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1 Introduction

This lecture applies the results from a previous lecture on Markov chains in
continuous time to molecular evolution.

We present some of the many mathematical theories proposed for the
study of the mechanisms of DNA evolution. These studies are essential be-
cause changes in nucleotide sequences are used both for estimating the rate
of evolution and for reconstructing the evolutionary history of organisms.

The idea is that sequences diverge from a common ancestor because mu-
tations occur and some fraction of these mutations are fixed into to the
evolving population by selection and chance. A completely general model of
this process should take into accoount substitutions, insertion and deletion,
duplication and transposition of individual bases and of blocks of bases (Li
1997). The models treated below will only be concerned with substitution,
replacement of one base by another.

The perhaps most computationally tractable probabilistic model to con-
sider is the one in which all the instantaneous rates of change are the same
for all nucleotides. This is the Jukes-Cantor model. This model and most
other models assume that the rate of change is the same at all sites. It is
possible to include rate variation, e.g., by assuming that the rates are gamma-
distributed random variables (Yang 1993). Felsenstein and Churchill (1996)
suggest a hidden Markov model for the variation among sites in rates. The
clock hypothesis is more precisely formulated (Zuckerkandl and Pauling 1965,
Zuckerkandl et.al. 1971, p. 485) as a simple statistical model, a continuous-
time Markov chain, that describes events of substitution occurring at random
times with constant rates.

In (Zuckerkandl and Pauling 1965, Zuckerkandl et.al. 1971, loc.cit, Ney-
man 1970) the disturbances that may result in failure to restore DNA se-
quences correctly arise according to a Poisson process. This means that if
N(t), t ≥ 0, is the number of such disturbances occurring during in a time
interval of length t, then N(t) is a discrete random variable having a Poisson
distribution with parameter λt. Thus the probability of the occurrencies of
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k changes in time t is given by

P (N(t) = k) = e−λt
(λt)k

k!
. (1.1)

The quantity λ is a non-negative statistical parameter of the model and is
called the intensity. Then the probability of no disturbance (substitution) is

P (N(t) = 0) = e−λt, (1.2)

and the probability of at least one disturbance is

P (N(t) ≥ 1) = 1− e−λt. (1.3)

These two last expressions will reappear frequently in the sequel. A property
of this model is that failure to copy correctly at a particular nucleotide site is
independent of the past history of that site. A Poisson distributed molecular
clock can also be derived using population genetics and coalescent theory
(Tavaré 1995).

The molecular clock hypothesis for single nucleotide substitutions is next
formulated by additional probabilistic assumptions.

1.1 Statistical assumptions on the substitution process

Let us suppose that

1) All nucleotide sites change independently.

2) All nucleotide sites vary equiprobably.

3) The substitution rate is constant over time and in different evolutionary
lineages.

4) The base composition is at equilibrium.

5) The conditional probabilities of nucleotide substitutions are the same
for all sites and do not change over time.

We are under these premises dealing with a ‘space-time’ plane, in which
a number of independent mutation processes evolve in a parallel way. An
attempt to visualize the ‘space-time’ plane is in Figure 1. In general we
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Figure 1: Space-time

should thus introduce a set of independent random processes Xs = {Xs(t) |
t ≥ 0}, where s denotes the site in a genome. By virtue of the assumptions
above it will suffice, at least prior to discussion of phylogenetic inference, to
consider only a single process X = {X(t) | t ≥ 0} as a generic model of the
substitutions at any site.
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2 Summary of some known results

X = {X(t) | t ≥ 0} is a continuous-time Markov chain taking values in X
= {A, T, C,G}. We denote the generic elements of X by j, i, . . . ,.

The time-homogeneous transition probability is

Pij(t) = P (X(t) = j|X(0) = i)

or
Pij(t− s) = P (X(t) = j|X(s) = i)

for j ∈ X . In a matrix form this amounts to

P(t) = {Pij(t)}i∈X ,j∈X .

We have a rate matrix Q given by

lim
h↓0

P(h)− I

h
= Q,

and the differential equations

P
′
(t) = P(t)Q (2.1)

with the initial conditions
P (0) = I. (2.2)

The solution to (2.1) and (2.2) is

P(t) = eQt =
∞∑
l=0

tl

l!
Ql. (2.3)

The absolute probability distribution on X evolves as

p(t) = p(0)P(t). (2.4)

The stationary distribution π on X is defined as

π = πP(t)

and found from
πQ = 0.

Here 0 is matrix of zeros.
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3 Reversibility

We need the additional assumption of reversibility, which means that

πiPij(t) = πjPji(t) for all t, i, j X . (3.5)

Proposition 3.1 A continuous time ergodic and stationary Markov chain
is reversible if and only if

πiqij = πjqji for all i, j. (3.6)

Proof: The necessity of (3.6) follows from the assumption of reversibility (3.5)
by taking appropriate limits. To prove sufficiency, we introduce the diagonal
matrix Π, which has an equilibrium distribution on the main diagonal, or

Π =


π1 0 0 . . . 0
0 π2 0 . . . 0
...

. . .
... . . .

...
0 0 0 . . . π|X |

 .
This is an invertible matrix, as all πi > 0 for ergodic Markov chains in
continuous time. Then we can write the conditions (3.6) in matrix form as

ΠQ = QTΠ (3.7)

T is the transpose of a matrix. This is equivalent to

⇔ ΠQΠ−1 = QT . (3.8)

Next we compute

ΠP(t)Π−1 = ΠetQΠ−1 = etΠQΠ−1

by a known property of the matrix exponential (Braun 1993, p. 154, Brockett
1970 p. 32). The equality in the right hand side of the equivalence in (3.8)
gives

= etΠQΠ−1

= etQ
T

=
(
etQ

)T
= P(t)T ,

where another elementary property of the matrix exponential has been used.
In other words we have obtained that

ΠP(t)Π−1 = P(t)T ⇔ ΠP(t) = P(t)TΠ, (3.9)

and the equality in the right hand side of this equivalence is clearly nothing
else but the matrix form of the reversibility conditions (3.5).
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3.1 The Most General Time-Reversible Model (GTR)

Tavaré (1986) and several others have suggested the most general reversible
model (GTR) as

Q =


∗ µaπ2 µbπ3 µcπ4

µaπ1 ∗ µdπ3 µeπ4
µbπ1 µdπ2 ∗ µfπ4
µcπ1 µeπ2 µfπ3 ∗

 , (3.10)

where the diagonal intensities ∗ are obtained by the standard rule. The
rows and columns correspond to A,C,T,G in this order. Here µ is the aver-
age instantaneous substitution rate, which is modulated by the parameters
a, b, c, d, e, f , which correspond to the substitution rates from one base to
another. The πi are collected in

π = (π1, π2, π3, π4) ,

which must be an equilibrium distribution, and is arbitrary in the sense that
it can be preassigned. It is immediate from proposition that Q in (3.10)
indeed defines a reversible model.

In other words, it is assumed that the rate of change to each base is
proportional to the equilibrium probability of that base. More specialized re-
versible models are obtained imposing restrictions on (π1, π2, π3, π4) and/or
a, b, c, d, e, f .

3.2 The Felsenstein Model (F81) of Evolutionary Change
in Nucleotide Sequences

If we choose a = b = c = d = e = f = 1 in the GTR generator Q in (3.10)
and set

ui = µπi, i = 1, . . . , 4

then the generator is of the form introduced in (3.13), and also known under
the acronym F81 for Felsenstein (1981), i.e.,

Q =


−(µ− u1) u2 u3 u4

u1 −(µ− u2) u3 u4
u1 u2 −(µ− u3) u4
u1 u2 u3 −(µ− u4)

 . (3.11)
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Then we can write

π =

(
u1
µ
,
u2
µ
,
u3
µ
,
u4
µ

)
, (3.12)

and also check πQ = 0.
We have written earlier µ = u, or

Q =


−(u− u1) u2 u3 u4

u1 −(u− u2) u3 u4
u1 u2 −(u− u3) u4
u1 u2 u3 −(u− u4)

 , (3.13)

where
u = u1 + u2 + u3 + u4. (3.14)

If X is a continuous time Markov chain with the generator Q in (3.13),
then

πQ = 0

has the solution (the stationary distribution)

π =
(
u1
u
,
u2
u
,
u3
u
,
u4
u

)
. (3.15)

The rate of change R is

R = lim
h↓0

P (X(t+ h) 6= X(t))

h
= u

(
1−

∑
i∈X

π2
i

)
. (3.16)

where u is given in (3.14). We set

A =


π1 π2 π3 π4
π1 π2 π3 π4
π1 π2 π3 π4
π1 π2 π3 π4

 .
we have

P(t) = eQt = e−utI + A
(
1− e−ut

)
, for Q in (3.13). (3.17)

If we write this elementwise, we get

Pij(t) = e−utδi,j +
(
1− e−ut

)
πj, (3.18)

where δi,j is the Kronecker delta defined by

δi,j =

{
1 i = j
0 i 6= j.

(3.19)

7



3.3 Separation of Species

We are assuming Q in (3.13). Let us now suppose that we have two continuous-
time Markov chains X and Y , with the same generator Q in (3.13), assuming
reversibility, and such that

X(0) = Y (0),

but evolving independently thereafter. Then

P (X(t) = i, Y (t) = j) = πiPij(2t) =

=

{
πi (1− e−2ut) πj i 6= j,
πie
−2ut + πi (1− e−2ut) πj i = j.

(3.20)

Then

P (X(t) 6= Y (t)) =
(
1− e−2ut

)(
1−

∑
i∈X

π2
i

)
. (3.21)

Note that since the two sequences are independent, the probability of them
having different bases is

πiπj, i 6= j.

Also
∑
i 6=j πiπj = (1−∑i∈X π

2
i ) is thus clearly the stationary probability of

difference in any sequence position between X and Y .

4 Jukes-Cantor Model of Evolutionary Change

in Nucleotide Sequences

The Jukes-Cantor generator is a special case of (3.13) and is of the form

Q =


−3α α α α
α −3α α α
α α −3α α
α α α −3α

 . (4.1)

The dimension of α could be

[α] = substitutions/site/year .
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and is perhaps of order 10−4. We get from (3.15)

π =
(

1

4
,
1

4
,
1

4
,
1

4

)
. (4.2)

Hence we see that the Jukes-Cantor model is reversible. This yields from
(3.21) that

P (X(t) 6= Y (t)) =
(

1− 1

4

) (
1− e−8αt

)
=

3

4

(
1− e−8αt

)
. (4.3)

This is the expression (13.31) in Ewens and Grant.
If we now set p = P (X(t) 6= Y (t)), we obtain from (4.3)

αt =
1

8
log

(
1− 4

3
p
)
. (4.4)

Hence if p is estimated by evolutionary sequence data as p̂, then

α̂t =
1

8
log

(
1− 3

4
p̂
)
.

Next we find the standard form of the Jukes-Cantor formula. Let us
introduce, using the rate of change in (3.16) and u = 4α from (3.14)

d
def
= 2tR = 2t · u ·

(
1−

∑
i∈X

π2
i

)
= 2t(4α)

3

4

⇔

d = (3α)2t.

• Here we note that d is the expectation of a Po(3α(2t)) -distributed random

variable. The fact that the intensity qi = −3α is independent of i in the

Jukes-Cantor generator (4.1), implies that if an event is defined as the sub-

stitution of one nucleotide for another, the number of times the event occurs

up to time t follows a Poisson distribution Po(3αt). Hence, the expected dis-

tance between two independent contemporary populations that descended

from a common population and are described by the Jukes-Cantor model is

like a Po(3α(2t)) -distributed random variable.
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• One can explain the appearance of 2t by means of ’line-of-descent-and -

ascent‘ argument. The Jukes-Cantor model is reversible, so that the proper-

ties of the stochastic process describing any line of descent are the same as

that of describing the process in reverse, that is, by considering the corre-

sponding line of ascent. The elapsed time up the line of ascent from one of

the two contemporary populations up to the founder population, and then

down to the line of descent from the founder population to the other con-

temporary population, is 2t, see Figure 2. The Figure can also be read in

terms of the Chapman-Kolmogorov semigroup property.

X(t) Y(t) 

X(0)=Y(0) 

Figure 2: Ascent and descent

Then

αt =
d

6

and this gives (4.3)

p =
3

4

(
1− e−

4
3
d
)
. (4.5)

or

d = −3

4
log

(
1− 4

3
p
)
.

This is the most well known version of the Jukes-Cantor formula which
thus expresses an evolutionary distance, d, which is the expected number
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of substitutions between X and Y as a function of p, which is estimated
from data using the observed fractions of positions, where X(t) 6= Y (t).
Two examples of uses, of some current interest for the lecturer, are found in
(Mougel et. al. (2002), and (Van de Peer et.al. (1993)). In both cases some
corrections are introduced, though.

5 The Kimura Two Parameter Model of Evo-

lutionary Change in Nucleotide Sequences

The key assumption of the Jukes-Cantor model that all nucleotide substitu-
tions occur randomly can be quite unrealistic and is mathematically speaking
restrictive (but very tractable, as seen above). Nucleotide substitutions can
be categorized as transitions and transversions.

• Transitions are substitutions between A and G (purines) or between C
and T (pyrimidines).

• Transversions are substitutions between a purine and a pyrimidine
(e.g., A changing to C).

Transitions are regarded as more frequent than transversions. Kimura (1980)
incorporated this in a two parameter model, in which the rate of transitional
substitution at each nucleotide site is per unit time, and the rate of transver-
sions is per unit time.

5.1 The model and its matrix exponential

The Kimura generator of a two parameter model is

Q =


−(α + 2β) β β α

β −(α + 2β) α β
β α −(α + 2β) β
α β β −(α + 2β)

 . (5.1)

i.e., as

A C T G
A −(α + 2β) β β α
C β −(α + 2β) α β
T β α −(α + 2β) β
G α β β −(α + 2β)

.
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The rates for a transition (= α) are in this model different from rates for a
transversion (= β). The Jukes-Cantor model is clearly a special case of the
Kimura two parameter model, but the Kimura two parameter model is not
in general a special case of the Felsenstein model.

• The fact that the intensity qi = −(α + 2β) < 0 is independent of i, implies

again that for the event of substitution of one nucleotide for another, the

number of items the event occurs up to time t follows a Poisson distribution

Po((α+ 2β)t).

We can write
Q = −(α + 2β)I + βE1 + αE2,

where

E1 =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 ,
and

E2 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


One finds easily that

Ek
1 =

{
2k−1Ec k ≥ 1, k even
2k−1E1 k ≥ 1, k odd,

where

Ec =


1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

 ,
and

Ek
2 =

{
I k ≥ 1, k even
E2 k ≥ 1, k odd.

Then
etQ = e−t(α+2β)IetβE1etαE2
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and the matrix exponential can be tediously1 calculated as

etQ =


f1(t) f2(t) f2(t) f3(t)
f2(t) f1(t) f3(t) f2(t)
f2(t) f3(t) f1(t) f2(t)
f3(t) f2(t) f2(t) f1(t)

 , (5.2)

where

f1(t) =
1

4
+

1

2
e−2αt−2βt +

1

4
e−4βt,

f2(t) =
1

4
− 1

4
e−4βt,

and

f3(t) =
1

4
− 1

2
e−2αt−2βt +

1

4
e−4βt.

Here f3(t) is the probability of the event that the initial nucleotide and the
nucleotide at t differ by transition and f2(t) is the probability of the event
that the initial nucleotide and the nucleotide at t differ by transversion.

5.2 Stationary distribution, fraction of divergence

Next, if we let t→∞, we get

fi(t)→
1

4
, i = 1, 2, 3,

which also shows that the stationary distribution on {A,C,G,T, } is

πKimura =
(

1

4
,
1

4
,
1

4
,
1

4

)
. (5.3)

Hence we see from (5.2) that the Kimura two parameter model is also re-
versible in the sense of (3.5). Let us again take two continuous-time Markov
chains X and Y , with the same generator Q in (5.1), and such that

X(0) = Y (0) ∈ π,
1Actually, it is faster to use some software platform of symbolic computation, which

Kimura, of course, did not have at his disposal.
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but evolving independently thereafter. Then it holds, as has been shown,
that

P (X(t) = i, Y (t) = j) = πiPij(2t) =

and that this gives

=


1
4

(
1
4
− 1

4
e−8βt

)
i↔ j transversion,

1
4

(
1
4
− 1

2
e−4αt−4βt + 1

4
e−8βt

)
i↔ j transition,

1
4

(
1
4

+ 1
2
e−4αt−4βt + 1

4
e−8βt

)
i = j.

(5.4)

Hence we may again explain intuitively 2t by means of ’line-of-descent-and-
ascent‘ argument. For the Kimura model it is natural to compute fractions
of divergnece both in the case of transversion and transition. By the same
computation as above we have

p1 = P (X(t) 6= Y (t) | transition) =
∑

i 6=j,transition
P (X(t) = i, Y (t) = j)

=
∑

i 6=j,transition
πiPij(2t) = 4

1

4
f3(2t)

=
1

4
− 1

2
e−4αt−4βt +

1

4
e−8βt.

And

p2 = P (X(t) 6= Y (t) | transversion) =
∑

i 6=j,transversion
P (X(t) = i, Y (t) = j)

=
∑

i 6=j,transversion
πiPij(2t) = 8

1

4
f2(2t)

=
(

1

2
− 1

2
e−8βt

)
.

Let us set
κ = 4αt+ 4βt, φ = 8βt.

This gives
κ = − log(1− 2p1 − p2),

and
φ = − log(1− 2p2)

as two parameter extensions of the Jukes-Cantor formula.
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6 Models of Evolutionary Change in Nu-

cleotide Sequences

In this way many extended models can be obtained. We have a diagram
(copied from somewhere in the world wide web) in the appendix giving an
outline of the development of this branch of mathematical biology. The
book (Li (1997)) mentions many additional variants of generators suggested
for molecular evolution.

7 Appendix: A Diagram on Markov Genera-

tor Based Theories of Molecular Evolution
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