Statistical Bioinformatics, Makerere Hidden Markov Models Timo Koski

TK
02.08.2018

Contents

This lecture corresponds some of the sections of chapter 12 in Ewens and Grant

1) Definition and examples
2) Properties implied by conditional independence
3) Forward-Backward Algorithm and the Scoring/Evaluation Problem
4) Alignment (Viterbi algorithm), Learning (Baum - Welch algorith)

Markov chains

A sequence of random variables $\left\{X_{n}\right\}_{n=0}^{\infty}$ is called a Markov chain,(MC), if for all $n \geq 1$ and $j_{0}, j_{1}, \ldots, j_{n} \in S$,

$$
\begin{gathered}
P\left(X_{n}=j_{n} \mid X_{0}=j_{0}, X_{1}=j_{1}, \ldots, X_{n-1}=j_{n-1}\right)= \\
P\left(X_{n}=j_{n} \mid X_{n-1}=j_{n-1}\right)
\end{gathered}
$$

The Markov property

If $X_{n}=j_{n}$ is a future event, then the conditional probability of this event given the past history $X_{0}=j_{0}, X_{1}=j_{1}, \ldots, X_{n-1}=j_{n-1}$ depends only upon the immediate past $X_{n-1}=j_{n-1}$ and not upon the remote past $X_{0}=j_{0}, X_{1}=j_{1}, \ldots, X_{n-2}=j_{n-2}$.

Hidden Markov Models (HMM)

HMM is a model family for a sequence of symbols from an alphabet $\mathcal{O}=\left\{o_{1}, o_{2}, \ldots o_{K}\right\}$. The model uses the idea of a hidden sequence of state transitions.
HMM has a definition with parts I-III.

Hidden Markov Models (HMM) I

(I) Hidden Markov Chain $\left\{X_{n}\right\}_{n=0}^{\infty}$ is a Markov chain assuming values in a finite state space $S=\{1,2, \ldots, J\}$ with J states. The time-homogeneous conditional probabilities are

$$
a_{i \mid j}=P\left(X_{n}=j \mid X_{n-1}=i\right), n \geq 1, i, j \in S
$$

and the transition probability matrix is

$$
A=\left(a_{i \mid j}\right)_{i=1, j=1}^{J, J}
$$

Hidden Markov Models (HMM) I

A matrix

$$
A=\left(a_{i \mid j}\right)_{i=1, j=1}^{J, J}
$$

with the constraints

$$
a_{i \mid j} \geq 0, \sum_{j=1}^{J} a_{i \mid j}=1
$$

is called a stochastic matrix.

Hidden Markov Models (HMM) I

At time $n=0$ the state X_{0} is specified by the initial probability distribution $\pi_{j}(0)=P\left(X_{0}=j\right)$ with

$$
\pi(0)=\left(\pi_{1}(0), \ldots, \pi_{J}(0)\right)
$$

$\pi_{j}(n)=P\left(X_{n}=j\right)$

$$
\pi(n)=\left(\pi_{1}(n), \ldots, \pi_{J}(n)\right) .
$$

Hidden Markov Models (HMM) II

(II) Observable Random Process A random process $\left\{Y_{n}\right\}_{n=0}^{\infty}$ with a finite state space $\mathcal{O}=\left\{o_{1}, o_{2}, \ldots o_{K}\right\}$, where K can be $\neq J$. The processes $\left\{Y_{n}\right\}_{n=0}^{\infty}$ and $\left\{X_{n}\right\}_{n=0}^{\infty}$ are for any fixed n related by the conditional probability distributions

$$
b_{j}(k)=P\left(Y_{n}=o_{k} \mid X_{n}=j\right)
$$

Hidden Markov Models (HMM) II

We set

$$
B=\left\{b_{j}(k)\right\}_{j=1, k=1}^{J, K}
$$

and call this the emission probability matrix. This is another stochastic matrix in the sense that

$$
b_{j}(k) \geq 0, \sum_{k=1}^{K} b_{j}(k)=1
$$

Hidden Markov Models (HMM) III

(III) Conditional independence For any sequence of states $j_{0} j_{1} \ldots j_{n}$ the probability of the sequence $o_{0} o_{1} \ldots o_{n}$ is

$$
\begin{gathered}
P\left(Y_{0}=o_{0}, \ldots, Y_{n}=o_{n} \mid X_{0}=j_{0}, \ldots, X_{n}=j_{n}, B\right)= \\
\prod_{l=0}^{n} b_{j_{l}}(I)
\end{gathered}
$$

A Formalism

An HMM is designated by

$$
\lambda=(A, B, \pi(0)) .
$$

UNDER THE HMM ASSUMPTIONS THE STRING $\mathbf{o}=o_{0} \ldots o_{n}$ HAS THE PROBABILITY

$$
\begin{gathered}
P(\mathbf{o})=P\left(Y_{0}=o_{0}, \ldots, Y_{n}=o_{n} ; \lambda\right)= \\
\sum_{j_{o}=1}^{J} \ldots \sum_{j_{n}=1}^{J} P\left(Y_{0}=o_{0} \ldots, Y_{n}=o_{n}, X_{0}=j_{0}, \ldots, X_{n}=j_{n} ; \lambda\right)
\end{gathered}
$$

Hidden Markov Models, A Formalism (continued)

$$
\sum_{j_{o}=1}^{J} \ldots \sum_{j_{n}=1}^{J} P\left(Y_{0}=o_{0} \ldots, Y_{n}=o_{n}, X_{0}=j_{0}, \ldots, X_{n}=j_{n} ; \lambda\right)
$$

where

$$
\begin{gathered}
P\left(Y_{0}=o_{0}, \ldots, Y_{n}=o_{n}, X_{0}=j_{0}, \ldots, X_{n}=j_{n} ; \lambda\right)= \\
\pi_{j_{0}}(0) \cdot \prod_{l=0}^{n} b_{j_{l}}(I) \prod_{l=1}^{n} a_{j_{l-1} \mid j_{l}} \cdot
\end{gathered}
$$

The three problems of HMM 1

[1]The Evaluation or Scoring Problem Compute $P\left(Y_{0}=o_{0}, \ldots, Y_{n}=o_{n} ; \lambda\right)$. Since the margnalization involves J^{n+1} possible sequences, the total computational requirements are of the order $2(n+1) \cdot J^{n+1}$ operations. The solution is known as the forward-backward procedure

The three problems of HMM 2

[2] The Decoding or Alignment Problem Find the most probable state sequence that led to the observed sequence $\left(o_{0} \ldots o_{n}\right)$. This is an alignment problem. Find the sequence $j_{0}^{*} \ldots j_{n}^{*}$ that maximizes

$$
P\left(X_{0}=j_{0}, \ldots, X_{n}=j_{n}, Y_{0}=o_{0}, \ldots, Y_{n}=o_{n} ; \lambda\right)
$$

for a fixed observed sequence $o_{0} \ldots o_{n}$ (Viterbi algorithm).

The three problems of HMM 3

[3] The Learning or Training Problem Given an observed sequence $\mathbf{o}=o_{0} \ldots o_{n}$, find the 'right' model parameter values

$$
\lambda=(A, B, \pi(0))
$$

in a fixed topology that specify a model most likely to generate the given sequence

HIDDEN MARKOV MODELS: Conditional Independence

Markov property and the conditional independence property III imply useful expressions for smoothing, prediction, filtering and evaluation, and these yield the solutions to the three problems stated above.

Smoothing posterior probability

The smoothing posterior probability is defined as

$$
\widehat{\pi}_{j}(n \mid m)=P\left(X_{n}=j \mid Y_{0}=o_{0}, \ldots, Y_{m}=o_{m}\right)
$$

for a standard HMM.

Smoothing posterior probability

For $n=0, \ldots, N-1$ it holds that

$$
\widehat{\pi}_{j}(n \mid N)=\widehat{\pi}_{i}(n \mid n) \cdot \sum_{k=1}^{J} \frac{a_{j \mid k}}{\widehat{\pi}_{k}(n+1 \mid n)} \widehat{\pi}_{k}(n+1 \mid N) .
$$

We intend to explain this in some detail.

Smoothing posterior probability

Here the typesetting is simplified e.g. by writing a conditional probability as

$$
P\left(Y_{m}=o_{m}, \ldots, Y_{N}=o_{N} \mid X_{n}=j_{n} \ldots, X_{N}=j_{N}\right)
$$

simply as

$$
\begin{gathered}
P\left(Y_{m}, \ldots, Y_{N} \mid X_{n}, \ldots, X_{N}\right) \\
P\left(Y_{0}, \ldots, Y_{n} \mid X_{0}, \ldots, X_{n}\right)=\prod_{i=0}^{n} P\left(Y_{i} \mid X_{i}\right) .
\end{gathered}
$$

Proposition 1

Proposition

For all integers n and m such that $0 \leq n \leq m \leq N$

$$
P\left(Y_{m}, \ldots, Y_{N} \mid X_{n} \ldots, X_{N}\right)=P\left(Y_{m}, \ldots, Y_{N} \mid X_{m}, \ldots, X_{N}\right)
$$

Proposition 1.

Proof: The left hand side of the asserted identity can be expressed as

$$
\frac{1}{P\left(X_{n}, \ldots, X_{N}\right)} \sum P\left(Y_{m}, \ldots, Y_{N} \mid X_{0} \ldots, X_{N}\right) \cdot P\left(X_{0} \ldots, X_{N}\right)
$$

where the summation is over j_{0}, \ldots, j_{n-1} (i.e. the values of $X_{j_{0}}, \ldots, X_{j_{n-1}}$). If $n=0$, there is no summation. By conditional independence (and a marginalization argument)

$$
P\left(Y_{m}, \ldots, Y_{N} \mid X_{0} \ldots, X_{N}\right)=P\left(Y_{m} \mid X_{m}\right) \cdot \ldots \cdot P\left(Y_{N} \mid X_{N}\right)
$$

This can be taken outside the summation sign \sum, since $m \geq n$.

Proof

Then we are dealing with

$$
\prod_{l=m}^{N} P\left(Y_{l} \mid X_{l}\right) \frac{1}{P\left(X_{n}, \ldots, X_{N}\right)} \sum P\left(X_{0} \ldots, X_{N}\right)
$$

where the sum equals $P\left(X_{n}, \ldots, X_{N}\right)$, since we are summing over j_{0}, \ldots, j_{n-1}. Thus the whole last expression equals

$$
=\prod_{l=m}^{N} P\left(Y_{l} \mid X_{l}\right)
$$

which is independent of n. Since the right hand side of the above is a special case of the left hand side for $n=m$, this proves the assertion as claimed.

Proposition 2.

Proposition

For all integers $n=0, \ldots, N-1$

$$
\begin{gathered}
P\left(Y_{n+1}, \ldots, Y_{N} \mid X_{0}, \ldots, X_{n}\right)= \\
P\left(Y_{n+1}, \ldots, Y_{N} \mid X_{n}\right)
\end{gathered}
$$

Proof of proposition 2.

Set

$$
X^{(t)}=\left(X_{0}, \ldots, X_{t}\right), Y^{(t)}=\left(Y_{0}, \ldots, Y_{t}\right)
$$

Proof: The left hand side is

$$
\frac{1}{P\left(X^{(n)}\right)} \sum P\left(X^{(N)}\right) \cdot P\left(Y_{n+1}, \ldots, Y_{N} \mid X^{(N)}\right)
$$

where the summation is over j_{n+1}, \ldots, j_{N}. By the first proposition, (with $m=n+1, n=0$), we have

$$
P\left(Y_{n+1}, \ldots, Y_{N} \mid X^{(N)}\right)=P\left(Y_{n+1}, \ldots, Y_{N} \mid X_{n+1}, \ldots, X_{N}\right)
$$

and using the same proposition and equation once more (with $m=n+1$) we have

$$
\begin{gathered}
P\left(Y_{n+1}, \ldots, Y_{N} \mid X_{n+1}, \ldots, X_{N}\right)= \\
P\left(Y_{n+1}, \ldots, Y_{N} \mid X_{n}, \ldots, X_{N}\right)
\end{gathered}
$$

Proof of proposition2.

Thus

$$
\begin{gathered}
\sum P\left(X^{(N)}\right) \cdot P\left(Y_{n+1}, \ldots, Y_{N} \mid X^{N}\right)= \\
\sum P\left(X^{N}\right) \cdot P\left(Y_{n+1}, \ldots, Y_{N} \mid X_{n}, \ldots, X_{N}\right)
\end{gathered}
$$

By conditional probability $P\left(X^{(N)}\right)=$

$$
P\left(X_{n+1}, \ldots, X_{N} \mid X^{(n)}\right) \cdot P\left(X^{(n)}\right)
$$

and by a consequence of Markov property we have

$$
P\left(X_{n+1}, \ldots, X_{N} \mid X^{(n)}\right)=P\left(X_{n+1}, \ldots, X_{N} \mid X_{n}\right)
$$

Proof of proposition2.

Thus the sum equals, since we are summing over j_{n+1}, \ldots, j_{N},

$$
\begin{aligned}
& \sum P\left(X^{(N)}\right) \cdot P\left(Y_{n+1}, \ldots, Y_{N} \mid X_{n}, \ldots, X_{N}\right)= \\
& =\sum \frac{P\left(Y_{n+1}, \ldots, Y_{N}, X_{n}, \ldots, X_{N}\right) \cdot P\left(X^{(n)}\right)}{P\left(X_{n}\right)}
\end{aligned}
$$

Proof of proposition 2.

$$
=P\left(X^{(n)}\right) \sum \frac{P\left(Y_{n+1}, \ldots, Y_{N}, X_{n}, \ldots, X_{N}\right)}{P\left(X_{n}\right)} .
$$

And as we are summing over j_{n+1}, \ldots, j_{N}, we have here that

$$
\sum \frac{P\left(Y_{n+1}, \ldots, Y_{N}, X_{n}, \ldots, X_{N}\right)}{P\left(X_{n}\right)}=\frac{P\left(Y_{n+1}, \ldots, Y_{N}, X_{n}\right)}{P\left(X_{n}\right)}=
$$

Proof of proposition 2.

$$
=P\left(Y_{n+1}, \ldots, Y_{N} \mid X_{n}\right)
$$

We have that

$$
\begin{gathered}
\frac{1}{P\left(X^{(n)}\right)} \sum P\left(X^{(N)}\right) \cdot P\left(Y_{n+1}, \ldots, Y_{N} \mid X^{(N)}\right)= \\
\frac{1}{P\left(X^{(n)}\right)} P\left(Y_{n+1}, \ldots, Y_{N} \mid X_{n}\right) \cdot P\left(X^{(n)}\right)
\end{gathered}
$$

which proves the assertion as claimed.

Proposition 3.

Proposition

For all integers $n=0, \ldots, N$

$$
\begin{gathered}
P\left(Y_{0}, \ldots, Y_{n} \mid X_{0}, \ldots, X_{N}\right)= \\
P\left(Y_{0}, \ldots, Y_{n} \mid X_{0}, \ldots, X_{n}\right)
\end{gathered}
$$

Proposition 4

Proposition

For all integers $n=0, \ldots, N$

$$
\begin{gathered}
P\left(Y_{0}, Y_{1}, \ldots, Y_{N} \mid X_{n}\right)= \\
P\left(Y_{0}, Y_{1}, \ldots, Y_{n} \mid X_{n}\right) \cdot P\left(Y_{n+1}, \ldots, Y_{N} \mid X_{n}\right)
\end{gathered}
$$

Backward variable

The conditional probability $P\left(Y_{n+1}, \ldots, Y_{N} \mid X_{n}\right)$ is called the backward variable. The next proposition is used to find a recursion for this backward variable.

A Proposition for the Backward variable

Proposition

For all integers $n=0, \ldots, N$

$$
\begin{gathered}
P\left(Y_{n}, Y_{n+1}, \ldots, Y_{N} \mid X_{n}\right)= \\
P\left(Y_{n} \mid X_{n}\right) \cdot P\left(Y_{n+1}, \ldots, Y_{N} \mid X_{n}\right) .
\end{gathered}
$$

One More Proposition

Proposition

For all integers $n=0, \ldots, N-1$

$$
P\left(Y_{0}, Y_{1}, \ldots, Y_{N} \mid X_{n}, X_{n+1}\right)=
$$

$$
P\left(Y_{0}, Y_{1}, \ldots Y_{n} \mid X_{n}\right) \cdot P\left(Y_{n+1}, \ldots, Y_{N} \mid X_{n+1}\right)
$$

Smoothing probability

$$
\widehat{\pi}_{j}(n \mid N)=P\left(X_{n}=j \mid Y^{(N)}\right) .
$$

By another marginalization we get

$$
\begin{gathered}
\hat{\pi}_{j}(n \mid N)=\sum_{k=1}^{J} P\left(X_{n}=j, X_{n+1}=k \mid Y^{(N)}\right)= \\
\sum_{k=1}^{J} P\left(X_{n}=j \mid X_{n+1}=k, Y^{(N)}\right) P\left(X_{n+1}=k \mid Y^{(N)}\right)=
\end{gathered}
$$

Smoothing probability

$$
\begin{aligned}
& =\sum_{k=1}^{J} P\left(X_{n}=j \mid X_{n+1}=k, Y^{(N)}\right) \hat{\pi}_{k}(n+1 \mid N) \\
& =\sum_{k=1}^{J} \frac{P\left(X_{n}=j, X_{n+1}=k, Y^{(N)}\right)}{P\left(X_{n+1}=k, Y^{(N)}\right)} \widehat{\pi}_{k}(n+1 \mid N) .
\end{aligned}
$$

Smoothing probability

In the numerator inside the summation above we have

$$
\begin{gathered}
P\left(X_{n}=j, X_{n+1}=k, Y^{(N)}\right)= \\
P\left(Y^{(N)} \mid X_{n}=j, X_{n+1}=k\right) P\left(X_{n}=j, X_{n+1}=k\right)= \\
=P\left(Y^{(n)} \mid X_{n}=j\right) P\left(Y_{n+1}, \ldots, Y_{N} \mid X_{n+1}=k\right) \cdot P\left(X_{n}=j\right) \cdot a_{j \mid k}
\end{gathered}
$$

using the factorization in proposition 4 and the definition of $a_{j \mid k}$.

Smoothing probability

Then, since

$$
\begin{gathered}
P\left(Y^{(n)} \mid X_{n}=j\right) P\left(X_{n}=j\right)= \\
P\left(X_{n}=j \mid Y^{(n)}\right) P\left(Y^{(n)}\right)
\end{gathered}
$$

we have obtained

$$
P\left(X_{n}=j, X_{n+1}=k, Y^{(N)}\right)=
$$

$$
P\left(X_{n}=j \mid Y^{(n)}\right) P\left(Y^{(n)}\right) P\left(Y_{n+1}, \ldots, Y_{N} \mid X_{n+1}=k\right) \cdot a_{j \mid k}
$$

Smoothing probability

For the denominator inside the summation for smoothing probability it holds that

$$
\begin{aligned}
& P\left(X_{n+1}=k, Y^{(N)}\right)=P\left(Y^{(N)} \mid X_{n+1}=k\right) P\left(X_{n+1}=k\right)= \\
= & P\left(Y^{(n)} \mid X_{n+1}=k\right) P\left(Y_{n+1}, \ldots, Y_{N} \mid X_{n+1}=k\right) P\left(X_{n+1}=k\right)
\end{aligned}
$$

Next by $P\left(Y^{(n)} \mid X_{n+1}=k\right) P\left(X_{n+1}=k\right)=P\left(X_{n+1}=k \mid Y^{(n)}\right) P\left(Y^{(n)}\right)$ we get

$$
\begin{gathered}
P\left(X_{n+1}=k, Y^{(N)}\right)= \\
P\left(X_{n+1}=k \mid Y^{(n)}\right) P\left(Y^{(n)}\right) P\left(Y_{n+1}, \ldots, Y_{N} \mid X_{n+1}=k\right)
\end{gathered}
$$

Smoothing probability

Therefore

$$
\begin{gathered}
\widehat{\pi}_{j}(n \mid N)=\sum_{k=1}^{J} \frac{P\left(X_{n}=j \mid Y^{(n)}\right) \cdot a_{j \mid k}}{P\left(X_{n+1}=k \mid Y^{(n)}\right)} \widehat{\pi}_{k}(n+1 \mid N)= \\
=\widehat{\pi}_{i}(n \mid n) \cdot \sum_{k=1}^{J} \frac{a_{j \mid k}}{\hat{\pi}_{k}(n+1 \mid n)} \widehat{\pi}_{k}(n+1 \mid N),
\end{gathered}
$$

which is the result as claimed.
(a) Filtering posterior

$$
\hat{\pi}_{j}(n \mid n)=\frac{\left[\sum_{i=1}^{J} \hat{\pi}_{i}(n-1 \mid n-1) \cdot a_{i j}\right] \cdot b_{j}\left(o_{n}\right)}{\sum_{j=1}^{J} \sum_{i=1}^{J} \hat{\pi}_{i}(n-1 \mid n-1) \cdot a_{i j} \mid \cdot b_{j}\left(o_{n}\right)},
$$

for $j=1, \ldots, J$.

Filtering and Prediction

(b) Prediction posterior probability for an HMM:

$$
\hat{\pi}_{j}(n \mid n-1)=\sum_{i=1}^{J} \hat{\pi}_{i}(n-1 \mid n-1) \cdot a_{i \mid j}, j=1, \ldots, J,
$$

Thus

$$
\widehat{\pi}_{j}(n \mid n)=\frac{\hat{\pi}_{j}(n \mid n-1) \cdot b_{j}\left(o_{n}\right)}{\sum_{j=1}^{J} \widehat{\pi}_{j}(n \mid n-1) \cdot b_{j}\left(o_{n}\right)}, j=1, \ldots, J .
$$

Evaluation/Scoring

The log likelihood function for the sequence $\mathbf{o}=o_{j_{0}} \ldots o_{j_{n}}$ with respect to the HMM model family is

$$
\begin{aligned}
& \log P\left(Y_{0}=o_{j_{0}}, \ldots, Y_{n}=o_{j n}\right)= \\
& \sum_{i=0}^{n} \log f\left(Y_{i}=o_{j_{i}} \mid o_{j_{0}}, \ldots, o_{j_{i-1}}\right)
\end{aligned}
$$

where

$$
f\left(Y_{i}=o_{j_{i}} \mid o_{j_{0}}, \ldots, o_{j_{i-1}}\right)=\sum_{l=1}^{J} \widehat{\pi}_{l}(i \mid i-1) b_{l}\left(o_{j_{i}}\right) .
$$

The problem is to compute the simultaneous probability for the a sequence of emitted symbols, $\mathbf{o}=o_{0} \ldots o_{N}$, conditioned on some model $\lambda=(A, B, \pi(0))$,

$$
\begin{gathered}
L_{N}=P\left(Y_{0}=o_{0} \ldots, Y_{n}=o_{N} ; \lambda\right)= \\
\sum_{j_{o}=1}^{J} \ldots \sum_{j_{N}=1}^{J} \pi_{j_{0}}(0) b_{j_{0}}(0) \prod_{l=1}^{N} a_{j_{l-1} \mid j_{l}} b_{j_{l}}(I),
\end{gathered}
$$

so that the exponential growth of operations in N involved in the marginalization is avoided. In order to simplify the notation, the reference to the model λ is omitted.

Forward Algorithm

Let

$$
\begin{gathered}
P\left(Y_{0}=o_{0}, \ldots, Y_{N}=o_{N}, X_{n}=j\right)= \\
P\left(X_{n}=j\right) \cdot P\left(Y_{0}=o_{0}, \ldots, Y_{N}=o_{N} \mid X_{n}=j\right)
\end{gathered}
$$

But the right hand side is factorized as

$$
\begin{gathered}
P\left(Y_{0}=o_{0}, \ldots, Y_{N}=o_{N} \mid X_{n}=j\right)= \\
P\left(Y_{0}=o_{0}, \ldots, Y_{n}=o_{n} \mid X_{n}=j\right) \cdot P\left(Y_{n+1}=o_{n+1}, \ldots, Y_{N}=o_{N} \mid X_{n}=j\right)
\end{gathered}
$$

Forward Algorithm

This gives

$$
P\left(Y_{0}=o_{0}, \ldots, Y_{n}=o_{n}, X_{n}=j\right) \cdot P\left(Y_{n+1}=o_{n+1}, \ldots, Y_{N}=o_{N} \mid X_{n}=j\right)
$$

Since

$$
\begin{gathered}
P\left(Y_{0}=o_{0}, \ldots, Y_{N}=o_{N}\right) \\
=\sum_{j=1}^{J} P\left(Y_{0}=o_{0}, \ldots, Y_{N}=o_{N}, X_{n}=j\right)
\end{gathered}
$$

we get

$$
P\left(Y_{0}=o_{0}, \ldots, Y_{N}=o_{N}\right)=\sum_{j=1}^{J} \alpha_{n}(j) \cdot \beta_{n}(j)
$$

Forward Algorithm

$$
P\left(Y_{0}=o_{0}, \ldots, Y_{N}=o_{N}\right)=\sum_{j=1}^{J} \alpha_{n}(j) \cdot \beta_{n}(j)
$$

where

$$
\begin{gathered}
\alpha_{n}(j)=P\left(Y_{0}=o_{0}, \ldots, Y_{n}=o_{n}, X_{n}=j\right) \\
\beta_{n}(j)=P\left(Y_{n+1}=o_{n+1}, \ldots, Y_{N}=o_{N} \mid X_{n}=j\right) .
\end{gathered}
$$

We take $\beta_{N}(j)=1$ for every j arbitrarily.

Forward Algorithm

First

$$
\begin{gathered}
\alpha_{n+1}(j)=P\left(Y_{0}=o_{0}, \ldots, Y_{n+1}=o_{n+1}, X_{n+1}=j\right)= \\
=\sum_{i=1}^{J} P\left(Y_{0}=o_{0}, \ldots, Y_{n+1}=o_{n+1}, X_{n}=i, X_{n+1}=j\right) \\
=\sum_{i=1}^{J} P\left(X_{n}=i, X_{n+1}=j\right) \cdot P\left(Y_{0}=o_{0}, \ldots, Y_{n+1}=o_{n+1} \mid X_{n}=i, X_{n+1}=j\right)
\end{gathered}
$$

Forward Algorithm

Here, by the properties derived ('One More Proposition')

$$
\begin{gathered}
=\sum_{i=1}^{J} P\left(X_{n}=i, X_{n+1}=j\right) \cdot P\left(Y_{0}=o_{0}, \ldots, Y_{n}=o_{n} \mid X_{n}=i\right) \cdot P\left(Y_{n+1}=o_{n+1} \mid X_{n+1}=j\right) . \\
P\left(X_{n}=i, X_{n+1}=j\right) \cdot P\left(Y_{n+1}=o_{n+1} \mid X_{n+1}=j\right)=a_{i} \mid j \cdot b_{j}\left(o_{n+1}\right) \cdot P\left(X_{n}=i\right) .
\end{gathered}
$$

Hence we have

$$
\begin{gathered}
\sum_{i=1}^{J} P\left(X_{n}=i, X_{n+1}=j\right) \cdot P\left(Y_{0}=o_{0}, \ldots, Y_{n}=o_{n} \mid X_{n}=i\right) \cdot P\left(Y_{n+1}=o_{n+1} \mid X_{n+1}=j\right)= \\
=\sum_{i=1}^{J} P\left(Y_{0}=o_{0}, \ldots, Y_{n}=o_{n}, X_{n}=i\right) \cdot a_{i \mid j} \cdot b_{j}\left(o_{n+1}\right)
\end{gathered}
$$

Final step

This last expression is by our definition of the forward variable equal to

$$
\begin{aligned}
& =\sum_{i=1}^{J} \alpha_{n}(i) \cdot a_{i \mid j} \cdot b_{j}\left(o_{n+1}\right)= \\
& {\left[\sum_{i=1}^{J} \alpha_{n}(i) \cdot a_{i \mid j}\right] \cdot b_{j}\left(o_{n+1}\right)}
\end{aligned}
$$

This completes the derivation of the forward algorithm. We summarize the result in a formal way.

The Forward Recursion

Consider the forward variable $\alpha_{n}(j)$ defined as

$$
\alpha_{n}(j)=P\left(Y_{0}=o_{0}, \ldots, Y_{n}=o_{n}, X_{n}=j\right)
$$

which is the probability of the emitted subsequence $\mathbf{o}=o_{0} \ldots o_{n}$ and of the hidden chain being in the state j at time n (given the model λ).

Start:

$$
\alpha_{0}(j)=b_{j}\left(o_{0}\right) \pi_{j}(0), j=1, \ldots, J
$$

Recursion:

$$
\alpha_{n+1}(j)=\left[\sum_{i=1}^{J} \alpha_{n}(i) \cdot a_{i \mid j}\right] \cdot b_{j}\left(o_{n+1}\right) .
$$

$j=1, \ldots, J, 1 \leq n \leq N-1$.

The Forward Recursion Trellis

KTH Matomatik

Backward Algorithm

By definition

$$
\begin{gathered}
\beta_{n}(j)=\sum_{i=1}^{J} \frac{P\left(Y_{n+1}=o_{n+1}, \ldots, Y_{N}=o_{N}, X_{n}=j, X_{n+1}=i\right)}{P\left(X_{n}=j\right)} \\
=\sum_{i=1}^{J} \frac{P\left(Y_{n+1}=o_{n+1}, \ldots, Y_{N}=o_{N} \mid X_{n}=j, X_{n+1}=i\right) P\left(X_{n}=j, X_{n+1}=i\right)}{P\left(X_{n}=j\right)}
\end{gathered}
$$

Here $\frac{P\left(X_{n}=j, X_{n+1}=i\right)}{P\left(X_{n}=j\right)}=a_{j \mid i}$ and

$$
\begin{gathered}
P\left(Y_{n+1}=o_{n+1}, \ldots, Y_{N}=o_{N} \mid X_{n}=j, X_{n+1}=i\right)= \\
\quad=P\left(Y_{n+1}=o_{n+1}, \ldots, Y_{N}=o_{N} \mid X_{n+1}=i\right)
\end{gathered}
$$

Backward Recursion

We apply furthermore one of the previous properties

$$
\begin{gathered}
P\left(Y_{n+1}=o_{n+1}, \ldots, Y_{N}=o_{N} \mid X_{n+1}=i\right)= \\
=P\left(Y_{n+1}=o_{n+1} \mid X_{n+1}=i\right) \cdot P\left(Y_{n+2}=o_{n+2}, \ldots, Y_{N}=o_{N} \mid X_{n+1}=i\right) .
\end{gathered}
$$

Backward Recursion

Hence it follows that

$$
\beta_{n}(j)=\sum_{i=1}^{J} P\left(Y_{n+1}=o_{n+1} \mid X_{n+1}=i\right) \cdot P\left(Y_{n+2}=o_{n+2}, \ldots, Y_{N}=o_{N} \mid X_{n+1}=i\right) \cdot a_{j \mid i}
$$

Recalling the definition of the backward variable and the emission probability $b_{i}\left(o_{n+1}\right)=P\left(Y_{n+1}=o_{n+1} \mid X_{n+1}=i\right)$ we have

$$
\beta_{n}(j)=\sum_{i=1}^{J} b_{i}\left(o_{n+1}\right) \cdot \beta_{n+1}(i) \cdot a_{j \mid i}
$$

The Backward Procedure

Consider the backward variable $\beta_{n}(j)$ defined as

$$
\beta_{n}(j)=P\left(Y_{n+1}=o_{n+1}, \ldots, Y_{N}=o_{N} \mid X_{n}=j\right)
$$

which is the probability of the emitted subsequence $o_{n+1} \ldots o_{N}$ (from $n+1$ till the end) conditioned on the hidden chain being in the state j at time n (conditional on the model λ).

Start:

$$
\beta_{N}(j)=1 j=1, \ldots, J .
$$

Recursion :

$$
\beta_{n}(j)=\sum_{i=1}^{J} b_{i}\left(o_{n+1}\right) \cdot \beta_{n+1}(i) \cdot a_{j \mid i} \cdot j=1, \ldots, J, n=N-1, N-2, \ldots, 0
$$

The Scoring (Evaluation) Problem

$$
L_{N}=P\left(Y_{0}=o_{0}, \ldots, Y_{N}=o_{N}\right)=\sum_{j=1}^{J} \alpha_{n}(j) \cdot \beta_{n}(j)
$$

Hence we have for any $n=0, \ldots, N$ a respective way of computing L_{N}. For example with $n=N$ we have

$$
L_{N}=\sum_{j=1}^{J} \alpha_{N}(j)
$$

by the convention $\beta_{N}(j)=1$.

Filtering, Smoothing and Prediction

All probabilistic information about X_{n} given a sequence of observations $o_{0} \ldots o_{N}$ is contained in the conditional probabilities

$$
\widehat{\pi}_{j}(n \mid N)=P\left(X_{n}=j \mid Y_{0}=o_{0}, \ldots, Y_{N}=o_{N}\right)
$$

This is conditioned on the model λ.
For $n>N$ the probability $\hat{\pi}_{j}(n \mid N)$ deals with prediction, $n=N$ the probability $\hat{\pi}_{j}(n \mid N)$ is a filtering probability. This is the standard phrase for reconstruction of a hidden variable from observations. For $n<N$ we talk about a smoothing probability.

Filtering, Smoothing and Prediction

For $n<N$

$$
\widehat{\pi}_{j \mid k}(n \mid N)=P\left(X_{n}=j, X_{n+1}=k \mid Y_{0}=o_{0}, \ldots, Y_{N}=o_{N}\right),
$$

is the conditional posterior probability that a transition has taken place between any two states j and k at time $n+1$.

Filtering, Smoothing and Prediction

Let us first find $\widehat{\pi}_{j}(n \mid n)$. We use the definition of conditional probability to write

$$
\begin{gathered}
\widehat{\pi}_{j}(n \mid n)=P\left(X_{n}=j \mid Y_{0}=o_{0}, \ldots, Y_{n}=o_{n}\right)= \\
=\frac{P\left(Y_{0}=o_{0}, \ldots, Y_{m}=o_{n}, X_{n}=j\right)}{P\left(Y_{0}=o_{0}, \ldots, Y_{n}=o_{n}\right)} .
\end{gathered}
$$

Using the definition and the evaluation formula we have

$$
=\frac{\alpha_{N}(j)}{\sum_{j=1}^{J} \alpha_{N}(j)}
$$

Filtering, Smoothing and Prediction

Let

$$
\widehat{\pi}_{j}(n \mid N)=P\left(X_{n}=j \mid Y_{0}=o_{0}, \ldots, Y_{n}=o_{N}\right)=
$$

and simplify the notation

$$
\begin{gathered}
=\frac{P\left(Y_{0}, \ldots, Y_{N}, X_{n}\right)}{P\left(Y_{0}, \ldots, Y_{N}\right)}= \\
\frac{P\left(Y_{0}, \ldots, Y_{n}, Y_{n+1}, \ldots, Y_{N}, X_{n}\right)}{P\left(Y_{0}, \ldots, Y_{n}\right) P\left(Y_{n+1}, \ldots, Y_{N} \mid Y_{0}, \ldots, Y_{n}\right)}=
\end{gathered}
$$

Filtering, Smoothing and Prediction

$$
=\frac{P\left(Y_{0}, Y_{1}, \ldots, Y_{n}, X_{n}\right) \cdot P\left(Y_{n+1}, \ldots, Y_{N} \mid X_{n}\right)}{P\left(Y_{0}, \ldots, Y_{n}\right) P\left(Y_{n+1}, \ldots, Y_{N} \mid Y_{0}, \ldots, Y_{n}\right)}
$$

by one of the factorizations derived earlier and the definition of conditional probability.

Scalings in Filtering, Smoothing and Prediction

Here Devijver (1985) (no reference included) introduces

$$
\widehat{\pi}_{j}(n \mid N)=\tilde{\alpha}_{n}(j) \cdot \tilde{\beta}_{n}(j)
$$

with

$$
\tilde{\alpha}_{n}(j)=\frac{P\left(Y_{0}, \ldots, Y_{n}, X_{n}=j\right)}{P\left(Y_{0}, \ldots, Y_{n}\right)}
$$

and

$$
\tilde{\beta}_{n}(j)=\frac{P\left(Y_{n+1}, \ldots, Y_{N} \mid X_{n}=j\right)}{P\left(Y_{n+1}, \ldots, Y_{N} \mid Y_{0}, \ldots, Y_{n}\right)}
$$

These are evidently scalings of the forward and backward variables The important property of these particular scalings is that there exist recursions for the scaled forward and backward variables $\tilde{\alpha}_{n}(j)$ and $\tilde{\beta}_{n}(j)$.

Scaling Recursions

First, $\tilde{\alpha}_{n}(j)$ equals the filtering posterior probability $\tilde{\alpha}_{n}(j)=\widehat{\pi}_{j}(n \mid n)$. By the preceding

$$
\tilde{\alpha}_{n}(j)=\frac{\left[\sum_{i=1}^{J} \tilde{\alpha}_{n-1}(i) \cdot a_{i \mid j}\right] \cdot b_{j}\left(o_{n}\right)}{\sum_{j=1}^{J} \sum_{i=1}^{J} \tilde{\alpha}_{n-1}(i) \cdot a_{i \mid j} \cdot b_{j}\left(o_{n}\right)}
$$

which is the desired forward recursion.

Scaling Recursions

Next we get

$$
\tilde{\beta}_{n}(j)=\sum_{k=1}^{J} \frac{P\left(Y_{n+1}, Y_{n+2} \ldots, Y_{N}, X_{n+1}=k \mid X_{n}=j\right)}{P\left(Y_{n+1}, Y_{n+2} \ldots, Y_{N} \mid Y_{0}, \ldots, Y_{n}\right)}
$$

By some rearranging we have

$$
\tilde{\beta}_{n}(j)=\sum_{k=1}^{J} \frac{P\left(Y_{(n+1)}^{(N)} \mid X_{n+1}=k, X_{n}=j\right) P\left(X_{n+1}=k \mid X_{n}=j\right)}{P\left(Y_{n+1}, Y_{n+2} \ldots, Y_{N} \mid Y_{0}, \ldots, Y_{n}\right)} .
$$

Scaling Recursions

From the preceding

$$
\begin{gathered}
P\left(Y_{n+1}, Y_{n+2}, \ldots, Y_{N} \mid X_{n+1}=k, X_{n}=j\right)= \\
P\left(Y_{n+1}, Y_{n+2} \ldots, Y_{N} \mid X_{n+1}=k\right)
\end{gathered}
$$

and

Scaling Recursions

$$
\begin{gathered}
P\left(Y_{n+1}, Y_{n+2}, \ldots, Y_{N} \mid X_{n+1}=k\right)= \\
P\left(Y_{n+1} \mid X_{n+1}=k\right) \cdot P\left(Y_{n+2}, \ldots, Y_{N} \mid X_{n+1}\right) .
\end{gathered}
$$

Since $P\left(Y_{n+1} \mid X_{n+1}=k\right)=b_{k}\left(o_{j_{k}}\right)$ and $P\left(X_{n+1}=k \mid X_{n}=j\right)=a_{j \mid k}$ we have

$$
\begin{gathered}
P\left(Y_{n+1}, Y_{n+2}, \ldots, Y_{N} \mid X_{n+1}=k, X_{n}=j\right) P\left(X_{n+1}=k \mid X_{n}=j\right)= \\
b_{k}\left(o_{j_{k}}\right) P\left(Y_{n+2}, \ldots, Y_{N} \mid X_{n+1}\right) a_{j \mid k} .
\end{gathered}
$$

Scaling Recursions

In the denominators we have

$$
\begin{gathered}
P\left(Y_{n+1}, \ldots, Y_{N} \mid Y_{0}, \ldots, Y_{n}\right)= \\
=P\left(Y_{n+1} \mid Y_{0}, \ldots, Y_{n}\right) \cdot P\left(Y_{n+2} \ldots, Y_{N} \mid Y_{0}, \ldots, Y_{n+1}\right)
\end{gathered}
$$

Thus we have

$$
\tilde{\beta}_{n}(j)=\sum_{k=1}^{J} \frac{b_{k}\left(o_{j_{k}}\right) P\left(Y_{n+2}, \ldots, Y_{N} \mid X_{n+1}\right) a_{j \mid k}}{P\left(Y_{n+1} \mid Y_{0}, \ldots, Y_{n}\right) \cdot P\left(Y_{n+2}, \ldots, Y_{N} \mid Y_{0}, \ldots, Y_{n+1}\right)}
$$

Scaling Recursions

By definition of $\tilde{\beta}_{n}(j)$ the last equality gives

$$
\tilde{\beta}_{n}(j)=\sum_{k=1}^{J} \frac{b_{k}\left(o_{j_{k}}\right) a_{j} \mid k}{P\left(Y_{n+1} \mid Y_{0}, \ldots, Y_{n}\right)} \cdot \frac{P\left(Y_{n+2}, \ldots, Y_{N} \mid X_{n+1}=k\right)}{P\left(Y_{n+2}, \ldots, Y_{N} \mid Y_{0}, \ldots, Y_{n+1}\right)}
$$

which equals

$$
\tilde{\beta}_{n}(j)=\frac{1}{P\left(Y_{n+1} \mid Y_{0}, \ldots, Y_{n}\right)} \sum_{k=1}^{J} b_{k}\left(o_{j_{k}}\right) a_{j \mid k} \cdot \tilde{\beta}_{n+1}(k)
$$

Scaling Recursions

Finally,

$$
\begin{aligned}
P\left(Y_{n+1} \mid Y_{0}, \ldots, Y_{n}\right) & =\sum_{j=1}^{J} \sum_{k=1}^{J} P\left(Y_{n+1}, X_{n}=j, X_{n+1}=k \mid Y_{0}, \ldots, Y_{n}\right)= \\
& =\sum_{j=1}^{J} \sum_{k=1}^{J} a_{j \mid k} b_{j}\left(o_{l_{j}}\right) \tilde{\alpha}_{n-1}(j)
\end{aligned}
$$

using the preceding results. We set

$$
N_{n}=\frac{1}{\sum_{j=1}^{J} \sum_{k=1}^{J} a_{j \mid k} b_{j}\left(o_{l j}\right) \tilde{\alpha}_{n-1}(j)}
$$

and obtain

$$
\tilde{\beta}_{n}(j)=N_{n} \sum_{k=1}^{J} b_{k}\left(o_{j_{k}}\right) a_{j \mid k} \cdot \tilde{\beta}_{n+1}(k)
$$

Posterior Smoothing

The forward variable $\tilde{\alpha}_{n}(j)$ and the backward variable $\tilde{\beta}_{n}(j)$ are defined as

$$
\tilde{\alpha}_{n}(j)=\frac{P\left(Y_{0}, Y_{1}, \ldots, Y_{n}, X_{n}=j\right)}{P\left(Y_{0}, \ldots, Y_{n}\right)}
$$

and

$$
\tilde{\beta}_{n}(j)=\frac{P\left(Y_{n+1}, \ldots, Y_{N} \mid X_{n}=j\right)}{P\left(Y_{n+1}, \ldots, Y_{N} \mid Y_{0}, \ldots, Y_{n}\right)}
$$

Algorithm for Posterior Smoothing

Start:

$$
\begin{gathered}
\tilde{\alpha}_{0}(j)=N_{0} b_{j}\left(o_{0}\right) \pi_{j}(0), j=1, \ldots, J . \\
\tilde{\beta}_{N}(j)=1
\end{gathered}
$$

Recursions:

$$
\tilde{\alpha}_{n+1}(j)=N_{n}\left[\sum_{i=1}^{J} \tilde{\alpha}_{n}(i) \cdot a_{i \mid j}\right] \cdot b_{j}\left(o_{n+1}\right) .
$$

Algorithm for Posterior Smoothing

and

$$
\tilde{\beta}_{n}(j)=N_{n} \sum_{k=1}^{J} b_{k}\left(o_{j_{k}}\right) a_{j \mid k} \cdot \tilde{\beta}_{n+1}(k)
$$

where in both cases

$$
N_{n}=\frac{1}{\sum_{j=1}^{J} \sum_{k=1}^{J} a_{j \mid k} b_{j}\left(o_{l_{j}}\right) \tilde{\alpha}_{n-1}(j)}
$$

The scaled recursions above are immune to underflow problems.

We wish to find the state sequence that maximizes the probability

$$
P\left(Y_{0}=o_{0}, \ldots, Y_{N}=o_{N}, X_{0}=j_{0}, \ldots, X_{N}=j_{N}\right)
$$

by selection of $j_{0} \ldots j_{N}$, when the sequence $o_{0} \ldots o_{N}$ is fixed and the model λ is known and omitted in the notation.

Alignment Problem

Let us set

$$
\delta_{n}(j)=\max _{j_{0} \ldots j_{n-1}} P\left(Y_{0}=o_{0}, \ldots, Y_{n}=o_{n}, X_{0}=j_{0}, \ldots, X_{n}=j\right),
$$

which is the highest probability along a single subsequence of states that at time n is in state j and accounts for the first $n+1 \leq N$ emitted symbols.

Bellman's optimality principle.

Proposition

$$
\delta_{n}(j)=\left[\max _{i=1, \ldots, J} \delta_{n-1}(i) \cdot a_{i \mid j}\right] \cdot b_{j}\left(o_{n}\right) .
$$

Alignment Problem

Proof: Using the notational conventions we set

$$
P\left(Y_{0}=o_{0}, \ldots, Y_{n}=o_{n}, X_{0}=j_{0}, \ldots, X_{n}=j\right)=P\left(Y^{(n)} \mid X^{(n)}\right) \cdot P\left(X^{(n)}\right)
$$

By the conditional independence of the emitted symbols and the definition of conditional probability

$$
=\prod_{j=1}^{n} P\left(Y_{j} \mid X_{j}\right) \cdot P\left(X_{n} \mid X^{(n-1)}\right) P\left(X^{(n-1)}\right)
$$

Alignment Problem

But the Markov property of the hidden chain and some reorganization give

$$
\begin{gathered}
=b_{j}\left(o_{n}\right) \prod_{j=1}^{n-1} P\left(Y_{j} \mid X_{j}\right) \cdot P\left(X_{n} \mid X_{n-1}\right) P\left(X^{(n-1)}\right)= \\
=a_{j_{n-1} \mid j} \cdot b_{j}\left(o_{n}\right) \cdot \prod_{j=1}^{n-1} P\left(Y_{j} \mid X_{j}\right) \cdot P\left(X^{(n-1)}\right)
\end{gathered}
$$

Reverting back to the unabridged notation this equals

$$
b_{j}\left(o_{n}\right)\left[a_{j_{n-1} \mid j} P\left(Y_{0}=o_{0}, \ldots, Y_{n-1}=o_{n-1}, X_{0}=j_{0}, \ldots, X_{n-1}=j_{n-1}\right)\right]
$$

Alignment Problem

For each $j \in S$ at time n we have to find the transition to that state from every state $i \in S$ at time $n-1$ giving the best score (in the sense above). There are many paths leading to i at time $n-1$. But we see that the score for the current transition is factorized as the product

$$
a_{j_{n-1} \mid j} P\left(o_{0}, \ldots, o_{n-1}, X_{0}, \ldots, X_{n-1}\right)
$$

But this shows again that if we do not choose at time $n-1$ for every i that special subsequence leading to i with maximal probability, we cannot obtain

$$
\max _{j_{0} \cdots j_{n-1}} a_{j_{n-1}} \mid j P\left(o_{0}, \ldots, o_{n-1}, X_{0}, \ldots, X_{n-1}=i\right) .
$$

Alignment Problem

Hence

$$
\begin{gathered}
\max _{j_{0} \ldots j_{n-1}} a_{j_{n-1} \mid j} P\left(o_{0}, \ldots, o_{n-1}, X_{0}=j_{0}, \ldots, X_{n-1}=j_{n-1}\right)= \\
{\left[\max _{i=1, \ldots, J} \delta_{n-1}(i) \cdot a_{i \mid j}\right]}
\end{gathered}
$$

as was to be proved.

Alignment Problem

The subsequence yielding $\delta_{n}(j)$ is called a survivor and denoted by

$$
\psi_{n}(j)=\operatorname{argmax}_{i=1, \ldots, \delta_{n-1}}(i) \cdot a_{i \mid j}
$$

and consists of the prefix yielding $\delta_{n-1}(i)$ concatenated by the best scoring transition between times $n-1$ and n. Hence we need at any j and any n only remember the survivor and no other path leading to this state through the trellis.

Alignment Problem

The complete procedure yielding the best decoded state sequence (path) is now formalizable in the following manner.

Viterbi Algorithm (VA)

Storage: n time index, for each $j \in S$ the survivor $\psi_{n}(j)$ and the corresponding scores $\delta_{n}(j), j \in S$.
Start: $n=0$. Compute for each $j \in S$

$$
\begin{gathered}
\delta_{0}(j)=\pi_{j}(0) \cdot b_{j}\left(o_{0}\right), \\
\psi_{0}(j)=\varnothing .
\end{gathered}
$$

Recursion: Compute

$$
\delta_{n+1}(j)=\left[\max _{i=1, \ldots, J} \delta_{n}(i) \cdot a_{i \mid j}\right] \cdot b_{j}\left(o_{n+1}\right)
$$

Store the survivors

$$
\psi_{n}(j)=\operatorname{argmax}_{i=1, \ldots, J} \delta_{n-1}(i) \cdot a_{i \mid j}
$$

for $j=1, \ldots, N$. Set $n+1$ to n unless $n=N$ and repeat.

Viterbi Algorithm (VA)

Termination:

$$
\begin{gathered}
P^{*}=\max _{i=1, \ldots, J} \delta_{N}(i) \\
j_{*}(N)=\operatorname{argmax}_{i=1, \ldots, J} \delta_{N}(i)
\end{gathered}
$$

Backtracking: The best path is found by

$$
j_{*}(n)=\psi_{n+1}\left(j_{*}(n+1)\right), n=N-1, N-2, \ldots, 0 .
$$

Quasiloglikelihood for HMM

Let now t denote the number of state sequences $\mathbf{x}=j_{0} j_{1} \ldots j_{n}$ of length $n+1$ that have positive probability with regard to the model λ with the given sequence of emission symbols $\mathbf{0}$.

Quasiloglikelihood for HMM

We enumerate the state sequences $\left(j_{0}, \ldots, j_{n}\right)$ by the index $s, s=1, \ldots, t$. Then we set

$$
u_{s}=P\left(Y_{0}=o_{0} \ldots, Y_{n}=o_{n}, X_{0}=j_{0}, \ldots, X_{n}=j_{n} ; \lambda\right)
$$

$$
\text { if }\left(j_{0} \ldots j_{n}\right) \mapsto s
$$

Quasiloglikelihood for HMM

For any other model λ^{*} we set

$$
\begin{gathered}
v_{s}=P\left(Y_{0}=o_{0} \ldots, Y_{n}=o_{n}, X_{0}=j_{0}, \ldots, X_{n}=j_{n} ; \lambda^{*}\right) \\
\text { if }\left(j_{0} \ldots j_{n}\right) \mapsto s .
\end{gathered}
$$

Note that some v_{s} may be in fact be equal to zero, since we are checking state paths with positive probability with regard to λ. We have to exclude the converse situation and thus make the following assumption.

Quasiloglikelihood for HMM

We assume that the model λ^{*} does not assign a positive probability, conditioned on the given o, to a state path in S^{n+1} that has probability zero with regard to the model λ or, if we have $\mathbf{x}^{\dagger}=j_{0}^{\dagger} \ldots j_{n}^{\dagger}$ such that

$$
P\left(Y_{0}=o_{0} \ldots, Y_{n}=o_{n}, X_{0}=j_{0}^{\dagger}, \ldots, X_{n}=j_{n}^{\dagger} ; \lambda\right)=0
$$

then

$$
P\left(Y_{0}=o_{0} \ldots, Y_{n}=o_{n}, X_{0}=j_{0}^{\dagger}, \ldots, X_{n}=j_{n}^{\dagger} ; \lambda^{*}\right)=0
$$

$$
\ln \frac{P\left(Y_{0}=o_{0} \ldots, Y_{n}=o_{n} ; \lambda^{*}\right)}{P\left(Y_{0}=o_{0} \ldots, Y_{n}=o_{n} ; \lambda\right)}
$$

which is comparing the plausibility of the two models for the fixed sequence of emitted symbols.

A lower bound for the loglikelihood ratio

Under the assumptions above for $s=1, \ldots, t$ we have

$$
u_{s}>0
$$

and

$$
\begin{gathered}
\ln \frac{P\left(Y_{0}=o_{0} \ldots, Y_{n}=o_{n} ; \lambda^{*}\right)}{P\left(Y_{0}=o_{0} \ldots, Y_{n}=o_{n} ; \lambda\right)} \geq \\
\frac{Q\left(\lambda, \lambda^{*}\right)-Q(\lambda, \lambda)}{P\left(Y_{0}=o_{0} \ldots, Y_{n}=o_{n} ; \lambda\right)},
\end{gathered}
$$

Quasiloglikelihood for HMM

$$
Q\left(\lambda, \lambda^{*}\right)=Q\left(\lambda, \lambda^{*} \mid \mathbf{o}\right)=\sum_{s=1}^{t} u_{s} \ln v_{s}
$$

and

$$
Q(\lambda, \lambda)=Q(\lambda, \lambda \mid \mathbf{o})=\sum_{s=1}^{t} u_{s} \ln u_{s}
$$

Quasiloglikelihood for HMM

$$
\begin{gathered}
Q\left(\lambda, \lambda^{*}\right)=\sum_{s=1}^{t} u_{s} \ln v_{s}= \\
=\sum_{s=1}^{t} u_{s}\left[\sum_{j=1}^{J} r_{j}(s) \ln \pi_{j}^{*}(0)+\right. \\
\left.\sum_{j=1}^{J} \sum_{k=1}^{K} m_{j \mid k}(s) \ln b_{j}^{*}\left(o_{k}\right)+\sum_{j=1}^{J} \sum_{i=1}^{J} n_{i \mid j}(s) \ln a_{i \mid j}^{*}\right]=
\end{gathered}
$$

(interchanging the order of the finite summations)

Baum-Welch

We maximize

$$
\begin{gathered}
\sum_{j=1}^{J}\left[\sum_{s=1}^{t} u_{s} r_{j}(s)\right] \ln \pi_{j}^{*}(0)+ \\
\sum_{j=1}^{J} \sum_{k=1}^{K}\left[\sum_{s=1}^{t} u_{s} m_{j \mid k}(s)\right] \ln b_{j}^{*}\left(o_{k}\right)+ \\
\sum_{j=1}^{J} \sum_{i=1}^{J}\left[\sum_{s=1}^{t} u_{s} n_{i \mid j}(s)\right] \ln a_{i \mid j}^{*}
\end{gathered}
$$

as function of the unknown parameters. This gives:

Baum-Welch

1. For $j=1, \ldots, J$,

$$
\pi_{j}^{*}(0)=\frac{e_{j}}{P\left(Y_{0}=o_{0} \ldots, Y_{n}=o_{n} ; \lambda\right)}
$$

2. For $j=1, \ldots, J$ and for $k=1, \ldots, K$

$$
b_{j}^{*}\left(o_{k}\right)=\frac{d_{j \mid k}}{n_{j}}
$$

3. For $j=1, \ldots, J$ and for $i=1, \ldots, J$

$$
a_{i \mid j}^{*}=\frac{c_{i \mid j}}{\sum_{j=1}^{J} c_{i \mid j}}
$$

Baum-Welch

1. For $j=1, \ldots, J$,

$$
\begin{equation*}
\pi_{j}^{*}(0)=\frac{\alpha_{0}(j) \cdot \beta_{0}(j)}{P\left(Y_{0}=o_{0}, \ldots, Y_{n}=o_{n}\right)} \tag{1}
\end{equation*}
$$

π_{j}^{*} is the expected frequency of j at starting time given $o_{0} \ldots o_{n}$ and conditioned on the current model λ.

Baum-Welch

2. For $j=1, \ldots, J$ and for $k=1, \ldots, K$

$$
\begin{equation*}
b_{j}^{*}\left(o_{k}\right)=\frac{\sum_{l=0}^{n} I_{\left\{Y_{l}=o_{k}\right\}} \alpha_{l}(j) \cdot \beta_{l}(j)}{\sum_{l=0}^{n} \alpha_{l}(j) \cdot \beta_{l}(j)} \tag{2}
\end{equation*}
$$

$b_{j}^{*}\left(o_{k}\right)$ is the expected number of visits in state j and emitting the symbol o_{k} divided by the expected number of transitions from state j, given $o_{0} \ldots o_{n}$ and conditioned on the current model λ.

Baum-Welch

3. For $j=1, \ldots, J$ and for $i=1, \ldots, J$

$$
\begin{equation*}
a_{i \mid j}^{*}=\frac{a_{i \mid j} \cdot \sum_{l=0}^{n-1} \alpha_{l}(i) \cdot b_{j}\left(o_{l+1}\right) \cdot \beta_{l+1}(j)}{\sum_{l=0}^{n-1} \alpha_{l}(i) \cdot \beta_{l}(i)} \tag{3}
\end{equation*}
$$

$a_{i \mid j}^{*}$ is the ratio of the expected number of transitions from state i to state j divided by the expected number of transitions from state i given $o_{0} \ldots o_{n}$ and conditioned on the current model λ.

Consider a Markov chain $\left(X_{k}\right)_{k=0}^{\infty}$ with the state space $\{0,1\}$ and with the transition probability matrix

$$
A=\left(\begin{array}{cc}
1-p & p \\
q & 1-q
\end{array}\right)
$$

and with the initial distribution

$$
\pi(0)=(1-a, a)
$$

The emitted sequence $\left(Y_{k}\right)_{k=0}^{\infty}$ is given by

$$
Y_{k}= \begin{cases}1 & \text { if } X_{k}+V_{k} \geq 1 \\ 0 & \text { if } X_{k}+V_{k} \leq 0\end{cases}
$$

where $\left(V_{k}\right)_{k=0}^{\infty}$ is a sequence of independent, identically distributed discrete random variables, which are independent of of $\left(X_{k}\right)_{k=0}^{\infty}$, too. The variables V_{k} assume values in the alphabet $\{-1,0,1\}$ with the probabilities

$$
1-p_{0}-p_{1}, p_{0}, p_{1}
$$

respectively.

A Problem

(a) Show that this is a hidden Markov model in the sense of our definition. Give the emission probability matrix B.
(b) Let for $j=0,1$

$$
\widehat{\pi}_{j}(n \mid m)=P\left(X_{n}=j \mid Y_{0}, \ldots, Y_{m}\right)
$$

be the prediction $(n>m)$ or filtering $(n=m)$ probability. Show that

$$
\widehat{\pi}_{1}(n+1 \mid n)=p-(p-(1-q)) \cdot \widehat{\pi}_{1}(n \mid n) .
$$

