function for the sequence o = oj0 . . . ojn with respect to the HMM model family is

logP
(
Y0 = oj0 , . . . ,Yn = ojn

)
=

n

∑
i=0

log f
(
Yi = oji

| oj0 , . . . , oji−1

)
,

where

f
(
Yi = oji

| oj0 , . . . , oji−1

)
=

J

∑
l=1

π̂l (i |i − 1) bl

(
oji

)
.
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Forward-Backward Algorithm and the Scoring/Evaluation Problem

The problem is to compute the simultaneous probability for the a sequence of emitted symbols, o = o0 . . . oN , conditioned on
some model λ = (A,B, π (0)),

LN = P (Y0 = o0 . . . ,Yn = oN ; λ) =

J

∑
jo=1

. . .
J

∑
jN=1

πj0
(0) bj0 (0)

N

∏
l=1

ajl−1 |jl
bjl

(l) ,

so that the exponential growth of operations in N involved in the marginalization is avoided. In order to simplify the notation,

the reference to the model λ is omitted.
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Forward Algorithm

Let
P (Y0 = o0, . . . ,YN = oN ,Xn = j) =

P (Xn = j) · P (Y0 = o0, . . . ,YN = oN |Xn = j) .

But the right hand side is factorized as

P (Y0 = o0, . . . ,YN = oN |Xn = j) =

P (Y0 = o0, . . . ,Yn = on |Xn = j) · P (Yn+1 = on+1, . . . ,YN = oN |Xn = j)
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Forward Algorithm

This gives
P (Y0 = o0, . . . ,Yn = on ,Xn = j) · P (Yn+1 = on+1, . . . ,YN = oN |Xn = j) .

Since
P (Y0 = o0, . . . ,YN = oN )

=
J

∑
j=1

P (Y0 = o0, . . . ,YN = oN ,Xn = j) ,

we get

P (Y0 = o0, . . . ,YN = oN ) =
J

∑
j=1

αn(j) · βn(j),
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Forward Algorithm

P (Y0 = o0, . . . ,YN = oN ) =
J

∑
j=1

αn(j) · βn(j),

where
αn(j) = P (Y0 = o0, . . . ,Yn = on ,Xn = j) .

βn(j) = P (Yn+1 = on+1, . . . ,YN = oN |Xn = j) .

We take βN (j) = 1 for every j arbitrarily.
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Forward Algorithm

First
αn+1(j) = P (Y0 = o0, . . . ,Yn+1 = on+1,Xn+1 = j) =

=
J

∑
i=1

P (Y0 = o0, . . . ,Yn+1 = on+1,Xn = i ,Xn+1 = j)

=
J

∑
i=1

P (Xn = i ,Xn+1 = j) · P (Y0 = o0, . . . ,Yn+1 = on+1 |Xn = i ,Xn+1 = j) .
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Forward Algorithm

Here, by the properties derived (’One More Proposition‘)

=
J

∑
i=1

P (Xn = i ,Xn+1 = j) · P (Y0 = o0, . . . ,Yn = on |Xn = i) · P (Yn+1 = on+1 |Xn+1 = j) .

P (Xn = i ,Xn+1 = j) · P (Yn+1 = on+1 |Xn+1 = j) = ai |j · bj (on+1) · P (Xn = i) .

Hence we have

J

∑
i=1

P (Xn = i ,Xn+1 = j) · P (Y0 = o0, . . . ,Yn = on |Xn = i) · P (Yn+1 = on+1 |Xn+1 = j) =

=
J

∑
i=1

P (Y0 = o0, . . . ,Yn = on ,Xn = i) · ai |j · bj (on+1) .
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Final step

This last expression is by our definition of the forward variable equal to

=
J

∑
i=1

αn(i) · ai |j · bj (on+1) =

[
J

∑
i=1

αn(i) · ai |j

]
· bj (on+1) .

This completes the derivation of the forward algorithm. We summarize the
result in a formal way.
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The Forward Recursion

Consider the forward variable αn(j) defined as

αn(j) = P (Y0 = o0, . . . ,Yn = on ,Xn = j) ,

which is the probability of the emitted subsequence o = o0 . . . on and of the hidden chain being in the state j at time n (given
the model λ).

Start:
α0(j) = bj (o0)πj (0), j = 1, . . . , J.

Recursion:

αn+1(j) =

[
J

∑
i=1

αn(i) · ai |j

]
· bj (on+1) .

j = 1, . . . , J, 1 ≤ n ≤ N − 1.
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The Forward Recursion Trellis
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Backward Algorithm

By definition

βn(j) =
J

∑
i=1

P (Yn+1 = on+1, . . . ,YN = oN ,Xn = j ,Xn+1 = i)

P (Xn = j)

=
J

∑
i=1

P (Yn+1 = on+1, . . . ,YN = oN |Xn = j ,Xn+1 = i)P (Xn = j ,Xn+1 = i)

P (Xn = j)
.

Here
P(Xn=j ,Xn+1=i)

P(Xn=j)
= aj |i and

P (Yn+1 = on+1, . . . ,YN = oN |Xn = j ,Xn+1 = i) =

= P (Yn+1 = on+1, . . . ,YN = oN |Xn+1 = i) .
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Backward Recursion

We apply furthermore one of the previous properties

P (Yn+1 = on+1, . . . ,YN = oN |Xn+1 = i) =

= P (Yn+1 = on+1 |Xn+1 = i) · P (Yn+2 = on+2, . . . ,YN = oN |Xn+1 = i) .
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Backward Recursion

Hence it follows that

βn(j) =
J

∑
i=1

P (Yn+1 = on+1 |Xn+1 = i) · P (Yn+2 = on+2, . . . ,YN = oN |Xn+1 = i) · aj |i

Recalling the definition of the backward variable and the emission probability bi (on+1) = P (Yn+1 = on+1 |Xn+1 = i) we have

βn(j) =
J

∑
i=1

bi (on+1) · βn+1(i) · aj |i .
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The Backward Procedure

Consider the backward variable βn(j) defined as

βn(j) = P (Yn+1 = on+1, . . . ,YN = oN |Xn = j) ,

which is the probability of the emitted subsequence on+1 . . . oN (from n+ 1 till the end) conditioned on the hidden chain being
in the state j at time n (conditional on the model λ).

Start:
βN (j) = 1 j = 1, . . . , J.

Recursion :

βn(j) =
J

∑
i=1

bi (on+1) · βn+1(i) · aj |i . j = 1, . . . , J, n = N − 1,N − 2, . . . , 0.

TK Biostatistics 02.08.2018 57 / 100



The Scoring (Evaluation) Problem

LN = P (Y0 = o0, . . . ,YN = oN) =
J

∑
j=1

αn(j) · βn(j).

Hence we have for any n = 0, . . . ,N a respective way of computing LN .
For example with n = N we have

LN =
J

∑
j=1

αN(j)

by the convention βN(j) = 1.
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Filtering, Smoothing and Prediction

All probabilistic information about Xn given a sequence of observations o0 . . . oN is contained in the conditional probabilities

π̂j (n|N) = P (Xn = j |Y0 = o0, . . . ,YN = oN ) .

This is conditioned on the model λ.

For n > N the probability π̂j (n|N) deals with prediction, n = N the probability π̂j (n|N) is a filtering probability. This is the

standard phrase for reconstruction of a hidden variable from observations. For n < N we talk about a smoothing probability.
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Filtering, Smoothing and Prediction

For n < N

π̂j |k (n|N) = P (Xn = j ,Xn+1 = k |Y0 = o0, . . . ,YN = oN ) ,

is the conditional posterior probability that a transition has taken place between
any two states j and k at time n+ 1.
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Filtering, Smoothing and Prediction

Let us first find π̂j (n|n). We use the definition of conditional probability
to write

π̂j (n|n) = P (Xn = j |Y0 = o0, . . . ,Yn = on) =

=
P (Y0 = o0, . . . ,Ym = on,Xn = j)

P (Y0 = o0, . . . ,Yn = on)
.

Using the definition and the evaluation formula we have

=
αN(j)

∑J
j=1 αN(j)

.
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Filtering, Smoothing and Prediction

Let
π̂j (n|N) = P (Xn = j |Y0 = o0, . . . ,Yn = oN) =

and simplify the notation

=
P (Y0, . . . ,YN ,Xn)

P (Y0, . . . ,YN)
=

P (Y0, . . . ,Yn,Yn+1, . . . ,YN ,Xn)

P (Y0, . . . ,Yn)P (Yn+1, . . . ,YN | Y0, . . . ,Yn)
=
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Filtering, Smoothing and Prediction

=
P (Y0,Y1, . . . ,Yn,Xn) · P (Yn+1, . . . ,YN | Xn)

P (Y0, . . . ,Yn)P (Yn+1, . . . ,YN | Y0, . . . ,Yn)
,

by one of the factorizations derived earlier and the definition of conditional
probability.
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Scalings in Filtering, Smoothing and Prediction

Here Devijver (1985) (no reference included) introduces

π̂j (n|N) = α̃n(j) · β̃n(j)

with

α̃n(j) =
P (Y0, . . . ,Yn ,Xn = j)

P (Y0, . . . ,Yn)

and

β̃n(j) =
P (Yn+1, . . . ,YN | Xn = j)

P (Yn+1, . . . ,YN | Y0, . . . ,Yn)
,

These are evidently scalings of the forward and backward variables The important property of these particular scalings is that

there exist recursions for the scaled forward and backward variables α̃n(j) and β̃n(j).
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Scaling Recursions

First, α̃n(j) equals the filtering posterior probability α̃n(j) = π̂j (n|n). By
the preceding

α̃n(j) =

[
∑J

i=1 α̃n−1(i) · ai |j
]
· bj (on)

∑J
j=1 ∑J

i=1 α̃n−1(i) · ai |j · bj (on)
,

which is the desired forward recursion.
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Scaling Recursions

Next we get

β̃n(j) =
J

∑
k=1

P (Yn+1,Yn+2 . . . ,YN ,Xn+1 = k | Xn = j)

P (Yn+1,Yn+2 . . . ,YN | Y0, . . . ,Yn)
.

By some rearranging we have

β̃n(j) =
J

∑
k=1

P
(
Y

(N)
(n+1)

| Xn+1 = k ,Xn = j
)
P (Xn+1 = k |Xn = j)

P (Yn+1,Yn+2 . . . ,YN | Y0, . . . ,Yn)
.
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Scaling Recursions

From the preceding

P (Yn+1,Yn+2, . . . ,YN | Xn+1 = k,Xn = j) =

P (Yn+1,Yn+2 . . . ,YN | Xn+1 = k)

and
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Scaling Recursions

P (Yn+1,Yn+2, . . . ,YN | Xn+1 = k) =

P (Yn+1 | Xn+1 = k) · P (Yn+2, . . . ,YN | Xn+1) .

Since P (Yn+1 | Xn+1 = k) = bk

(
ojk

)
and P (Xn+1 = k |Xn = j) = aj |k we have

P (Yn+1,Yn+2, . . . ,YN | Xn+1 = k,Xn = j)P (Xn+1 = k |Xn = j) =

bk

(
ojk

)
P (Yn+2, . . . ,YN | Xn+1) aj |k .
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Scaling Recursions

In the denominators we have
P (Yn+1, . . . ,YN | Y0, . . . ,Yn) =

= P (Yn+1 | Y0, . . . ,Yn) · P (Yn+2 . . . ,YN | Y0, . . . ,Yn+1) .

Thus we have

β̃n(j) =
J

∑
k=1

bk

(
ojk

)
P (Yn+2, . . . ,YN | Xn+1) aj |k

P (Yn+1 | Y0, . . . ,Yn) · P (Yn+2, . . . ,YN | Y0, . . . ,Yn+1)
,
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Scaling Recursions

By definition of β̃n(j) the last equality gives

β̃n(j) =
J

∑
k=1

bk
(
ojk
)
aj |k

P (Yn+1 | Y0, . . . ,Yn)
· P (Yn+2, . . . ,YN | Xn+1 = k)

P (Yn+2, . . . ,YN | Y0, . . . ,Yn+1)
,

which equals

β̃n(j) =
1

P (Yn+1 | Y0, . . . ,Yn)

J

∑
k=1

bk
(
ojk
)
aj |k · β̃n+1(k).
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Scaling Recursions

Finally,

P (Yn+1 | Y0, . . . ,Yn) =
J

∑
j=1

J

∑
k=1

P (Yn+1,Xn = j ,Xn+1 = k | Y0, . . . ,Yn) =

=
J

∑
j=1

J

∑
k=1

aj |kbj
(
olj

)
α̃n−1(j)

using the preceding results. We set

Nn =
1

∑J
j=1 ∑J

k=1 aj |kbj
(
olj

)
α̃n−1(j)

and obtain

β̃n(j) = Nn

J

∑
k=1

bk

(
ojk

)
aj |k · β̃n+1(k).
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Posterior Smoothing

The forward variable α̃n(j) and the backward variable β̃n(j) are defined as

α̃n(j) =
P (Y0,Y1, . . . ,Yn,Xn = j)

P (Y0, . . . ,Yn)

and

β̃n(j) =
P (Yn+1, . . . ,YN | Xn = j)

P (Yn+1, . . . ,YN | Y0, . . . ,Yn)
.
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Algorithm for Posterior Smoothing

Start:
α̃0(j) = N0bj (o0)πj (0), j = 1, . . . , J.

β̃N(j) = 1

Recursions:

α̃n+1(j) = Nn

[
J

∑
i=1

α̃n(i) · ai |j

]
· bj (on+1) .
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Algorithm for Posterior Smoothing

and

β̃n(j) = Nn

J

∑
k=1

bk (ojk ) aj |k · β̃n+1(k).

where in both cases

Nn =
1

∑J
j=1 ∑J

k=1 aj |kbj
(
olj
)

α̃n−1(j)
.

The scaled recursions above are immune to underflow problems.
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The most probably path and the Viterbi Algorithm

We wish to find the state sequence that maximizes the probability

P (Y0 = o0, . . . ,YN = oN ,X0 = j0, . . . ,XN = jN)

by selection of j0 . . . jN , when the sequence o0 . . . oN is fixed and the model
λ is known and omitted in the notation.
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Alignment Problem

Let us set
δn(j) = max

j0 ...jn−1
P (Y0 = o0, . . . ,Yn = on ,X0 = j0, . . . ,Xn = j) ,

which is the highest probability along a single subsequence of states that at time n is in state j and accounts for the first

n+ 1 ≤ N emitted symbols.
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Bellman’s optimality principle.

Proposition

δn(j) =

[
max

i=1,...,J
δn−1(i) · ai |j

]
· bj (on) .
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Alignment Problem

Proof: Using the notational conventions we set

P (Y0 = o0, . . . ,Yn = on ,X0 = j0, . . . ,Xn = j) = P
(
Y (n) | X (n)

)
· P
(
X (n)

)
.

By the conditional independence of the emitted symbols and the definition of conditional probability

=
n

∏
j=1

P
(
Yj | Xj

)
· P
(
Xn | X (n−1)

)
P
(
X (n−1)

)
.
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Alignment Problem

But the Markov property of the hidden chain and some reorganization give

= bj (on)
n−1

∏
j=1

P
(
Yj | Xj

)
· P (Xn | Xn−1)P

(
X (n−1)

)
=

= ajn−1 |j · bj (on) ·
n−1

∏
j=1

P
(
Yj | Xj

)
· P
(
X (n−1)

)
.

Reverting back to the unabridged notation this equals

bj (on)
[
ajn−1 |jP (Y0 = o0, . . . ,Yn−1 = on−1,X0 = j0, . . . ,Xn−1 = jn−1)

]
.
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Alignment Problem

For each j ∈ S at time n we have to find the transition to that state from every state i ∈ S at time n− 1 giving the best score
(in the sense above). There are many paths leading to i at time n− 1. But we see that the score for the current transition is
factorized as the product

ajn−1 |jP (o0, . . . , on−1,X0, . . . ,Xn−1) .

But this shows again that if we do not choose at time n− 1 for every i that special subsequence leading to i with maximal
probability, we cannot obtain

max
j0 ...jn−1

ajn−1 |jP (o0, . . . , on−1,X0, . . . ,Xn−1 = i) .
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Alignment Problem

Hence

max
j0...jn−1

ajn−1|jP (o0, . . . , on−1,X0 = j0, . . . ,Xn−1 = jn−1) =

[
max

i=1,...,J
δn−1(i) · ai |j

]
as was to be proved.

TK Biostatistics 02.08.2018 81 / 100



Alignment Problem

The subsequence yielding δn(j) is called a survivor and denoted by

ψn(j) = argmaxi=1,...,Jδn−1(i) · ai |j

and consists of the prefix yielding δn−1(i) concatenated by the best scoring
transition between times n− 1 and n. Hence we need at any j and any n
only remember the survivor and no other path leading to this state
through the trellis.
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Alignment Problem

The complete procedure yielding the best decoded state sequence (path) is
now formalizable in the following manner.
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Viterbi Algorithm (VA)

Storage: n time index, for each j ∈ S the survivor ψn(j) and the corresponding scores δn(j), j ∈ S .

Start: n = 0. Compute for each j ∈ S
δ0(j) = πj (0) · bj (o0) ,

ψ0(j) = ∅.

Recursion: Compute

δn+1(j) =

[
max

i=1,...,J
δn(i) · ai |j

]
· bj (on+1) .

Store the survivors
ψn(j) = argmaxi=1,...,J δn−1(i) · ai |j .

for j = 1, . . . ,N. Set n+ 1 to n unless n = N and repeat.
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Viterbi Algorithm (VA)

Termination:
P∗ = max

i=1,...,J
δN (i)

j∗(N) = argmaxi=1,...,JδN (i).

Backtracking: The best path is found by

j∗(n) = ψn+1 (j∗ (n+ 1)) , n = N − 1,N − 2, . . . , 0.
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Quasiloglikelihood for HMM

Let now t denote the number of state sequences x = j0j1 . . . jn of length
n+ 1 that have positive probability with regard to the model λ with the
given sequence of emission symbols o.
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Quasiloglikelihood for HMM

We enumerate the state sequences (j0, . . . , jn) by the index s, s = 1, . . . , t. Then
we set

us = P (Y0 = o0 . . . ,Yn = on,X0 = j0, . . . ,Xn = jn; λ)

if (j0 . . . jn) 7→ s.
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Quasiloglikelihood for HMM

For any other model λ∗ we set
vs = P (Y0 = o0 . . . ,Yn = on ,X0 = j0, . . . ,Xn = jn ; λ∗)

if (j0 . . . jn) 7→ s.

Note that some vs may be in fact be equal to zero, since we are checking state paths with positive probability with regard to λ.

We have to exclude the converse situation and thus make the following assumption.
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Quasiloglikelihood for HMM

We assume that the model λ∗ does not assign a positive probability, conditioned on the given o, to a state path in Sn+1 that
has probability zero with regard to the model λ or, if we have x† = j†0 . . . j†n such that

P
(
Y0 = o0 . . . ,Yn = on ,X0 = j†0 , . . . ,Xn = j†n ; λ

)
= 0

then
P
(
Y0 = o0 . . . ,Yn = on ,X0 = j†0 , . . . ,Xn = j†n ; λ∗

)
= 0.
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A lower bound for the loglikelihood ratio

ln
P (Y0 = o0 . . . ,Yn = on; λ∗)

P (Y0 = o0 . . . ,Yn = on; λ)
,

which is comparing the plausibility of the two models for the fixed
sequence of emitted symbols.
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A lower bound for the loglikelihood ratio

Under the assumptions above for s = 1, . . . , t we have

us > 0

and

ln
P (Y0 = o0 . . . ,Yn = on; λ∗)

P (Y0 = o0 . . . ,Yn = on; λ)
≥

Q (λ, λ∗)−Q (λ, λ)

P (Y0 = o0 . . . ,Yn = on; λ)
,
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Quasiloglikelihood for HMM

Q (λ, λ∗) = Q (λ, λ∗ | o) =
t

∑
s=1

us ln vs

and

Q (λ, λ) = Q (λ, λ | o) =
t

∑
s=1

us ln us .
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Quasiloglikelihood for HMM

Q (λ, λ∗) =
t

∑
s=1

us ln vs =

=
t

∑
s=1

us

[
J

∑
j=1

rj (s) ln π∗j (0) +

J

∑
j=1

K

∑
k=1

mj |k (s) ln b∗j (ok ) +
J

∑
j=1

J

∑
i=1

ni |j (s) ln a∗i |j

]
=

(interchanging the order of the finite summations)
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Baum-Welch

We maximize
J

∑
j=1

[
t

∑
s=1

us rj (s)

]
ln π∗j (0) +

J

∑
j=1

K

∑
k=1

[
t

∑
s=1

usmj |k (s)

]
ln b∗j (ok )+

J

∑
j=1

J

∑
i=1

[
t

∑
s=1

usni |j (s)

]
ln a∗i |j .

as function of the unknown parameters. This gives:
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Baum-Welch

1. For j = 1, . . . , J,

π∗j (0) =
ej

P (Y0 = o0 . . . ,Yn = on ; λ)
.

2. For j = 1, . . . , J and for k = 1, . . . ,K

b∗j (ok ) =
dj |k
nj

.

3. For j = 1, . . . , J and for i = 1, . . . , J

a∗i |j =
ci |j

∑J
j=1 ci |j

.
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Baum-Welch

1. For j = 1, . . . , J,

π∗j (0) =
α0(j) · β0(j)

P (Y0 = o0, . . . ,Yn = on)
. (1)

π∗j is the expected frequency of j at starting time given o0 . . . on
and conditioned on the current model λ.
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Baum-Welch

2. For j = 1, . . . , J and for k = 1, . . . ,K

b∗j (ok) =
∑n

l=0 I{Yl=ok}αl (j) · βl (j)

∑n
l=0 αl (j) · βl (j)

. (2)

b∗j (ok) is the expected number of visits in state j and emitting
the symbol ok divided by the expected number of transitions
from state j, given o0 . . . on and conditioned on the current
model λ.
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Baum-Welch

3. For j = 1, . . . , J and for i = 1, . . . , J

a∗i |j =
ai |j ·∑n−1

l=0 αl (i) · bj (ol+1) · βl+1(j)

∑n−1
l=0 αl (i) · βl (i)

. (3)

a∗i |j is the ratio of the expected number of transitions from state

i to state j divided by the expected number of transitions from
state i given o0 . . . on and conditioned on the current model λ.
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Consider a Markov chain (Xk)
∞
k=0 with the state space {0, 1} and with the

transition probability matrix

A =

(
1− p p
q 1− q

)
and with the initial distribution

π(0) = (1− a, a) .

The emitted sequence (Yk)
∞
k=0 is given by

Yk =

{
1 if Xk + Vk ≥ 1
0 if Xk + Vk ≤ 0,

where (Vk)
∞
k=0 is a sequence of independent, identically distributed

discrete random variables, which are independent of of (Xk)
∞
k=0, too. The

variables Vk assume values in the alphabet {−1, 0, 1} with the
probabilities

1− p0 − p1, p0, p1

respectively.
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A Problem

(a) Show that this is a hidden Markov model in the sense of our
definition. Give the emission probability matrix B.

(b) Let for j = 0, 1

π̂j (n|m) = P (Xn = j |Y0, . . . ,Ym)

be the prediction (n > m) or filtering (n = m) probability. Show that

π̂1 (n+ 1|n) = p − (p − (1− q)) · π̂1 (n|n) .
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