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Lecture

This lecture covers some basic relationships of Markov chains with a finite
number of states, slightly more extensively than chapter 4 of Ewens and
Grant.
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Markov Chains in Bioinformatics

Markov chains are useful at the genome level. It is, however, quite unlikely
that a single Markov chain can describe a whole genome. Once a Markov
chain has been fitted, no biological mechanism is implied, but useful
questions can be answered. The frequency of particular subsequences can
be predicted, and, e.g., the expected number of fragments produced by a
specific restriction enzyme can be predicted.
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Markov Chains in Bioinformatics, an Example:
GeneMarkTM

GeneMarkTM is/was family of gene prediction programs provided by Mark Borodovsky’s Bioinformatics Group at the Georgia

Institute of Technology, Atlanta, Georgia. The GeneMark program is accessing the protein-coding potential of a DNA sequence

(within a sliding window) by using Markov models of coding and non-coding regions.
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State Space

Consider an alphabet S= {E1,E2, . . . ,EJ} and sequence of random
variables X0,X1, . . . ,Xn, . . . , assuming values in S . The symbols Ej in the
alphabet are called states and S is also called the state space. We give the
state Ej the label j and take for simplicity of typing S= {1, 2, . . . , J}.
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Markov Chain

A sequence of random variables {Xn}∞
n=0 is called a Markov chain,(MC),

if for all n ≥ 1 and j0, j1, . . . , jn ∈ S ,

P (Xn = jn|X0 = j0,X1 = j1, . . . ,Xn−1 = jn−1) =

P (Xn = jn|Xn−1 = jn−1) .

The condition is known as the Markov property.
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A.A.Markov 1856-1922
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Markov Chain: Lack of Memory

The significance of an MC lies in the fact that if Xn = jn is a future event,
then the conditional probability of this event given the past history
X0 = j0,X1 = j1, . . . ,Xn−1 = jn−1 depends only upon the immediate past
Xn−1 = jn−1 and not upon the remote past
X0 = j0,X1 = j1, . . . ,Xn−2 = jn−2.
In bioinformatics the index n does not indicate ‘time’, but a sequence
position.
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Modelling by Chain Rule

Recall
P (X1 = xl1 , · · · ,Xm = xlm) =

=
m

∏
i=1

P
(
Xi = xli | X1 = xl1 . . .Xi−1 = xli−1

)
where

P (X1 = xl1 | X0 = xl0) = P (X1 = xl1) .

This is for obvious reasons unpractical.
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Markov Chain: some terminology

Let {Xn}∞
n=0 be Markov chain. If Xn = j , we say that the the chain is in

state j at time n or that the chain visits the state at time n. The
conditional probabilities

pi |j = P (Xn = j |Xn−1 = i) , n ≥ 1, i , j ∈ S

are assumed to be independent of n (temporally homogeneous) and are
called (stationary) one-step transition probabilities. If the conditional
probability is not defined, we put pi |j = 0.
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Transition matrix

The numbers pi |j are taken as entries in a matrix

P =
(
pi |j
)J,J

i=1,j=1

to E1 to E2 . . . to EJ−1 to EJ

from E1 p1|1 p1|2 . . . p1|J−1 p1|J
from E2 p2|1 p2|2 . . . p2|J−1 p2|J
...

...
...

... . . .
...

...
from EJ−1 pJ−1|1 pJ−1|2 . . . pJ−1|J−1 pJ−1|J
from EJ pJ |1 pJ |2 . . . pJ |J−1 pJ |J

.
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Transition matrix

P =
(
pi |j
)J,J

i=1,j=1

P =


p1|1 p1|2 . . . p1|J
p2|1 p2|2 . . . p2|J

...
...

...
...

pJ |1 pJ |2 . . . pJ |J

 .

Thus P is an J × J matrix to be called a transition matrix.
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Transition matrix

The i : th row of P is the conditional probability distribution of Xn given
that Xn−1 = i . Clearly the following properties hold true:

pi |j ≥ 0,
J

∑
j=1

pi |j = 1.

TK Biostatistics 02.08.2018 14 / 59



Example

A binary Markov information source is a sequential mechanism for which the chance that a certain symbol will be produced
depends upon the preceding symbol. Suppose the symbols are 0 and 1. If at some stage 0 is produced, then at the next stage 1
will be produced with probability p and 0 will be produced with probability 1− p. If a 1 is produced, then at a next stage 0 will
be produced with probability q and 1 will be produced with probability 1− q. This corresponds to the transition matrix

P =

(
1− p p
q 1− q

)
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State transition graph

P =

(
1− p p
q 1− q

)

1−p 1−q0 1

q

  p 
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Topology of the Graph

The structure of a state transition graph without the probabilities is known

as the topology of the graph.

2

0 1
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Example

A binary Markov information source is a generalization of a sequence of
identically and independently Be(p) - distributed bits. I.I. Be(p) -
distributed bits correspond to the transition matrix

P =

(
1− p p
1− p p

)
.
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Example: McCabe’s library in a special case

Linnea has a set of three books on a bookshelf. These are (1) L. Råde & B. Westergren: BETA, (2) G. Blom: Probability and

Statistics, (3) F. Gustafsson & N. Bergman: MATLABR for Engineers.
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Example: McCabe’s library in a special case

Every time Linnea has consulted one of these books, she will insert the book back on the shelf as the first one from the left. The

figure depicts the change in the order of the books after Linnea has sought advice and inspiration from the book by G. Blom and

put it back to the shelf.
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Example: McCabe’s library in a special case

Linnea never takes two or three books from the shelf at a time and neither does

she introduce new books on the shelf or lets anyone else tamper with the valuable

books. Let us assume that the popularities (or the relative frequencies) for Linnea

to pick each and every of the three books can be described by the distribution

pi > 0, i = 1, 2, 3, respectively, p1 + p2 + p3 = 1. In addition we assume that

Linnea picks up the books independently of each other.
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Example: McCabe’s library in a special case

The order (from the left) between the books becomes thus the state of a
Markov chain, which jumps to a next state every time Linnea returns a
book on her shelf.

S = {βBM, βMB,BβM,BMβ,MβB,MBβ}.
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Example: McCabe’s library in a special case

p1 = Pr(β), p2 = Pr(B), p3 = Pr(M)
β BM β MB B β M BM β M β B M B β

β BM p1 0 p2 0 p3 0
β MB 0 p1 p2 0 p3 0
B β M p1 0 p2 0 0 p3

BM β p1 0 0 p2 0 p3

M β B 0 p1 0 p2 p3 0
M B β 0 p1 0 p2 0 p3

.
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Example: McCabe’s library in a special case

This is a special case of a known model for self-organization of linear lists
of data records and is called McCabe’s library.
M. Hofria & H. Schahnai (1991): Self-organizing Lists and Independent
References. Journal of Algorithms, pp. 533−555,
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Transition matrix for DNA sequences

P =
(
pi |j
)4,4

i=1,j=1

or obviously

A C G T
A pA|A pA|C pA|G pA|T
C pC|A pC|C pC|G pA|T
G pG|A pG|C pA|G pG|T
T pT|A pT|C pT|G pT|T

. How might these numbers

be established from genome data ? This will (?) be treated later.
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Markov chains of kth order

A sequence of random variables {Xn}∞
n=0 is called a k:th order Markov

chain , if for all n ≥ 1 and j0, j1, . . . , jn ∈ S ,

P (Xn = jn|X0 = j0,X1 = j1, . . . ,Xn−1 = jn−1) =

= P (Xn = jn|Xn−k = jn−k , . . . ,Xn−1 = jn−1) ,

for a positive integer k.
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Markov chains of kth order

The MC in the first definition is called a first order Markov chain. An I.I.D
process assuming values in S would then be called a Markov chain of zero
order. MC:s of order higher than one are frequently used in modelling of
DNA sequences. E.g., GeneMarkTM uses MC:s of order k = 5.
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Joint Probability Distribution of an MC

By successive iterations of the definition of conditional probability and by successive uses of the Markov property

P (X0 = j0, . . . ,Xn−1 = jn−1,Xn = jn) =

P (Xn = jn |X0 = j0, . . . ,Xn−1 = jn−1) · P (X0 = j0, . . . ,Xn−1 = jn−1) =

P (Xn = jn |Xn−1 = jn−1) · P (X0 = j0, . . . ,Xn−1 = jn−1) =
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Joint Probability Distribution of an MC

pjn−1 |jn · P (Xn−1 = jn |X0 = j0, . . . ,Xn−2 = jn−2) · P (X0 = j0, . . . ,Xn−2 = jn−2) =

.

.

.

= pjn−1 |jn · pjn−2 |jn−1
. . . · pj0 |j1 · pX0

(j0) =

= pX0
(j0) · pj0 |j1 · . . . pjn−2 |jn−1

· pjn−1 |jn .

Thus we have proved:
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Joint Probability Distribution of an MC

If {Xn}∞
n=0 is a Markov chain with stationary transition probabilities, then

P (X0 = j0,X1 = j1, . . . ,Xn = jn) = pX0 (j0)
n

∏
l=1

pjl−1|jl .

We set
{Xn}∞

n=0 ∈ Markov (P, pX0) ,

where
pX0 = (p1, . . . , pJ) .
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n -step transition probablities

The conditional probabilities

pi |j (n) = P (Xm+n = j |Xm = i) , n ≥ 1, i , j ∈ S

are also independent of m. The probabilities pi |j (n) are called the n -step
transition probablities. Then

P(n) =
(
pi |j (n)

)J,J

i=1,j=1

is the n -step transition matrix. We define

pi |j (0) =

{
1 if j = i
0 if j 6= i .
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Chapman-Kolmorogorov equations

For all m, n ≥ 1 and i , j ∈ S ,

pi |j (m+ n) =
J

∑
k=1

pi |k(m) · pk |j (n).

i

j

n+m0 m
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Chapman-Kolmorogorov equations, Proof:

We observe that

pi |j (m+ n) = P (Xm+n = j |X0 = i) =

J

∑
k=1

P (Xm+n = j ,Xm = k ,X0 = i)

P (X0 = i)
.

We try now to express P (Xm+n = j ,Xm = k ,X0 = i) in a suitable way.
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Chapman-Kolmorogorov equations, Proof (contnd):

We consider the following identity obtained by definition of conditional
probability

P (X0 = j0, . . . ,Xm = jm , . . .Xn = jn) =

P (Xm+1 = jm+1, ..,Xn = jn |X0 = j0,X1 = j1, ..,Xm = jm)P (X0 = j0, ..,Xm = jm)
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Chapman-Kolmorogorov equations, Proof (contnd):

We can show that

P (Xm+1 = jm+1, . . .Xn = jn|X0 = j0,X1 = j1, . . . ,Xm = jm) =

P (Xm+1 = jm+1, . . .Xn = jn|Xm = jm) .

This is intuitively plausible, and is left as an exercise.
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Chapman-Kolmorogorov equations, Proof (contnd):

P (X0 = j0, . . . ,Xm = jm , . . . ,Xn = jn) =

P (Xm+1 = jm+1, ..,Xn = jn |Xm = jm)P (X1 = j1, ..,Xm = jm |X0 = j0)P (X0 = j0) .
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Chapman-Kolmorogorov equations, Proof (contnd):

P (X0 = j0, . . . ,Xm = jm , . . . ,Xn = jn) =

P (Xm+1 = jm+1, ..,Xn = jn |Xm = jm)P (X1 = j1, ..,Xm = jm |X0 = j0)P (X0 = j0) .

If we next sum over j1, . . . , jm−1, jm+1 . . . jn−1 we get

P (X0 = j0,Xm = jm ,Xn = jn) =

P (Xn = jn |Xm = jm)P (Xm = jm |X0 = j0)P (X0 = j0) .(∗)
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Chapman-Kolmorogorov equations, Proof (contnd):

As shown above

pi |j (m+ n) = P (Xm+n = j |X0 = i) =

J

∑
k=1

P (Xm+n = j ,Xm = k ,X0 = i)

P (X0 = i)
.

Replacing n by n+m, j0 by i , jm by k and jn by j in (∗) above, we get
from this

TK Biostatistics 02.08.2018 38 / 59



Chapman-Kolmorogorov equations, Proof (finished):

pi |j (m+ n) =
J

∑
k=1

P (Xm+n = j |Xm = k)P (Xm = k |X0 = i) =

=
J

∑
k=1

pk |j (n) · pi |k(m).
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Chapman-Kolmorogorov equations, Matrix Form:

Using a matrix notation we can write the Chapman - Kolmogorov equation
as the following matrix multiplication

P(n+m) = P(m) · P(n).
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n-step Transition Matrix as Matrix Power :

P(n) = Pn.

Proof: This is easily proved by induction, since where P0 = I ( = the
J × J identity matrix), P1 = P , P2 = P · P, P3 = P · P2 and so on.

TK Biostatistics 02.08.2018 41 / 59



Chapman-Kolmorogorov equations

Chapman - Kolmogorov equation can be written as

Pn+m = Pm · Pn.
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State probabilities

Let the distribution of X0 be denoted by φ(0). In other words,

φ(0) = (pX0 (1) , . . . , pX0 (J)) .

This will be called the initial distribution. Let us denote by

φ(n) = (p (Xn = 1) , . . . , p (Xn = J))

the 1× J vector of the probabilities that the chain is in state j at time n.
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State probabilities

By marginalization

p (Xn = j) =
J

∑
k=1

pk |j · p (Xn−1 = k) .

This we write using a matrix notation as

φ(n) = φ(n− 1)P.
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Stationary distribution

A Markov chain {Xn}∞
n=0 is called stationary, if the probability p (Xn = j)

is independent of n for all j in the state space. A distribution φ an
invariant or stationary distribution, with

φ = (φ1, . . . , φJ) ,

if p (X0 = j) = φj for all j implies that p (X1 = j) = φj for all j .
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Stationary distribution

Let {Xn}∞
n=0 ∈ Markov (P, φ(0)). Every stationary (invariant) distibution

satisfies the equation
φ = φP

(φ is a row vector) with the constraints

J

∑
j=1

φj = 1, φj ≥ 0.
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Proof:

Assume first that φ is an invariant distribution. Then ∑J
j=1 φj = 1 and

φj ≥ 0 are clear. Since φ is invariant, by the definition above we must
have φ(0) = φ and φ(1) = φ. But since

φ(n) = φ(n− 1)P,

we get that
φ = φP.
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Proof:

Assume now that φ satisfies φ = φP and the other constraints. Let
φ(0) = φ. Then

φ(1) = φ(0)P = φP = φ

and φ is an invariant distribution.
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Existence of a stationary distribution

Every MC with a finite state space has at least one invariant distribution Proof: We give only an outline of the proof. Let p be
an arbitrary probability distribution on S . Set

p(n) =
1

n

(
p + pP + pP2 + . . . + pPn−1

)

This is a sequence of probability distributions, i.e. vectors with components with values between zero and one. Thus the well

known theorem of Bolzano and Weierstrass shows that we can pick a convergent subsequence p(nv ) which converges

componentwise to the vector φ. We can show that φ is a probability distribution.
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Existence of a stationary distribution

By our construction we have the recursion relations

p(n+1) =
n

n+ 1
p(n) +

1

n+ 1
pPn

and

p(n+1) =
n

n+ 1
p(n)P +

1

n+ 1
p.

From the recursion above we get that

p(nv+1) → φ

and then we get that
φ = φP,

which proves the claim.
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Stationary distribution

The components in the stationary distribution can be interpreted as the
asymptotic percentages of ‘time’ the chain spends in each of the states.
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Stationary distribution

Is there convergence to a stationary distribution for any φ(0) ? Let
{Xn}∞

n=0 ∈ Markov (P, pX0). Let us assume that

lim
n→∞

φ(n) = a,

where a = (a1, . . . , aJ) is a probability distribution. Then a is an invariant
distribution.
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Proof:

Taking of limits yields

a = lim
n→∞

φ(n) = lim
n→∞

φ(n+ 1) =

= lim
n→∞

(φ(n)P) =
(

lim
n→∞

φ(n)
)
P = aP.
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periodic and irreducible MC:s

(a) An MC is aperiodic if there is no state such that return to that state
is possible only after t0, 2t0, 3t0 . . . steps later.

(b) An MC is irreducible means that every state can eventually be reached
from any other state, if not in one step, but then after several steps.

These assumptions hold for many ((?) almost all according to Ewens and
Grant) MC’s in bioinformatics.
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Convergence to an invariant distribution

If a finite MC is aperiodic and irreducible, then for any φ(0)

lim
n→∞

φ(n) = φ,

where φ is a probability distribution that satisfies

φ = φP.

One of the many possible proofs of the theorem is found on pp. 40−42 of
P.Clote & R. Backofen (2000): Computational Molecular Biology, Wiley.
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Convergence of Pn

Under the conditions of the preceding theorem we have that

Pn →


φ1 φ2 . . . φJ

φ1 φ2 . . . φJ
...

...
...

...
φ1 φ2 . . . φJ

 .

as n→ +∞.
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Stationary distribution and McCabe’s library

Consider McCabe’s library again.

(a) Explain why the chain is irreducible and aperiodic.

(b) Will the distribution of the chain converge to a stationary
distribution?

(c) What is the expression of the invariant distribution for the case in the
preceding ?
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The right
hand side might be

J

∑
i=1

φi

J

∑
j=1

pi |j log
pi |j
qi |j

in the present notation.

http://www.biology.gatech.edu/bioinformatics/whatis.html
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End of Lecture
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