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Lecture

The lecture parallells the topics in Chapters 3 and 8 in Ewens and Grant
but concentrates more on Bayesian learning from data (Ewens and Grant
3.4, 3.6−3.7). In addition we deal with information theoretic measures of
distance between probability distributions, (Ewens and Grant 1.14).
See also J.S. Liu and C.E. Lawrence: Bayesian inference on biopolymer
models. Bioinformatics, 15, 1999, pp. 38−52.
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Lecture 4: Contents

1) Learning from data, Models, Bayes rule

2) Posterior densities, maximum likelihood,

3) Likelihood ratio, Model Choice

4) Entropy, Kullback Distance, and Sequence Logos
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Learning from data

By learning from data one often means the process of inferring a general law or

principle from the observations of particular instances. The general law is a piece

of knowledge about the mechanism of nature that generates the data.
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Learning and Bayes’ Rule

Since
p(X | Y ) · p(Y ) = p(Y | X ) · p(X )

we have in a formal way

p(X | Y ) =
p(Y | X ) · p(X )

p(Y )
.

The marginal distribution p(Y ) is

p(yj ) =
L

∑
i=1

p(yj | xi )p(xi ).
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Learning and Bayes’ Rule

p(xi | yj ) =
p(yj | xi ) · p(xi )

∑L
i=1 p(yj | xi )p(xi )

.

Bayes’ rule gives a fundamental operation for up-date of probability
distributions in response to observed information. The rule shows how
knowledge about the occurrence of the event Y = yj is to be used to
transform probabilities on X .
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Terminology for Bayes’ Rule

p(X ) : A Prior Distribution on X .

p(X | Y ) : A Posterior Distribution on X .

If X and Y are independent, then the prior distribution and posterior
distribution are identical and there is no learning.
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Thomas Bayes 1702-1761
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Learning from data

The intended learning is done by use of ’MODELS’, which serve as the
language in which the constraints predicated on the data can be described.
We shall in this lecture talk about parametric probabilistic models.
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Modeling and Learning for Tosses of a Thumbtack

Let us consider a sequence of flips of a thumbtack (D. Heckerman). If we throw a

thumbtack in the air, it will come to rest either on its point (0) or on its head

(1).
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Modeling and Learning for Tosses of a Thumbtack

Suppose we flip the thumbtack n times (fixing n in advance), making sure that

that the physical properties of the thumbtack and the conditions under which it is

flipped remain stable over time.
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Modeling and Learning for Tosses of a Thumbtack

We let x denote the sequence of outcomes of the flips, x = xi1xi2 . . . xin ,

xil ∈ {0, 1}. Let now P be a random variable, whose values are numbers, denoted

by p, between zero and one, 0 ≤ p ≤ 1.
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MODEL FAMILY for Tosses of a Thumbtack

Conditioned on P = p, the digits in x are outcomes of I.I.D Be(p) R.V’s.
Hence a model in the family is given by the probability assignment

P (x | P = p) =
n

∏
l=1

pxil · (1− p)1−xil =

p∑n
l=1 xil · (1− p)n−∑n

l=1 xil = pk · (1− p)n−k ,

if ∑n
l=1 xil = k .
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MODEL FAMILY for Tosses of a Thumbtack

The goal is to find the model (within a preestablished family) that is best in some
sense given some observed data. In the thumbtack example we understand this as
follows.

We have observed n outcomes of flips of a thumbtack x and wish to determine

which of the models in the family that best describes this set of flips.
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The Prior

To progress we express our uncertainty about P using a probability density
function fP (p), which is called the prior. Formally this means

fP (p) ≥ 0, 0 ≤ p ≤ 1,

and fP (p) = 0 elsewhere, and∫ 1

0
fP (p) dp = 1.
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The Posterior Density

By an extension of Bayes’ rule to continuous random variables we get the
posterior density

fP|x (p | x) =
P (x | P = p) · fP (p)∫ 1

0 P (x | P = p) · fP (p) dp
, 0 ≤ p ≤ 1

and zero elsewhere. Due to the standardization fP|x (p | x) is another probability

density for P.
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The Posterior Density

The posterior fP|x (p | x) expresses our updated belief in the statement
that p is the ’true‘ chance of obtaining heads given that we have observed
x.
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The Posterior Density

One way to get further from here is to use an explicit form for fP (p).
There could be several choices, but some are at least analytically more
advantageous. Let us consider P ∈ U(0, 1). i.e.,

fP (p) =

{
1 0 ≤ p ≤ 1
0 elsewhere,
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The Posterior Density: the constant

By an insertion we can now calculate∫ 1

0
P (x | P = p) · fP (p) dp =

∫ 1

0
pk · (1− p)n−k dp =

k !(n− k)!
(n+ 1)!

by the properties of the Beta density (see Ewens and Grant p.32).
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Recall: Beta Density

fP(p) =

{
Γ(α+β)

Γ(α)Γ(β)
pα−1(1− p)β−1 0 < p < 1

0 elsewhere.

is a probability density. Hence∫ 1

0
fP(p)dp = 1⇔

∫ 1

0
pα−1(1− p)β−1dp =

Γ(α)Γ(β)

Γ(α + β)
.

Recall also that Γ(k + 1) = k !, if k is a positive integer.
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The Posterior Density: the constant

∫ 1

0
P (x | P = p) · fP (p) dp =

∫ 1

0
pk · (1− p)n−k dp =

k !(n− k)!
(n+ 1)!

.
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The Posterior Density for n tosses of a Thumbtack

Then we have

fP|x (p | x) =
{

(n+1)!
k !(n−k)! · p

k (1− p)n−k 0 ≤ p ≤ 1

0 elsewhere.

This is again recognized as a Beta density.
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Posterior Densities for p in Be(p)
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The Maximum Likelihood Estimate

We introduce the maximum likelihood estimate p̂ML of p by

p̂ML = argmax0≤p≤1P (x | P = p) = argmax0≤p≤1p
k · (1− p)n−k .

The rationale for this is that we try to find the model within the family that gives

the sequence x the highest possible probability.
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The Maximum Likelihood Estimate

The probability P (x | P = p) regarded as a function of p is known as the
likelihood function

L (p) = P (x | P = p) .

The likelihood function L (p) thus compares the plausibilities of different
models for given x.
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The Maximum Likelihood Estimate

A straightforward maximization of the likelihood function gives

p̂ML =
k

n
.
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The Predictive Estimate of the Probability for the
Outcome of the Next Toss

In the thumbtack model we may be concerned with

P (Xn+1 = head|x) ,

if Xn+1 is a random variable modeling the next toss, given n flips of the

thumbtack as recorded in x.
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The Predictive Estimate of the Outcome of the Next Toss

Using the model family above we have

P (Xn+1 = head|x) =
∫ 1

0
pfP|x (p | x) dp

=
(n+ 1)!
k !(n− k)!

∫ 1

0
p · pk (1− p)n−k dp

=
(n+ 1)!
k !(n− k)!

(k + 1)!(n− k)!
(n+ 2)!

=
k + 1

n+ 2
.
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Pierre-Simon Laplace, 1749 − 1827

The probability

P (Xn+1 = head|x) = k + 1

n+ 2

is known as Laplace’s rule of succession.
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General Summary

A formal Bayesian modeling articulates the information in a sequence with
evidence other than that of the sequence. The evidence is assessed by judgement
and is expressed in probability theory terms:

(1) a probability distribution specifies the probability of any sequence
conditional on certain parameters;

(2) a prior expresses uncertainty about the parameters.

When (1) is combined with the data we get the likelihood function of the

sequence. The likelihood function is combined with (2) via Bayes’ rule to produce

a posterior distribution for the parameters of the model.
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Likelihood Ratio

We wish to compare two different models, H1 and H0 , proposed for a
given sequence x.

H1: the sequence is generated as I.I.D samples X1, . . . ,Xn of f (a density
or a pmf).

H0: the sequence is generated as I.I.D samples of g (a density or a pmf).

Then we can choose between H1 and H0 by using the likelihood ratio LR
between the two models:

LR =
f (X1) · f (X2) · . . . · f (Xn)

g (X1) · g (X2) · . . . · g (Xn)
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Likelihood Ratio: Example

x is a binary sequence with k ones and n− k zeros.

H1: f ↔ Be(p)

H0: g ↔ Be(g)

LR =
pk(1− p)n−k

gk(1− g)n−k
=

(
p

g

)k (1− p

1− g

)n−k
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Likelihood Ratio: Rule of Decision

Choose a threshold c > 0.

If LR > c , then decide for H1 as model for x.

If LR = c , no decision.

If LR < c , then decide for H0 as model x.

c can be chosen so as to give some desirable level of error probability.
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Log Likelihood Ratio

log LR = log
f (X1)

g (X1)
+ log

f (X2)

g (X2)
+ . . . + log

f (Xn)

g (Xn)

=
n

∑
i=1

log
f (Xi )

g (Xi )

Or set Zi = log
f(Xi )
g(Xi )

so that

log LR =
n

∑
i=1

Zi
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Likelihood Ratio: Example Continued

LR =
pk(1− p)n−k

gk(1− g)n−k
=

(
p

g

)k (1− p

1− g

)n−k

log LR = k log log
p

g
+ (n− k) log

1− p

1− g
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Log Likelihood Ratio

1

n
log LR =

1

n

n

∑
i=1

Zi

is the arichtmetic mean of I.I.D random variables Z1, . . . ,Zn.
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Log Likelihood Ratio: Law of Large numbers

If
f
def
= (f (x1), · · · , f (xL)), g

def
= (g(x1), · · · , g(xL))

and assume f is the ‘true model’, then the Law of Large Numbers entails

1

n

n

∑
i=1

Zi → Ef (Z1)

=
L

∑
i=1

f (xi ) log
f (xi )

g (xi )
,

which will reappear below.
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Likelihood Ratio: Example Continued

1

n
log LR =

k

n
log

p

g
+

n− k

n
log

1− p

1− g

= p̂ML log
p

g
+ (1− p̂ML) log

1− p

1− g

→ p log
p

g
+ (1− p) log

1− p

1− g
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Comparison of Model Families as Hypothesis Testing

We wish to compare two different model families proposed for a given sequence x.

Under the model family Mi the sequence is related to the parameters θi by a

distribution Pi (x | θi ) and the prior densities for the parameters are φi (θi ) for

i = 1, 2. Then we can compare the two families by computing the ratio of the

posterior probabilities P (Mi | x) of the two model families.
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Comparison of Model Families as Hypothesis Testing

We do not want to compare individual models within the respective
families. To avoid this we do model averaging by

qi (x) =
∫

Pi (x | θi ) · φi (θi ) dθi , i = 1, 2.

The quantity qi (x) is sometimes referred to as the evidence for Mi .
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Comparison of Model Families as Hypothesis Testing

Then Bayes’ rule gives the ratio (posterior odds)

P (M1 | x)
P (M2 | x)

=
P (M1)

P (M2)
· q1 (x)
q2 (x)

,

where P (Mi ) is the prior for Mi for i = 1, 2.
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Comparison of Model Families as Hypothesis Testing

The ratio

B(x) =
q1 (x)

q2 (x)

is known as the Bayes factor and can be seen representing the weight of
evidence in the sequence x in favour of model family M1 against model
family M2.
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− log fX

There is a connection between learning and information (or surprise). This
emerges by study of

− log fX

(-log likelihood)
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Claude E. Shannon, 1916-2001
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Entropy

We define the entropy of X as

H(X )
def
= −

L

∑
i=1

fX (xi ) log(fX (xi ))

This has the dimension [bits/symbol] if logarithms to the base 2 are used.
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Binary entropy function

For the special case Bernoulli random variable X ∈ Be(p) with X = {0, 1})
p = fX (1),

h(p)
def
= −p log2(p)− (1− p) log2(1− p)

is the (binary) entropy function.
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Binary entropy function

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

h(p) = −p log2(p)− (1− p) log2(1− p)

h
(
1
2

)
= 1 defines the binary information unit BIT.

TK Biostatistics 02.08.2018 47 / 64



Entropy of random DNA

Let X assume values in X = {A,T ,C ,G} and let X ∈ U(1, 4). X is a
nucleotide chosen at random. Then

H(X ) = −
(

1

4
log2

1

4
+

1

4
log2

1

4
+

1

4
log2

1

4
+

1

4
log2

1

4

)
= log2 4 = 2.

We think in this case of H(X ) as the number of yes/no questions needed to

identify an outcome of X . The first question is ”purine or pyriminide” followed by

the second question ”A or G ” or ” C or T” depending on the answer to the first

question.
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Entropy

The entropy H(X ) is a measure of the uncertainty in bits (=binary
information units) of the random variable X . It is also a lower bound for
the number of bits (binary digits) needed on the average to describe the
random variable.
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Kullback Distance (Relative Entropy)

Let X = {x1, · · · , xL} be an alphabet and let

f
def
= (f (x1), · · · , f (xL)), g

def
= (g(x1), · · · , g(xL))

be two probability distributions defined on X . The Kullback distance between f
and g is defined by

D (f | g) def
=

L

∑
i=1

f (xi ) log
f (xi )

g(xi )
.
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Kullback Distance

D (f | g) =
L

∑
i=1

f (xi ) log
f (xi )

g(xi )
.

Here we use the conventions 0 · log 0
g (xi )

= 0 and f (xi ) log f (xi )
0 = ∞. The

logarithm is the natural logarithm unless otherwise stated.
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Kullback Distance

We have seen above that

1

n
log LR =

1

n

n

∑
i=1

Zi → D (f | g) .

Hence we can think of the Kullback distance as the expected number of
bits per sample we learn about f if we erroneously think that g is the ’true’
model.
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Kullback Distance & Chernoff’s Inequality

Pg

(
n

∑
i=1

Zi ≥ nD (f | g)
)
≤ e−nD(f |g)

Note that here Pg means computing probability using g as the ’true
model’.
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Kullback Distance: Information Content

X is a random variable with the distribution f = (f (x1), · · · , f (xL)), any
probability distribution on an alphabet of L symbols, g = (1/L, · · · , 1/L), then

D (f | g) = log L−H(X ).

This case of D (f | g) is in some quarters of bioinformatics known as the

information content. We shall soon see why this may make sense and how it is

used.
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Sequence Logos

Sequence Logos display the frequencies of bases at each position in aligned sequence. The characters presenting the sequence
are stacked on top of each other in each position of in the aligned sequence. The height of the letter is made proportional to the
relative frequency. The most common one is on the top. The height of the entire stack is adjusted to signify the information
content of the sequences at that position.

http://www.lecb.ncifcrf.gov/∼toms/glossary.html#sequencewalker
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Sequence Logos

height of base b at position l = f (b) · Rseq,

where
Rseq = 2− (H (Xl ) + e(n)).

Note that 2−H (Xl ) is the information content for the base at position l , since 2

is the entropy of the random DNA. For the biological rational and details see

T.D. Schneider and R.M. Stephens: Sequence Logos (at url above).

TK Biostatistics 02.08.2018 56 / 64



Two Bernoulli distributions

Let X = {0, 1} and 0 ≤ p ≤ 1 and 0 ≤ g ≤ 1. Let f = (1− p, p) and
g = (1− g , g) be the two Bernoulli distributions Be(p) and Be(g), respectively.
Then

D (f | g) = (1− p) · log
1− p

1− g
+ p · log

p

g
.
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Properties

D (f | g) ≥ 0.

Recalling information content D (f | g) = log L−H(X ) we have

log L ≥ H(X ).

Hence uncertainty is maximized by the uniform distribution.
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Complexity

log L ≥ H(X ).

The entropy H(X ) is thus also a measure of complexity.
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Proof of D (f | g) ≥ 0:

D (f | g) = E

[
log

f (X )

g (X )

]
,

which equals

D (f | g) = −E
[

log
g (X )

f (X )

]
.

φ(x) = − log x is a convex function, Jensen’s inequality gives,

−E
[

log
g (X )

f (X )

]
≥ − log E

[
g (X )

f (X )

]
,
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Proof: Jensen’s inequality

φ is a convex function:

E [φ (X )] ≥ φ (E [X ]) .

For a discrete random variable this is nothing more than the definition of
convexity.
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Convexity

φ is a convex function if and only if

φ (π1x1 + . . . + πnxn) ≤ π1φ (x1) + . . . + πnφ (xn)

for all x1, . . . , xn and π1 + . . . + πn = 1, πi ≥ 0.
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Proof: continued

But

E

[
g (X )

f (X )

]
=

L

∑
i=1

f (xi )
g(xi )

f (xi )
= 1

and since log 1 = 0, we have proved our assertion, as claimed above.
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End of Lecture 4
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