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1 Introduction

In this lecture we study the theory of random walks in order to understand
the significance calculations in BLAST (=Best Local Alignment Search Tool).
BLAST finds alignments or does sequence similarity search by finding high
scoring segments (or words) in sequences. If the sequences (a query sequence
and a data base sequence) compared are long, then the probability of finding
segments that are similar by chance increases. Hence it is important to be
able to compute the significance of the maximal score.

Pearson & Todd (2000) have written what follows: BLAST was developed
to to identify distantly related - homologous- sequences based on sequence
similarity. Two sequences are said to be homologous, if we believe that the
two sequences diverged from a common ancestor in the past. Almost without
exception, if two (protein) sequences share statistically significant similarity,
they will share significant structural similarity.

This lecture is based on sections 7.1, 7.4, 7.5, 7.6, of Ewens and Grant.
We start by simple properties of random walks and generalize them as needed
in the BLAST calculations. For details of BLAST we refer to a handout of
appropriate pages of (Mount 2001). Another clear presentation of the main
ideas is by the developers of BLAST, Karlin and Altschul (1990).

2 Definitions for Random Walks

Let for n = 1, . . . ,

Si =

{
1 with probability p
−1 with probability q = 1− p.

Hence Si are (transformed) I.I.D. Bernoulli R.V’s. We take W0 = h. Let

Wn = h+
n∑
i=1

Si.
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This is a random motion of a particle that inhabits one of the integer points
of the real line. We record the motion of the particle as the sequence
{(n,Wn)|n =, 1, . . . , }, if these are joined by solid lines between neighbors,
the graph is called the path of the particle.

We call this the simple random walk. The classical simple random
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Figure 1: A random walk

walk is defined by p = q = 1/2.
One interpretation of random walk in terms of bioinformatics is as an

accumulated similarity score for two local segments of sequences:

Wn(= s (x[j : l],y[j : l])) =
l∑
i=j

s (xi, yi) .

where

s(x, y) =

{
+1 if x = y
−1 x 6= y.

There are other applications of random walks in bioinformatics or in molec-
ular biology, e.g., (Berg 1993, Paxia et.al. 2002).
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3 Properties of the simple random walk

Lemma 3.1 The simple random walk is spatially homogeneous, that is

P (Wn = j | W0 = h) = P (Wn = j + b | W0 = h+ b) .

Proof:

P (Wn = j | W0 = h) = P

(
n∑
i=1

Si = j − h
)

P (Wn = j + b | W0 = h+ b) = P

(
n∑
i=1

Si = j − h
)
.

Lemma 3.2 The simple random walk is temporally homogeneous, that is

P (Wn = j | W0 = h) = P (Wn+m = j | Wm = h) .

Proof:

P (Wn = j | W0 = h) = P

(
n∑
i=1

Si = j − h
)

=

P

 m+n∑
i=m+1

Si = j − h

 = P (Wn+m = j | Wm = h) .

Lemma 3.3 The simple random walk has the Markov property, that is,

P (Wn+1 = j | W0,W1, . . . ,Wn) = P (Wn+1 = j | Wn) .

Proof:
P (Wn+1 = j | W0,W1, . . . ,Wn = a) =

= P (Sn+1 = j − a) = P (Sn+1 = j − a | Wn = a) = P (Wn+1 = j | Wn = a)

Hence we are dealing with a Markov chain, whose state space is the set of
integers and {. . . ,−2,−1, 0, 1, 2, . . .}.
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a bh

Figure 2: Absorbed random walk

4 Absorption probabilities: the m.g.f. method

Let a and b be two integers, a < b. We take these points as barriers of
absorption in the sense that when the simple random walk hits either of
these points it will terminate there.
This is a Markov chain, whose state space is the set of integers = {a, . . . , b}

and the transition probability matrix of which is of the form

1 0 0 0 . . . 0
q 0 p 0 . . . 0
0 q 0 p . . . 0
...

...
...

...
...

...
0 0 . . . q 0 p
0 0 0 . . . 0 1


.

We will be interested in two problems

(i) finding the probability that the walk stops at b rather than at a.

(ii) finding the mean number of steps until the walk terminates.

We use the moment generating functions for both of these problems. The
m.g.f. of any single step S is obviously

m (θ) = qe−θ + peθ.

4



We recall a theorem from page 35 in the textbook to show that there exists
θ∗ such that

m (θ∗) = 1.

In fact this is a quadratic equation solved by

θ∗ = log

(
q

p

)
.

Let
N = min{n ≥ 0 | Wn = a or Wn = b}.

Then N is the random number of steps until the simple random walk ter-
minates and is an example of a Markov time. The m.g.f. of the total
displacement

TN =
N∑
i=1

Si

after N steps is, since single steps are I.I.D., by a previous result

m (θ)N =
(
qe−θ + peθ

)N
Hence

m (θ∗)N =
(
qe−θ

∗
+ peθ

∗)N
= 1.

We get also
wh = P (WN = b) = P (TN = b− h) ,

and
uh = P (WN = a) = P (TN = a− h) = 1− wh.

The moment generating function of TN is thus

mTN (θ) = wh · e(b−h)θ + uhe
(a−h)θ (4.1)

= wh · e(b−h)θ + (1− wh)e(a−h)θ.

Then also
mTN (θ∗) = m (θ∗)N = 1,

which gives
wh · e(b−h)θ

∗
+ (1− wh)e(a−h)θ

∗
= 1
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⇔
wh ·

(
ebθ
∗ − eaθ∗

)
= ehθ

∗ − eaθ∗

⇔
wh =

ehθ
∗ − eaθ∗

(ebθ∗ − eaθ∗)
.

Hence we have found the answer to (i) above.

Proposition 4.1 The probability of absorption at b is

wh =
ehθ
∗ − eaθ∗

(ebθ∗ − eaθ∗)
. (4.2)

In order to compute the mean number of steps until the walk terminates,
i.e., E [N ], we need a result known as Wald’s identity:

E
[
m (θ)−N eθTN

]
= 1 (4.3)

for all θ that the m.g.f. exists. The identity (4.3) will not be proved, since
the proof requires a lot of groundwork in martingale theory.

Next we differentiate Wald’s identity with respect to θ.

d

dθ
E
[
m (θ)−N eθTN

]
= E

[
d

dθ
m (θ)−N eθTN

]
= 0,

where

d

dθ
m (θ)−N eθTN = −Nm (θ)−N−1

d

dθ
m (θ) eθTN +m (θ)−N TNe

θTN

Hence

E

[
−Nm (θ)−N−1

d

dθ
m (θ) eθTN +m (θ)−N TNe

θTN

]
= 0.

If we insert θ = 0 in this equation we get

E [−NE(S) + TN ] = −E [N ] · E[S] + E [TN ] = 0,

which gives
E [TN ] = E [N ] · E[S].
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Hence

E [N ] =
E [TN ]

E[S]
.

The expected time to absorption is thus the ratio of the expected displace-
ment at absorption to the expected step size. But we know that

E [TN ] = wh(b− h) + uh(a− h),

and
E(S) = p− q.

Hence we have found the solution to (ii) above.

Proposition 4.2 The mean time to absorption is

E [N ] =
wh(b− h) + uh(a− h)

p− q
. (4.4)

5 An Asymptotic Case

Let us suppose h = 0, a = −1 and let b = y. We are going to let y → +∞.
By this we want to compute

(iii) the distribution of the maximum value of the walk before it hits a = −1.

(iv) the mean number of steps until the walk eventually terminates at a =
−1.

We are going to assume that we are dealing with the case in the theorem
from page 35 in the textbook showing that there exists θ∗ such that

m (θ∗) = 1

with θ∗ > 0: Then we have

0 < θ∗ = log

(
q

p

)
. (5.1)

⇔
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1 <
q

p
⇔ p < q ⇔ 0 < q − p,

which means that the random walk has a negative drift.
We discuss (iii), i.e., the maximum value of the walk ever reaches before

hitting −1. In (4.2) we have

wh =
ehθ
∗ − eaθ∗

(ebθ∗ − eaθ∗)
,

which with h = 0, a = −1 and b = y yields

w0 =
1− e−θ∗

(eyθ∗ − e−θ∗)
.

Hence we can see that for large y, since θ∗ > 0 is assumed in (5.1),

w0 ∝
(
1− e−θ∗

)
e−yθ

∗
.

Hence, if Y is the maximum of the walk,

Prob (Y ≥ y) ∼
(
1− e−θ∗

)
e−yθ

∗

as y →∞, this is a geometric-like probability, where we put

C
def
=
(
1− e−θ∗

)
. (5.2)

For (iv) we let

A
def
= E [N ] . (5.3)

Then with a = −1, h = 0 and b = y

A =
wh(b− h) + uh(a− h)

p− q
becomes

A =
w0y − u0
p− q

=
u0 − w0y

q − p
.

In the expression above w0y → 0, as y →∞ and u0 = 1− w0 → 1, since
w0 → 0 Hence

A =
1

q − p
as y →∞.

A and C will be the quantities we shall concentrate upon in the sequel in
more general random walks, since these are needed in BLAST calculations.
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6 General Random Walks

6.1 Assumptions on the Random Walk

Next we study a renewal theory for general random walks in order to prove the
basic asymptotic probability results for significance calculations in BLAST
Let S be a random variable with a finite number of discrete integer values,
the possible step sizes in a random walk, which are

−c,−c+ 1,−c+ 2, . . . , 0, . . . , d− 1, d

with the respective probabilities

p−c, p−c+1, p−c+2, . . . , p0, . . . , pd−1, pd

We assume that

(a)
p−c > 0, pd > 0. (6.1)

(b)

E(S) =
d∑

j=−c
jpj < 0. (6.2)

(c) the greatest common divisor of the step sizes that have non-zero prob-
ability is 1.

The m.g.f. is

m (θ) =
d∑

j=−c
pje

jθ.

By (a) we have, by virtue of the theorem on page 35 in Ewens and Grant,
that there is θ∗ for which

d∑
j=−c

pje
jθ∗ = 1. (6.3)

In view of assumption (b) we have that

θ∗ > 0.
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Let Si be independent, identically Si
d
= S - distributed random variables.

We consider the general random walk

Wn =
n∑
i=1

Si,W0 = 0.

As earlier, we interpret this as the score in a pairwise alignment or in a
similarity search.

6.2 Ladders, Excursions, and Maxima

We define the ladder variables (or ladder times) as

K0 = 0, Kv = min
k
{k|k ≥ Kv−1 + 1,Wk −WKv−1 < 0}, v = 1, 2, . . . , (6.4)

see Figure 3. A ladder point is thus a point (n,Wn), which is lower than
than any previously reached point. Since the drift is negative, the random

K
1

K
2

K
3 K

4

(K
3

, W
K

3

)

Figure 3: Ladder times

variables Kv −Kv−1 are positive integer-valued i.i.d. random variables.
The time frame Kv−1+1 to Kv is called the vth excursion of the process

{Wn}, see Figure 4.
The variable

Dv = max
Kv−1≤l<Kv

(
Wl −WKv−1

)
(6.5)
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Figure 4: Excursions

evaluates the maximal displacement attained during the vth excur-
sion, see Figure 5. Obviously D1, D2, . . . , are non-negative i.i.d. random
variables. We define

M(n) = max
0≤k≤l≤n

(Wl −Wk) . (6.6)

Thus M(n) corresponds to a segment of the sequence S1, S2, . . . , Sn
with maximal accumulated score. The probability of such a segment is
what we want to compute.

It follows from definition of Dv that

M(n) = max
(
D1, D2, . . . , DR(n), D

∗
n

)
, (6.7)

where R(n) is the number of complete excursions over the time frame from
1 to n and D∗n is the residual maximum during the last incomplete excursion
up to time n.

We shall use the following notations

F (y) = P (D1 ≤ y) (6.8)

and
A = E [K1] . (6.9)

We shall prove the following lemma
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Figure 5: Maximum level during an excursion

Lemma 6.1 Under the assumptions (a) - (c) above, we have

lim
y→∞

[1− F (y)] eθ
∗y = C · e−θ∗ . (6.10)

where θ∗ is given in (6.3).

Using this lemma we shall establish the following main theorem, which is the
cornerstone of significance computations in BLAST.

Theorem 6.2 Under the assumptions (a) - (c) above, we have

lim
n→∞

P

(
M(n)− log n

θ∗
≤ x

)
= e−Ke

−θ∗x
(6.11)

where

K =
C∗

A
e−θ

∗
(6.12)

Various expressions for K,C∗, A and C in (6.10) will be given later. The
proof is originally due to (Iglehart 1972, Karlin and Dembo 1992).
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7 Proof of the lemma

We need a renewal equation and want then to apply the renewal theorem.
Where do we get this from ? This is more or less a standard idea in textboooks

in stochastic processes. Let us recall the following well known textbook definition
of the renewal process. A renewal process is a non-negative integervalued stochas-
tic process that registers the successive occurrences of an event, where the time
durations between consecutive events are positive, independent and identically
distributed random variables. Examples of renewal processes are

Kv −Kv−1, v = 1, 2, . . . ,

and
WKv −WKv−1 , v = 1, 2, . . . , .

A renewal process has a regenerative nature, so that we may evaluate expected

number of renewals by decomposing the paths of the process by the first time of

occurrence of an event. This is the ’renewal argument‘, which yields the renewal

equation for the expected number of renewals. The renewal theorem gives the limit

of the solution of the renewal equation.

7.1 Step 1: The renewal equation

Since E(S) < 0 the random walk will eventually drift down to −∞. Before
doing so, it might visit various positive values. The first step is to find an
equation for the probabilities Qk, where

Qk = Prop ( the walk visits k > 0 before any other positive value )

We define by convention
Q0 = 0.

We introduce
σ+ = min{l ≥ 1|Wl > 0}, (7.1)

so that
Qk = Prob (Wσ+ = k) . (7.2)

Since the largest positive step size is d we have Qk = 0 for k > d. We have
here that

d∑
k=1

Qk < 1,

since the random walk Wl might always stay in the negative axis, We need
an auxiliary result obtained by introducing artificial barriers.
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7.1.1 Artificial barriers

The random walk is absorbed if it hits −1 or any smaller negative integer
and an artifical upper termiantion point y or larger. Let us set

Pk = Prob (the walk is terminated at k)

Let again N be the time of termination and

TN =
N∑
i=1

Si.

We have again Wald’s identity

E
[
m (θ)−N eθTN

]
= 1. (7.3)

If we evaluate this for θ = θ∗ we have, since TN has the values −c,−c +
1, . . . ,−1 and y, y + d− 1, that

−1∑
k=−c

Pke
kθ∗ +

y+d−1∑
k=y

Pke
kθ∗ = 1 (7.4)

If we now take the lower artificial boundary at −L, where L >> 0 and the
uper boundary at +1, then we obtain from (7.4)

−L∑
k=−L−c+1

Qk(L)ekθ
∗

+
d∑

k=1

Qk(L)ekθ
∗

= 1

where Qk(L) is the probability (depending on L) that the walk stops at the
value k. If the walk stops at k > 0, then k is the first positive value reached,
as +1 is the boundary. Therefore

lim
L→∞

Qk(L) = Qk

Since θ∗ > 0 and Qk(L) < 1, we have that

lim
L→∞

 −L∑
k=−L−c+1

Qk(L)ekθ
∗

+
d∑

k=1

Qk(L)ekθ
∗


=

d∑
k=1

Qke
kθ∗ = 1.

The auxiliary result sought for and obtained in this subsection is thus

d∑
k=1

Qke
kθ∗ = 1. (7.5)
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7.1.2 Probability for maximum excursion

Next we want to find an equation for (6.8) using Qk or

F (y) = P (D1 ≤ y) . (7.6)

The event {D1 ≤ y} is the union of several non-overlapping events:

{D1 ≤ y} = A− ∪yk=1 Ak

The A− is the event that the maximal level never reaches positive values,
and has the probability

Prob (A−) = Q = 1−Q1 −Q2 − . . .−Qd. (7.7)

The rest of the events are

Ak = {Wσ+ = k, max
σ+≤l<K1

(Wl −Wσ+ ≤ y − k) .

A generic Ak is thus the event that the first positive value obtained during an
excursion is k, k = 1, 2, . . . , y and that then, starting form the first positive
value, the walk achieves a further displacement falling below y − k. The
events A−, {Ak}yk=1 are disjoint. Elementary probability gives

F (y) = P (D1 ≤ y) = Prob (A−) +
y∑
k=1

Prob (Ak) .

Then, again by elementary conditional probability,

Prob (Ak) =

Prob (Wσ+ = k) · Prob
(

max
σ+≤l<K1

(Wl −Wσ+ ≤ y − k|Wσ+ = k)
)
.

Here

Prob
(

max
σ+≤l<K1

(Wl −Wσ+ ≤ y − k|Wσ+ = k)
)

= Prob
(

max
σ+≤l<K1

(Wl −Wσ+) ≤ y − k
)
,

since whatever happens after the random walk has reached the level Wσ+ = k
is independent of things that happened up and prior to σ+ (actually the so-
called strong Markov property). Hence

Prob (Ak) = Prob (Wσ+ = k) Prob
(

max
σ+≤l<K1

(Wl −Wσ+) ≤ y − k
)
,
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where by previous definition in (7.2)

Prob (Wσ+ = k) = Qk.

Now,

Prob
(

max
σ+≤l<K1

(Wl −Wσ+) ≤ y − k
)

= Prob
(

max
0≤l<K1

(Wl −W0) ≤ y − k
)

=

Prob
(

max
0≤l<K1

(Wl) ≤ y − k
)

= F (y − k).

This is what we mean by renewal argument: in terms probability the
random walk starts afresh (like from zero again) after the time σ+.

Thus we have

FY (y) = Q+
y∑
k=0

QkF (y − k) (7.8)

This is a renewal equation. It turns out that we need to rewrite it in order
to use the renewal theorem.

7.2 Step 2: The renewal equation rewritten

Let us introduce
V (y)

def
= (1− F (y)) eyθ

∗

or
F (y) = 1− V (y)e−yθ

∗
. (7.9)

Then we get from (7.8)

1− V (y)e−yθ
∗

= Q+
y∑
k=0

Qk

(
1− V (y − k)e−(y−k)θ

∗)
and reorganize this as

V (y) = eyθ
∗
[
1−Q−

y∑
k=0

Qk +
y∑
k=0

QkV (y − k)e−(y−k)θ
∗
]
.

Here from (7.7)

1−Q−
y∑
k=0

Qk = Q1 +Q2 + . . .+Qd −
y∑
k=0

Qk,
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and for y < d this gives, since Q0 = 0,

V (y) = eyθ
∗

(Qy+1 +Qy+2 + . . .+Qd) +
y∑
k=0

ekθ
∗
QkV (y − k), (7.10)

and for when y ≥ d

V (y) =
d∑

k=0

ekθ
∗
QkV (y − k). (7.11)

The equations (7.10) and (7.11) are in a form that permits application of a
renewal theorem (see Appendix A below).

7.3 Step 3: Application of the renewal theorem

In this theorem we choose
uy = V (y),

fk = ekθ
∗
Qk,

and
by = eyθ

∗
(Qy+1 +Q2 + . . .+Qd) ,

if y < d and by = 0 if y ≥ d.
In the renewal theorem we find

B =
∑
y

by =
d∑

k=0

ekθ
∗

(Qk+1 +Qk+2 + . . .+Qd) .

If we multiply this equation by eθ
∗ − 1, we have

(eθ
∗−1)B =

d∑
k=0

e(k+1)θ∗ (Qk+1 +Qk+2 + . . .+Qd)−
d∑

k=0

ekθ
∗

(Qk+1 +Qk+2 + . . .+Qd) .

• Here
d∑

k=0

e(k+1)θ∗ (Qk+1 +Qk+2 + . . .+Qd)−
d∑

k=0

ekθ
∗

(Qk+1 +Qk+2 + . . .+Qd) =

eθ
∗

(Q1 +Q2 + . . .+Qd)+e
2θ∗ (Q2 +Q3 + . . .+Qd)+e

3θ∗ (Q3 +Q4 + . . .+Qd)+. . .

− (Q1 +Q2 + . . .+Qd)−eθ
∗

(Q2 +Q3 + . . .+Qd)−e2θ
∗

(Q3 +Q4 + . . .+Qd)−. . . =

eθ
∗
Q1 + eθ

∗
Q2 + . . . e2θ

∗
Q2 + e2θ

∗
Q3 + . . .+ e3θ

∗
Q3 + e3θ

∗
Q4 + . . .

− (Q1 +Q2 + . . .+Qd)− eθ
∗
Q2 − eθ

∗
Q3−

−e2θ∗Q3 − e2θ
∗
Q4 − . . .
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Checking the pattern of terms that cancel out in the expression above we get
that

(eθ
∗ − 1)B =

d∑
k=1

Qke
kθ∗ − (Q1 +Q2 + . . .+Qd) = 1− (Q1 +Q2 + . . .+Qd) = Q.

in view of (7.5). Hence

B =
Q

eθ∗ − 1
.

7.4 Step 4: verification of the conditions in the renewal
theorem

For the intended application of the renewal theorem, proposition A.1 in Ap-
pendix A below, we should verify the conditions of the theorem. These are
that

B =
∞∑
k=0

bk < +∞,

which we already know, and

∞∑
k=0

fk = 1,
∞∑
k=0

kfk < +∞,

where we have taken
fk = ekθ

∗
Qk,

and
by = eyθ

∗
(Qy+1 +Q2 + . . .+Qd) ,

The condition ∞∑
k=0

fk = 1

is true by (7.5) above, since Qk = 0 for k > d. Then also

∞∑
k=0

kfk =
∞∑
k=0

kekθ
∗
Qk =

d∑
k=0

kekθ
∗
Qk < +∞,

and the renewal theorem as stated in the Appendix A can be used.
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7.5 Step 5: The limit in the lemma

The renewal theorem implies now that

V = lim
y→∞

V (y),

and (see (A.1)) that

V =
Q

(eθ∗ − 1)
∑d
k=0 kQkekθ

∗ (7.12)

From
V (y) = (1− F (y)) eyθ

∗

we have
F (y) = 1− V (y)e−yθ

∗
. (7.13)

or
[1− F (y)] eθ

∗y = V (y).

Hence
lim
y→∞

[1− F (y)] eθ
∗y = V = Ce−θ

∗
,

where from (7.12)

C =
Q

(1− e−θ∗)∑d
k=0 kQkekθ

∗ .

This proves lemma 6.1, as claimed, and gives an expression for the constant
C.

8 Proof of the Main Theorem

We now want to prove

lim
n→∞

P

(
M(n)− log n

θ∗
≤ x

)
= e−Ke

−θ∗x
, (8.1)

where

K =
C∗

A
e−θ

∗
(8.2)
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and
M(n) = max

0≤k≤l≤n
(Wl −Wk) . (8.3)

By our definitions we have

M(n) = max
(
D1, D2, . . . , DR(n), D

∗
n

)
, (8.4)

where R(n) is the number of complete excursions over the time frame from
1 to n and D∗n is the residual maximum during the last incomplete excursion
up to time n.

Let us consider the random walk from 0 to finite number (m) of full
excursions, which in view of the definition of Km in (6.4) gives

M (Km) = max (D1, D2, . . . , Dm) . (8.5)

Since D1, D2, . . . , Dm are i.i.d. reandom variables, we have by a basic ele-
mentary result, see e.g. (2.89) on page 82 of Ewens and Grant, that

P

(
M (Km)− logm

θ∗
≤ x

)
=

[
P

(
D1 −

logm

θ∗
≤ x

)]m
,

and from (7.6), F (y) = P (D1 ≤ y),

=

[
F

(
x+

logm

θ∗

)]m
.

We write the right hand side as[
F

(
x+

logm

θ∗

)]m
= em logF(x+ logm

θ∗ ),

where from (7.13)

em logF(x+ logm
θ∗ ) = em log[1−V (x+ logm

θ∗ ))e−xθ
∗−logm].

We use the series expansion (valid for −1 ≤ x < 1)

log(1 + x) = x− 1

2
x2 + . . .

with the result

m log

[
1− V

(
x+

logm

θ∗
)

)
e−xθ

∗
elog 1/m

]
=
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= −m 1

m
V

(
x+

logm

θ∗
)

)
e−xθ

∗ − 1

2
m

1

m2
G(m) +O

(
1

m

)
. . .

where G(m) is a bounded function of m and O
(

1
m

)
represents the omitted

terms that turn to zero as m→ +∞. Hence we have

lim
m→∞

m log

[
1− V

(
x+

logm

θ∗
)

)
e−xθ

∗
elog 1/m

]

= −V e−xθ∗ = −Ce−θ∗e−xθ∗ .

In other words we have proved that

lim
m→∞

P

(
M (Km)− logm

θ∗
≤ x

)
= e−Ce

−θ∗e−xθ
∗

.

The property that we can write C = C∗/A for an explicit C∗ is not expanded
upon in a special case later.

The result just shown is valid for Kbnc/A. A law of large numbers proves
that

Kbnc/A/n→ 1,

and from this the result in the theorem follows in the general case by conti-
nuity and monotonicity.

9 A Restricted Walk

9.1 The Main Theorem

The constants K, C, A are specific to the random walk. Next we compute
some of these for a restricted walk having a stopping boundary at −1. We
assume that the walk starts at 0. Let now F (y) from (6.8) above

F (y) = P (D1 ≤ y)

be denoted by Funr(y), this is the excursion maximum distribution of the
unrestricted random walk in the preceding, and let

F ∗unr(y) = 1− Funr(y)
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Also
F ∗restr(y) = 1− Frestr(y)

holds for the distribution function of the excursion maximum distribution of
the restricted random walk to be treated next, i.e., with a stopping boundary
at −1.

Then from (7.9)
Funr(y) = V (y)e−yθ

∗

and
lim
y→∞

Funr(y)eyθ
∗

= V. (9.1)

The size of an excursion of of the unrestricted walk can exceed the value y
either before or after the random walk has reached negative values (starting
at 0). In the latter case the first negative value reached by the random walk
is one of −1,−2, . . . ,−c. Let the probability of first hitting −j be Rj. Then
by the same intutition about renewals that was used above to find (7.8)

F ∗unr(y) = F ∗restr(y) +
c∑
j=1

R−jF
∗
unr(y + j)

(Yes, up till the time that the unrestricted random walk hits −1,−2, . . . ,−c,
the unrestricted and restricted random walks are identical).

Then we multiply by eyθ
∗

throughout in this equation and we get from
(9.1), since

Funr(y + j) = V (y + j)e−(y+j)θ
∗
,

that

V = lim
y→∞

F ∗restr(y) + V
c∑
j=1

R−je
−jθ∗

and from this

lim
y→+∞

F ∗restr(y) = V

1−
c∑
j=1

R−je
−jθ∗

 .
From (7.12)

lim
y→∞

F ∗restr(y) =
Q
(
1−∑c

j=1R−je
−jθ∗

)
(eθ∗ − 1)

∑d
k=0 kQkekθ

∗ .

This we write as
lim
y→∞

F ∗restr(y)eyθ
∗

= C · e−θ∗ ,
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where

C =
Q
(
1−∑c

j=1R−je
−jθ∗

)
(eθ∗ − 1)

∑d
k=0 kQkekθ

∗

Then the limit

lim
n→∞

P

(
M(n)− log n

θ∗
≤ x

)
= e−Ke

−θ∗x
, (9.2)

can (?) be found as above. Here

K =
C∗

A
e−θ

∗
.

Next we give formulas for C∗ and A.

9.2 The constants

From the equation

A =
E [TN ]

E [S]

(obtained from Wald’s identity) we get

A =

∑c
j=1 jR−j∑c
j=1 jpj

.

Karlin & Dembo (1992) have shown that

C =
C∗

A
,

where

C∗ =

(
1−∑c

j=1R−je
−jθ∗

)2
(1− e−θ∗)E [Seθ∗S]

.

10 Practical Approximations

10.1 Null hypothesis on aligned pairs and the scoring
random walk

We consider next the random walk as the score in a pairwise alignment,
which we read from from left to right along the positions 1, 2, . . . , N . The
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generic term is ascore Sj,k, e.g., an element in a substitution matrix (PAM(n),
BLOSUM), which is assigned to each position, where aligned pair (j, k) (of
amino acids) is observed.

WN =
N∑
l=1

Sj,k(l),W0 = 0.

We use the null hypothesis of independence

Prob ((j, k)) = pkpj.

The m.g.f. is then
m (θ) =

∑
j,i

pkpje
S(j,k)θ.

We assume that the scoring system (substitution matrix) is such that there
is θ∗ for which

m (θ∗) = 1, (10.1)

and that
θ∗ > 0.

This is obtained if for there is positive probability for positive and negative
scores and ∑

j,i

pkpjS(j, k) < 0.

Here we write
θ∗ ↔ λ. (10.2)

10.2 The asymptotic distribution and the constants
therein

Let M(n) be the score of the maximally scoring subsequence, or subalign-
ment. We have shown

lim
n→∞

P

(
M(n)− log n

λ
≤ x

)
= e−Ke

−λx
(10.3)

The pertinent constant K is

K =
C∗

A
e−λ (10.4)

and C∗ and A have been given in subsection 9.2.
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10.3 Expressions for K,C,C∗, A

From the equation

A =
E [TN ]

E [S]

(obtained from Wald’s identity) we get

A =

∑c
j=1 jR−j∑c
j=1 jpj

.

It has been shown show that

C =
C∗

A
,

where

C∗ =

(
1−∑c

j=1R−je
−jλ

)2
(1− e−λE [SeλS]

.

and the meaning of R−j is explained in a previous lecture.
Since A is also the mean distance between the ladder variables (times),

and the sequences to be compared are of length N , then

n =
N

A

is a meaningful and intuitive formula for the mean number of ladder points.

10.4 Choice of Sj,k on statistical grounds

If the pair (of amino acids) (j, k) is observed at any position, then the alter-
native hypothesis for the probability of this pair is denoted by

qj,k.

Then, if we insist that Sj,k should be the log likelihood ratio, we should use

Sj,k = log
qj,k
pkpj

.

In fact Karlin and Altschul (as well as Ewens and Grant) use an alternative
argument:
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Let us define qj,k as

qj,k = pjm
(n)
j,k ,

where m
(n)
j,k the array (j, k) in a PAM(n) matrix. Then

log
qj,k
pkpj

= log
m

(n)
j,k

pk
,

and we take λ from (10.2). If we set

Sj,k =
1

λ
log

qj,k
pkpj

Then
qj,k = pkpje

S(j,k)λ

is a probability distribution by our choice of λ (see (10.1) and (10.2).

10.5 Relative Entropy

The relative entgropy or Kullback distance is

H =
∑
j,k

qj,k log
qj,k
pkpj

= λ
∑
j,k

qj,kS(j, k) = λE [S]

Thus, by a piece of mathematics due Karlin and Altschul and others, the
mean score of the high-scoring segments is asymptotically

1

λ
H.

This is used in BLAST printouts.

10.6 Normalized and Bit Scores, P-values

Karlin and Altschul (1993) call the expression Sc defined by

Sc
def
= λM(n)− logNK (10.5)

a normalized score. Then

P (λM(n)− logNK ≤ s) = P (λM(n)− logN ≤ s+ logK) =
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= P
(
M(n)− 1

λ
logN ≤ 1

λ
s+

1

λ
logK

)
and from (6.11)

≈ e−Ke
−λ[ 1

λ
s+ 1

λ
logK]

= e−Ke
−λ[ 1

λ
s+ 1

λ
logK]

= e−Ke
−s−logK

= e−e
−s
.

Hence we get
P (λM(n)− logNK ≥ s) ≈ 1− e−e−s .

The P-value corrersponding to an observed value of the normalized
score λm(n)− logNK is thus

P− value = 1− e−e−λm(n)−logNK

. (10.6)

From an earlier study of extreme value theory ( see problem 2.15 in Ewens
and Grant) we get thus that

E [M(n)] = λ−1 (logNK + κ)

where κ is Euler’s constant.
The normalized score has an absolute intrepretation, which is independent

of the substitution matrix underlying S(j, k), since e−e
−s

is independent of
all the parameters.

10.7 The number of high-scoring excursions

We know from the preceding analysis that for any high scoring segment, the
corresponding score, Dv has the distribution function

F (y) = P (Dv ≤ y) (10.7)

and that
1− F (y) ≈ C · e−λy. (10.8)

Then the mean number of excursions with height higher than y is approxi-
mately equal to

N

A
e−λy.
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This is in BLAST approximated by

NKe−λy,

where K = C∗

A
e−λ. Since D1, D2, . . . , are i.i.d. (a renewal process), then the

number of excursions having height more than y or more is binomial with
mean NKe−λy. We approximate this, as in any grundkurs, by a Poisson
distribution.

Thus, the actual number of high segment pairs (HSP) exceeding y can
be compared with the tail of a Poisson distribution. The expected value
of the number of excursions corrseponding to an observed maximal score,
m(n), is found by replacing the arbitrary number v in NKe−λy by m(n).
The expected value is denoted by E

′
, so that

E
′
= NKe−λm(n).

Then the normalized score Sc in (10.5) is

Sc = − logE
′

and the relation between P -value in (10.6) and E
′

is

P -value ≈ 1− e−E
′

, E
′
= − log ( P -value) .

These are used in BLAST printouts.

11 Statistical composition of high-scoring seg-

ments

Karlin, Dembo and Kawabata (1990) formulate the follwoing statement,
which is the rationale for the parameter calculationsin the preceding section.

Proposition 11.1 If the probability of (j, k) is pjpk, then the frequency of
(j, k) in the maximal (in any sufficiently high scoring) segment is approaching

pjpke
λSj,k .

28



A The Renewal Theorem

Proposition A.1 Suppose the three sequences {bj}∞j=0, {fj}∞j=0 and {uj}∞j=0

of nonnegative constants satisfy the equation

uy = by +

( y∑
k=0

uy−kfy

)

for all y. Suppose further that

B =
∞∑
k=0

bk < +∞,

∞∑
k=0

fk = 1,

and

µ =
∞∑
k=0

kfk < +∞,

and that the greatest common divisor of {fj}∞j=0 is one. Then

uy →
B

µ
(A.1)

as y → +∞
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