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Lecture 6

The lecture is based on portions of chapter 5.2, 5.3, 10.3, 11., 11.3 of
Ewens and Grant, and some additional material.
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Lecture 6: Contents

1) Weight Matrix Model

2) Learning Markov models

3) More on Markov Modelling

k:th order Markov
Frame Dependent MC
Hidden Markov Models
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Weight Matrix Model

A weight matrix M0 is a simple model often used by molecular biologicists
as a representation for a family of signals. The sequences containing the
signals are supposed to have equal length (=n) and to have no gaps (no
positions are blank).
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Weight Matrix Model

A weight matrix M0 has as entries the probabilities pi
(
xj
)

(e.g. observed relative frequency) for that a string should have one
of the bases

{x1, x2, x3, x4} = {A,T ,C ,G}

at position i :

M0 :

p1 (x1) . . . pn (x1)
p1 (x2) . . . pn (x2)
p1 (x3) . . . pn (x3)
p1 (x4) . . . pn (x4) .

The weight matrix model is often called a profile.
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Prob(Data | Model)

The probability of a finite sequence x = xl1xl2 . . . xln given the model M0

is given by

P (x|M0) =
4

∏
j=1

n

∏
i=1

pi (xj )
Ii ,xj (x) ,

where the indicator Ii ,xj (x), a function of x, is 0 if xj 6= xli , i.e., if the
symbol xj does not appear in position i in the string x and is 1 otherwise.
Thus the bases in the different positions are independent given M0.
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Prob(Data | Model)

A sequence of strings x1, . . . , xt is training data, i.e., of known cases of
members of a signal family. We take them to be generated independently
given M0, is by multiplication of the preceding expressions assigned the
probability

P
(
x1, . . . , xt |M0

)
=

t

∏
s=1

P (xs |M0)

=
4

∏
j=1

n

∏
i=1

pi (xj )
ni (xj ) ,
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Prob(Data | Model)

P
(
x1, . . . , xt |M0

)
=

t

∏
s=1

P (xs |M0)

=
4

∏
j=1

n

∏
i=1

pi (xj )
ni (xj ) ,

where ni (xj ) is the number of times the symbol xj appears on position i in
x1, . . . , xt .
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Prob(Data | ModelMLE)

P
(
x1, . . . , xt |M0

)
=

t

∏
s=1

P (xs |M0)

=
4

∏
j=1

n

∏
i=1

pi
(
xj
)ni (xj ) ,

where ni
(
xj
)

is the number of times the symbol xj appears on position i in x1, . . . , xt .
The maximum likelihood estimate is

p̂i
(
xj
)
=

ni
(
xj
)

t

This will be shown during a later ’lektion’.
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Example: Promoter Regions

RNA polymerase molecules start transcription by recognizing and binding
to promoter regions upstream of the desired transcription start sites.
Unfortunately promoter regions do not follow a strict pattern. It is possible
to find a DNA sequence (called the consensus sequence) to which all of
them are very similar.
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Example: Promoter Regions

For example, the consensus sequence in the bacterium E. Coli, based on
the study of 263 promoters, is TTGACA followed by 17 random base pairs
followed by TATAAT, with the latter located about 10 bases upstream of
the transcription start site. None of the 263 promoter sites exactly match
the above consensus sequence.
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Weight Matrix Model

By constructing the weight matrix of the TATAAT region (n=6) we can compute the probability of a DNA sequence
x = xl1 xl2 . . . xl6 and compute the probability

Prob(x | ′promoter‘)

This means that successive bases are thought as being generated independently from the distributions in the weight matrix
table. Similarly, we can compute using, e.g., a weight matrix model of the signal family

Prob(x | ′non− promoter‘)

with weight matrix from a non-promoter region and compare

Prob(x | ′promoter‘)

Prob(x | ′non− promoter‘)
.

to decide in x is a member of the family.
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Bayesian Probability Recalled

Let me directly quote a statement from a webpage of the Center for
Genomics Research/Karolinska Institutet

http : //kisac.cgr.ki.se/Pfam/help/scores.html

“...Life is surprisingly easy for a Bayesian. He or She assumes you want to
know something about an unknown variable. Generally you pose the
question after you have seen some data which you are (generally) pretty
sure about.
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Bayesian Probability (quote continued)

For example, you want to know whether this protein (data which you
observe) is an example of this domain, for example a globin. The odd
thing about Bayesian statistics is that it assumes that everything unknown
is random variable. In this case it assumes that the variable ’is this a
globin domain’ is a random variable.
The Bayesian will then reply with a probability of that random variable,
given the data you have observed. “ (End of quote)
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Markov Model M1

A Markov model is a statistical ’counter hypothesis‘ to weight models.
A C G T

A pA|A pA|C pA|G pA|T
C pC|A pC|C pC|G pA|T
G pG|A pG|C pA|G pG|T
T pT|A pT|C pT|G pT|T

The matrix P contains 16− 4 unknown

probabilities that will have to be learned from training data, i.e., of known
cases of member of a signal family.
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Prob (Data | M1)

If
{Xn}∞

n=0 ∈ Markov
(
P, pX0

)
,

where
pX0

= (P (X0 = 1) , . . . ,P (X0 = J)) ,

then

P (X0 = j0,X1 = j1, . . . ,Xn = jn) = pX0
(j0)

n

∏
l=1

pjl−1 |jl
.
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Learning with Markov chains

P =


p1|1 p1|2 p1|2 p1|4
p2|1 p2|2 p2|3 p2|4
p3|1 p3|2 p3|3 p3|4
p4|1 p|2 p4|3 p4|4


We change the interpretation: the function p (x|M1) is regarded as a

function of P (or the probabilities in P) and called a likelihood function
and denoted by Lx (P)

L (P) = pj0(0)
n

∏
l=1

pjl−1|jl .

The maximum likelihood estimate of P is obtained by maximizing L (P) as
a function of P.
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Learning with Markov chains

The maximum likelihood estimate p̂i |j of pi |j is

p̂i |j =
ni |j
ni

, for all i and j .

Here ni |j is the number of times the sequence contains the pair of bases
(i , j) (in this order), i.e., the number of transitions from i to j and ni is
the number of times the base i occurs in the sequence.
This will be shown during a later ’lektion’.
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Modelling with Markov chains

p̂i |j =
ni |j
ni

, for all i and j .

Here ni |j is the number of times the sequence contains the pair of bases
(i , j) (in this order), i.e., the number of transitions from i to j and ni is
the number of times the base i occurs in the sequence.
Hence Markov models assume that there is biological information
contained in the frequency of pairs of bases following each other.
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Learning & Parametric Inference

In maximum likelihood estimation we have regarded the transition
probabilities as parameters and used training data to infer their values.
Inference: the process of deriving a conclusion from from fact and/or
premise.
In probabilistic modelling of sequences the facts are the observed
sequences, the premise is represented by the model and the conclusions
concern unobserved quantities.
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Markovian Models for Sequences

Following models have been applied to biological sequences and are based
on modifications/extensions of the Markov property:

Markov Chains of k:th order

Frame Dependent Markov Chains

Hidden Markov Models (HMM)
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Markov chains of kth order

A sequence of random variables {Xn}∞
n=0 is called a k:th order Markov

chain , if for all n ≥ 1 and j0, j1, . . . , jn ∈ S ,

P (Xn = jn|X0 = j0,X1 = j1, . . . ,Xn−1 = jn−1) =

= P (Xn = jn|Xn−k = jn−k , . . . ,Xn−1 = jn−1) ,

for a positive integer k.
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Markov chains of kth order

The MC in the first definition is called a first order Markov chain. An I.I.D
process assuming values in S would then be called a Markov chain of zero
order. MC:s of order higher than one are frequently used in modelling of
DNA sequences. E.g., GeneMarkTM uses MC:s of order k = 5.
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Frame Dependent Markov Chains

Borodovsky and McIninch (1993), introduced a general model of a frame
dependent kth order Markov chains.

2 3 1 2 3 1

3 1 2 3 1 2

1 2 3 1 2 3
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Frame Dependent Markov Chains

A coding region is read as successive non-overlapping codons, which are
instances of 3-symbol words. Since several different codons can code for
the amino acid, the bases may have different importance depending on
their position with respect to the codon partition. Therefore a Markov
chain of order k with three stationary transition probability matrices,
P1,P2,P3 is considered. Here Pm has for m = 1, 2, 3 the entries

P (X3t+m = j3t |X3t−k+m = j3t−k+m, . . . ,X3t−1+m = j3t−1+m) .
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Frame Dependent Markov Chains

The index m represents the position of the symbol inside the codon. This
is illustrated for k = 5 in a Figure. The circles represent consecutive DNA
bases, the numbers indicate the codon position. The three arrows carry
with them the different transition probabilities in for each m. For each m
the next base is generated by a distribution conditionally on the five
previous bases and on the codon position m.
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Frame Dependent Markov Chains

The kth order 3-phase MC model is augmented by a homogeneous (P as
above) MC for non-coding regions and is also learned together with a kth
order 3-phase MC model for the other strand of the DNA sequence. Hence
the task of learning this type of model from data requires the estimation of
seven transition matrices with orders that are equal to k = 5 for coding
regions of prokaryotic DNA.

TK Biostatistics 02.08.2018 27 / 57



The probability of an observed fragment is calculated and the posterior
probability Prob(Model | Data) of each hypothesis about the coding
region is computed. The relevant algorithms and their implementation in
software are known as GeneMark

http : //genemark.biology.gatech.edu/GeneMark
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HMM

Next we discuss some simple examples of HMM:

Modelling DNA heterogenity

Modelling protein families
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Modelling heterogeneity of DNA sequences

M.C. X with the state space S = {1, 2} and an observed process Y with
values O = {A,T ,G ,C}, respectively.

0
X X X X XX X XX

1 2 3 4 5 6 7

A T C GC T GC

2 2 2 1 1 1 1 1

Y Y Y Y Y Y Y Y

0 1 2 3 4 5 6 7
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Modelling heterogeneity of DNA sequences

DICE 1 

DICE 2 

CURTAIN 

MARKOV TRANSITIONS

OBSERVER 
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Modelling heterogeneneity of DNA sequences

The hidden Markov chain has the transition matrix

A =

(
1− p p
q 1− q

)
,

where 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1. Connect this to the emission probability
matrix

B =

(
1− ε− w w ε/2 ε/2

ε/2 ε/2 r 1− ε− r

)
,

where ε > 0, 0 ≤ w ≤ 1 and 0 ≤ r ≤ 1− ε.
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Modelling heterogeneity of DNA sequences

A =

(
1− p p
q 1− q

)
,

where 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1. Connect this to the emission probability matrix

B =

(
1− ε−w w ε/2 ε/2

ε/2 ε/2 r 1− ε− r

)
.

E.g., r = P (Y = G | X = 2).
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Modelling heterogeneity of DNA sequences

The value of p is chosen close to 0 and q is taken close to 0. Hence the state 1 of the hidden Markov chain persists, once the

chain has entered it, and GC has a high probability of being emitted: producing DNA sequences with GC -rich segments (and

AT -rich segments).
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Hidden Markov Chains: Modeling Protein Families

The perhaps main application of Hidden Markov Chains in bioinformatics is

detection of remote homologies using the Haussler-Krogh topology of the state

space.
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Hidden Markov Models (HMM)

HMM is a model family for a sequence of symbols from an alphabet
O = {o1, o2, . . . oK}. The model uses the idea of a hidden sequence of
state transitions.
HMM has a definition with parts I−III.
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Hidden Markov Models (HMM) I

(I) Hidden Markov Chain {Xn}∞
n=0 is a Markov chain assuming values in a

finite state space S = {1, 2, . . . , J} with J states. The time-homogeneous
conditional probabilities are

ai |j = P (Xn = j |Xn−1 = i) , n ≥ 1, i , j ∈ S

and the transition probability matrix is

A =
(
ai |j

)J,J

i=1,j=1
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Hidden Markov Models (HMM) I

A matrix
A =

(
ai |j
)J,J

i=1,j=1

with the constraints

ai |j ≥ 0,
J

∑
j=1

ai |j = 1.

is called a stochastic matrix.
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Hidden Markov Models (HMM) I

At time n = 0 the state X0 is specified by the initial probability
distribution πj (0) = P (X0 = j) with

π (0) = (π1(0), . . . , πJ(0)) .

πj (n) = P (Xn = j)

π (n) = (π1(n), . . . , πJ(n)) .
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Hidden Markov Models (HMM) II

(II) Observable Random Process A random process {Yn}∞
n=0 with a

finite state space O = {o1, o2, . . . oK}, where K can be 6= J. The
processes {Yn}∞

n=0 and {Xn}∞
n=0 are for any fixed n related by the

conditional probability distributions

bj (k) = P (Yn = ok |Xn = j) .
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Hidden Markov Models (HMM) II

We set
B = {bj (k)}J,K

j=1,k=1

and call this the emission probability matrix. This is another stochastic
matrix in the sense that

bj (k) ≥ 0,
K

∑
k=1

bj (k) = 1.
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Hidden Markov Models (HMM) III

(III) Conditional independence For any sequence of states j0j1 . . . jn the
probability of the sequence o0o1 . . . on is

P (Y0 = o0, . . . ,Yn = on | X0 = j0, . . . ,Xn = jn,B) =

n

∏
l=0

bjl (l) .
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A Formalism

An HMM is designated by

λ = (A,B, π(0)) .
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HMM Sequence Probability

UNDER THE HMM ASSUMPTIONS THE STRING o = o0 . . . on HAS
THE PROBABILITY

P (o) = P (Y0 = o0, . . . ,Yn = on; λ) =

J

∑
jo=1

. . .
J

∑
jn=1

P (Y0 = o0 . . . ,Yn = on,X0 = j0, . . . ,Xn = jn; λ)
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Hidden Markov Models, A Formalism (continued)

J

∑
jo=1

. . .
J

∑
jn=1

P (Y0 = o0 . . . ,Yn = on,X0 = j0, . . . ,Xn = jn; λ)

where
P (Y0 = o0, . . . ,Yn = on,X0 = j0, . . . ,Xn = jn; λ) =

πj0 (0) ·
n

∏
l=0

bjl (l)
n

∏
l=1

ajl−1|jl .
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HMM: Profile HMM

One main application of HMM in bioinformatics is detection of remote homologies using the Profile HMM.
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Modelling Protein Families

Proteins are categorized into families that share common function and evolutionary ancestry. Identifying distantly related

homologs is a difficult problem, primarily because sequence identity between them is sparse. When these families are considered

in the context of a homology search, it becomes possible to identify amino acid variability, which is common to the family

members. Distantly related proteins can be found even with low sequence identity, if the similarities and differences are common

to the family members.
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Modelling Protein Families

This type of analysis is powerful because the function of divergent proteins
is conserved through evolution even though sequence elements are free to
change in some areas. Family-based searches take advantage of the fact
that individual members of a family serve as examples of how tolerant this
class of proteins is to change, and where. HMMs are one of several
family-based search methods.
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Modelling Protein Families

HMM is used to statistically describe a protein family’s consensus
sequence. This statistical description can be used for sensitive and
selective database searching.
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Modelling Protein Families
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The model consists of a linear sequence of
nodes with a begin state and an end state. although a typical model can
contain hundreds of nodes. Each node between the beginning and end
states corresponds to a column in a multiple alignment.
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Modelling Protein Families
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Each node in an HMM has a match state (M), insert state (I)

and delete state (D) with position-specific probabilities for transitioning into each of these states from the previous node.
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Modelling Protein Families
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In addition to a transition probability, the match state also has

position-specific probabilities for emitting a particular residue.The insert state has probabilities for inserting a residue at the

position given by the node. There is also a chance that no residue is associated with a node. That probability is indicated by the

probability of transitioning to the delete state.
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Modelling Protein Families

Both transition and emission probabilities can be estimated from a
multiple alignment of a family of sequences. An HMM can be compared
(that is, aligned) with a new sequence to determine the probability that
the sequence belongs to the modeled family.
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Modelling Protein Families
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The most probable path through the HMM (i.e.,
which transitions were taken and which residues were emitted at match
and insert states) is taken to generate a sequence similar to the new
sequence determines the similarity score.
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Topology

The profile HMM in the figure expresses the Haussler-Krogh topology of

the state space
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Topology

The profile HMM in the figure has another topology , HMMER - 7.
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End of Lecture
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