Statistical Methods in Bioinformatics, Univ. of Makerere Markov chains in continuous time Timo Koski 2018-08-02

1 Introduction

This lecture deals with stochastic processes known as Markov chains in continuous time. These processes will in the next lecture describe the substitution process on a sequence position. The lecture corresponds to sections 4.1, 10.7, and 13.3.1 in Ewens and Grant.

2 Definition and some first properties

Let $X = \{X(t) \mid t \ge 0\}$ be a family of random variables taking values in a discrete, countable, alphabet or state space \mathcal{X} . The variable t is called time. We denote the generic elements of \mathcal{X} by $j, i, \ldots,$. The special case we have in mind is the finite state space $\mathcal{X} = \{A, T, C, G\}$.

2.1 The Markov property

The process $X = \{X(t) \mid t \ge 0\}$ is called a continuous-time Markov chain if it satisfies the following definition.

Definition 2.1 $X = \{X(t) \mid t \ge 0\}$ satisfies the Markov property, if

$$P(X(t_n) = j | X(t_1), X(t_2), \dots, X(t_{n-1})) = P(X(t_n) = j | X(t_{n-1}))$$
(2.1)

for $j \in \mathcal{X}$, $i \in \mathcal{X}$, and any sequence $t_1 < t_2 < \ldots < t_{n-1} < t_n$ of times.

The evolution of continuous-time Markov chains can be described in very much the same terms as those used for Markov Chains.

The general situation is as follows. For Markov Chains we wrote the *n*-step transition probabilities in matrix form and expressed them in terms of the one-step matrix \mathbf{P} . In continuous time there is no analogue for \mathbf{P} , since there is no implicit unit length of time. Some differential calculus enables us to see that there is a matrix \mathbf{Q} , called the **generator** of the continuous-time chain, which takes over the role of \mathbf{P} .

2.2 The transition probability

Definition 2.2 The time-homogeneous transition probability is denoted by $P_{ij}(t)$ and is defined as

$$P_{ij}(t) = P(X(t) = j | X(0) = i)$$
(2.2)

or

$$P_{ij}(t-s) = P(X(t) = j | X(s) = i)$$
(2.3)

for $j \in \mathcal{X}$.

This is most readily presented in a matrix form.

$$\mathbf{P}(t) = \{P_{ij}(t)\}_{i \in \mathcal{X}, j \in \mathcal{X}}.$$

2.3 Chapman - Kolmogorov equations

Proposition 2.1 The family $\{\mathbf{P}(t)|t \ge 0\}$ satisfies

- (a) $\mathbf{P}(0) = \mathbf{I}$ (= the identity matrix).
- (b) $\mathbf{P}(t)$ is a stochastic matrix.
- (c) the Chapman Kolmogorov equations

$$\mathbf{P}(t+s) = \mathbf{P}(t)\mathbf{P}(s). \tag{2.4}$$

Proof:

- (a) This is obvious by the definitions.
- (b) Clearly

$$P_{ij}(t) \ge 0. \tag{2.5}$$

Also, since the events $\{X(t)=j\}$ are disjoint,

$$\sum_{j \in \mathcal{X}} P_{ij}(t) = P\left(\bigcup_{j \in \mathcal{X}} \{X(t) = j\} | X(0) = i\right) = 1$$
(2.6)

Hence $\mathbf{P}(t)$ is a stochastic matrix.

(c)

$$P_{ik}(t+s) = P(X(t+s) = j | X(0) = i) =$$

= $\sum_{k \in \mathcal{X}} P(X(t+s) = j | X(s) = k) P(X(s) = k | X(0) = i)$
= $\sum_{k \in \mathcal{X}} P_{ik}(t) P_{kj}(s),$ (2.7)

where we used the Markov property (2.1). The equality is in matrix form written as

$$\mathbf{P}(t+s) = \mathbf{P}(t)\mathbf{P}(s). \tag{2.8}$$

By this the proof is completed.

Most questions about $X = \{X(t) \mid t \ge 0\}$ can be answered in terms of the matrices $\mathbf{P}(t)$.

Assumption 2.1 We shall now assume that the transition probabilities $P_{ij}(t)$ are continuous functions of t. We shall also assume that

$$\mathbf{P}(t) \to \mathbf{I}, \quad as \ t \downarrow 0. \tag{2.9}$$

This is to say that

$$P_{ij}(t) \to 0, i \neq j, \quad P_{ii}(t) \to 1, i = j, \quad \text{as } t \downarrow 0.$$

3 The generator

We make another assumption.

Assumption 3.1 We assume that

$$P_{ij}(h) = q_{ij}h + o(h), \quad i \neq j, \tag{3.1}$$

and

$$P_{ii}(h) = 1 + q_{ii}h + o(h), \qquad (3.2)$$

where o(h) ('small ordo') is a function such that $o(h)/h \to 0$, as $h \to 0$.

The numbers q_{ij} are known as the *instantaneous transition rates* or *intensities* of the continuous-time Markov chain. We are here assuming that the probability of two or more transitions in an interval t, t + h is small. This can in fact be proved in a more rigorous treatment. Note that we are also implicitly thinking that the transition rates are not infinite.

From (3.1) and (3.2) we get

$$1 = \sum_{j \in \mathcal{X}} P_{ij}(h) = h \sum_{j \in \mathcal{X}, j \neq i} q_{ij} + 1 + q_{ii}h + o(h),$$
(3.3)

and this implies

$$h\sum_{j\in\mathcal{X}, j\neq i} q_{ij} = -q_{ii}h + o(h)$$

or, by dividing by h and letting h go to zero,

$$\sum_{j \in \mathcal{X}, j \neq i} q_{ij} = -q_{ii} \tag{3.4}$$

or

$$\sum_{j \in \mathcal{X}} q_{ij} = 0 \tag{3.5}$$

We introduce the symbol q_i by

$$q_i \stackrel{\text{def}}{=} \sum_{j \in \mathcal{X}, j \neq i} q_{ij}. \tag{3.6}$$

The assumption (3.2) gives thus

$$\lim_{h \downarrow 0} \frac{P_{ii}(h) - 1}{h} = q_{ii} = -q_i, \qquad (3.7)$$

and the assumption (3.2)

$$\lim_{h \downarrow 0} \frac{P_{ij}(h)}{h} = q_{ij}, i \neq j.$$

$$(3.8)$$

We introduce the square matrix

$$\mathbf{Q} = (q_{ij})_{i,j\in\mathcal{X}}.$$
(3.9)

In matrix form (3.7) and (3.8) are

$$\lim_{h \downarrow 0} \frac{\mathbf{P}(h) - \mathbf{I}}{h} = \mathbf{Q}.$$
 (3.10)

The matrix \mathbf{Q} is called the *generator*.

The generator for a Markov chain on a state space with four elements is in general

$$\mathbf{Q} = \begin{pmatrix} -q_1 & q_{12} & q_{13} & q_{14} \\ q_{21} & -q_2 & q_{23} & q_{24} \\ q_{31} & q_{32} & -q_3 & q_{34} \\ q_{41} & q_{42} & q_{43} & -q_4 \end{pmatrix}.$$

3.1 An Example: the Poisson process

Let $X = \{X(t) \mid t \ge 0\}$ be a process that has the set of non-negative integers as the state space. One way of defining X as a Poisson process is to assume the following ((1)-(3)).

(1) The increments of the process are independent or

$$P(X(t) - X(s), X(u) - X(v)) = P(X(t) - X(s)) \cdot P(X(u) - X(v))$$

for $v < u \leq s < t$.

- (2) X(0) = 0.
- (3) $X(t) X(s) \in \operatorname{Po}(\lambda(t-s)).$

By these assumptions X is a continuous-time Markov chain. This is found by

$$P(X(t_n) = j_n | X(t_1) = j_1, X(t_2) = j_2, \dots, X(t_{n-1}) = j_{n-1}) =$$

= $P(X(t_n) - X(t_{n-1}) = j_n - j_{n-1} | X(t_1) = j_1, X(t_2) = j_2, \dots, X(t_{n-1}) = j_{n-1})$
= $P(X(t_n) - X(t_{n-1}) = j_n - j_{n-1})$

by assumptions (1) and (2), and this equals

$$= P \left(X(t_n) - X(t_{n-1}) = j_n - j_{n-1} | X(t_{n-1}) - X(0) = j_{n-1} \right)$$
$$= P \left(X(t_n) = j_n | X(t_{n-1}) = j_{n-1} \right),$$

again by assumption (1). By assumption (3)

$$P_{ij}(t) = P(X(t+s) = j | X(s) = i) = P(X(t+s) - X(s) = j - i)$$
$$= e^{-\lambda t} \frac{(\lambda t)^{j-i}}{(j-i)!}.$$

Then from (3.7) we get

$$\lim_{h \downarrow 0} \frac{P_{ii}(h) - 1}{h} = \lim_{h \downarrow 0} \frac{e^{-\lambda h} - 1}{h} = -\lambda,$$

and from (3.8)

$$\lim_{h \downarrow 0} \frac{P_{ij}(h)}{h} = \lim_{h \downarrow 0} \frac{e^{-\lambda h} \frac{(\lambda h)^{j-i}}{(j-i)!}}{h}$$
$$= \begin{cases} \lambda, & j = i+1\\ 0 & \text{otherwise.} \end{cases}$$

We have the generator

$$\mathbf{Q} = \begin{pmatrix} -\lambda & \lambda & 0 & 0 & \dots \\ 0 & -\lambda & \lambda & 0 & \dots \\ 0 & 0 & -\lambda & \lambda & \ddots \\ \vdots & \vdots & \vdots & \ddots & \ddots \end{pmatrix}.$$

A Poisson proces is thus a continuous time Markov chain with $q_i = \lambda$, so that from (3.6) and (3.4) we have

$$P_{ii}(h) = 1 - \lambda h + o(h),$$

or

$$1 - P_{ii}(h) = \lambda h + o(h),$$

so that the total intensity of leaving *i* is λ . But, by (3), λ is the intensity of one jump upwards for the proces X.

3.2 An Example: The random telegraph

Let $Y \in \text{Be}(1/2)$ and $N = \{N(t) | t \ge 0\}$ be a Poisson process like in the previous example, and let Y be independent of N. Set

$$X(t) = (-1)^{Y+N(t)}$$
.

Then $X = \{X(t) \mid t \ge 0\}$ is a continuous-time Markov chain, as esentially follows by the same argument as used in the preceding example. The transition matrix is

$$\mathbf{P}(t) = \begin{pmatrix} \frac{1}{2} \left(1 + e^{-2\lambda t} \right) & \frac{1}{2} \left(1 - e^{-2\lambda t} \right) \\ \frac{1}{2} \left(1 - e^{-2\lambda t} \right) & \frac{1}{2} \left(1 + e^{-2\lambda t} \right) \end{pmatrix}.$$

The sample paths of X, the random telegraph, are sequences of -1 and 1, each digit prevailing a random (exponentially distributed time).

4 Forward and backward equations

The meaning of the notion of a generator can be explained as follows. Suppose that X(0) = i, and by conditioning X(t + h) on X(t) we get by the Chapman-Kolmogorov equations

$$P_{ij}(t+h) = P(X(t+h) = j | X(0) = i) =$$

= $\sum_{k \in \mathcal{X}} P_{ik}(t) P_{kj}(h)$
= $P_{ij}(t) (1 + q_{jj}h + o(h)) + \sum_{k \in \mathcal{X}, k \neq j} P_{ik}(t) (q_{kj}h + o(h))$

from (3.1) and (3.2). Then we get

$$= P_{ij}(t) + h \sum_{k \in \mathcal{X}} P_{ik}(t)q_{kj} + o(h).$$

Thus we get that

$$\frac{P_{ij}(t+h) - P_{ij}(t)}{h} = \sum_{k \in \mathcal{X}} P_{ik}(t)q_{kj} + o(h)/h.$$

Hence we have, letting $h \to 0$, and letting $P'_{ij}(t)$ denote the first derivative with respect to t,

$$P'_{ij}(t) = \sum_{k \in \mathcal{X}} P_{ik}(t)q_{kj} = (\mathbf{P}(t)\mathbf{Q})_{ij}.$$

Thus we have derived the following proposition.

Proposition 4.1

$$P'_{ij}(t) = \sum_{k \in \mathcal{X}} P_{ik}(t)q_{kj}, \qquad (4.1)$$

or the matrix forward equation

$$\mathbf{P}'(t) = \mathbf{P}(t)\mathbf{Q}.\tag{4.2}$$

By a similar way, we can prove

Proposition 4.2

$$P'_{ij}(t) = \sum_{k \in \mathcal{X}} q_{ik} P_{kj}(t), \qquad (4.3)$$

or the matrix backward equation

$$\mathbf{P}'(t) = \mathbf{Q}\mathbf{P}(t). \tag{4.4}$$

Thus we have the system of differential equations

$$\mathbf{P}'(t) = \mathbf{P}(t)\mathbf{Q}$$

with the initial conditions

$$P(0) = \mathbf{I}.$$

In courses on differential equations the solution is often written using the exponential of a matrix

$$\mathbf{P}(t) = e^{\mathbf{Q}t} = \sum_{l=0}^{\infty} \frac{t^l}{l!} \mathbf{Q}^l.$$
(4.5)

Hence we see that we can generate $\mathbf{P}(t)$ from knowledge of \mathbf{Q} . The representation (4.5) is the unique solution to the forward and backward equations, if the state space is finite.

In many cases the series expansion $e^{\mathbf{Q}t} = \sum_{l=0}^{\infty} \frac{t^l}{l!} \mathbf{Q}^l$ is useless for practical computations, since arbitrary high powers of \mathbf{Q} are needed, see also (Moler and Van Loan 1978). There is, however, a special case of interest in computational evolutionary biology, where the sum can be explicitly evaluated, a fact that leads to important results. We shall develop this in section 7 below.

5 Absolute probabilities

Definition 5.1 Let $X = \{X(t) \mid t \ge 0\}$ be continuous-time Markov chain. The probability

$$p_i(t) = P\left(X(t) = i\right)$$

is called the absolute probability for the chain to be in state $i \in \mathcal{X}$ at time t. The vector $\mathbf{p}(t)$ is a row vector whose components are $p_i(t)$. In particular $\mathbf{p}(0)$ is called the initial vector or the initial distribution.

The law of total probability gives

$$p_{i}(t) = P(X(t) = i) = \sum_{k \in \mathcal{X}} P(X(t) = i | X(0) = k) P(X(0) = k) =$$
$$= \sum_{k \in \mathcal{X}} P_{ki}(t) p_{k}(0),$$

which we write in matrix form as

$$\mathbf{p}(t) = \mathbf{p}(0)\mathbf{P}(t). \tag{5.1}$$

This gives $\mathbf{p}'(t) = \mathbf{p}(0)\mathbf{P}'(t)$. If we multiply the forward equation (4.2) by $\mathbf{p}(0)$ from the left, we get

$$\mathbf{p}'(t) = \mathbf{p}(0)\mathbf{P}'(t) = \mathbf{p}(0)\mathbf{P}(t)\mathbf{Q} = \mathbf{p}(t)\mathbf{Q}.$$
(5.2)

If the state space is finite, this is a correct computation, in the case of countable state spaces there are things to be checked. When the equation (5.2) is expressed elementwise, we get

$$p'_{j}(t) = \sum_{i \in \mathcal{X}} p_{i}(t)q_{ij} = p_{j}(t)q_{jj} + \sum_{i \in \mathcal{X}, i \neq j} p_{i}(t)q_{ij}$$

$$= -q_j p_j(t) + \sum_{i \in \mathcal{X}, i \neq j} p_i(t) q_{ij}$$

This can be seen as a flow of probabilities. The probability $p_j(t)$ gets an increment that corresponds to the probability that the process is in state i at time t, which is $p_i(t)$ multiplied by the instantaneous transition rate from i to j, q_{ij} . This is summed over all states $i \neq j$. On the other hand $p_j(t)$ is depleted with the probability that the chain is already in the state j multiplied by the instantaneous transition rate to leave the state, i.e., q_j . Inflow minus outfow equals the rate of change $p'_j(t)$.

6 Stationary distribution

6.1 Definition & the global balance equations

Definition 6.1 The vector $\pi = (\pi_i)_{i \in \mathcal{X}}$ is a stationary distribution of the chain if

 $\pi = \pi \mathbf{P}(t) \quad \text{for all } t \ge 0$

and $\sum_{i \in \mathcal{X}} \pi_i = 1$ and $\pi_i \ge 0$.

Thus, (5.1) yields that if $\mathbf{p}(0) = \pi$, then the absolute probabilities are

$$\mathbf{p}(t) = \pi$$

for all $t \ge 0$.

Proposition 6.1

$$\pi = \pi \mathbf{P}(t) \Leftrightarrow \pi \mathbf{Q} = \mathbf{0}. \tag{6.1}$$

Here **0** is matrix of zeros.

Proof:

$$\pi \mathbf{Q} = \mathbf{0}$$

$$\Leftrightarrow$$

$$\pi \mathbf{Q}^{n} = \mathbf{0} \quad \text{for all } n \ge 1$$

$$\Leftrightarrow$$

$$\sum_{n=1}^{\infty} \frac{t^{n}}{n!} \pi \mathbf{Q}^{n} = \mathbf{0} \quad \text{for all } t \ge 0$$

$$\begin{aligned} & \Leftrightarrow \\ \pi \sum_{n=0}^{\infty} \frac{t^n}{n!} \mathbf{Q}^n = \pi \quad \text{for all } t \ge 0 \\ & \Leftrightarrow \\ \pi \mathbf{P}(t) = \pi \quad \text{for all } t \ge 0 \ , \end{aligned}$$

as was claimed.

If we write $\pi \mathbf{Q} = \mathbf{0}$ elementwise we get

$$\sum_{i \in \mathcal{X}} \pi_i q_{ij} = 0, \quad \text{ for every } j,$$

and this we write as

$$\sum_{i\in\mathcal{X}, i\neq j} \pi_i q_{ij} = -\pi_j q_{jj} = \pi_j q_j.$$
(6.2)

The left hand side is interpreted as the flow into the state j, since q_{ij} is the instantaneous transition rate from i to j and this is weighted by π_i , which is the probability that the chain is in the state i. These are summed over all states $i \neq j$. In the same way the right hand side is flow out from the state j, since $q_j = \sum_{k\neq j} q_{jk}$ is the total instantaneous transition rate out from that state. A stationary state is reasonably described by inflow being equal to outflow. The system of equations $\pi \mathbf{Q} = \mathbf{0}$ is called the *global balance equations*. The global balance equations or (6.2) will be used in several evolutionary biological contexts in the next lecture.

6.2 Rate of Change

Let the rate of change, R, be defined as

$$R \stackrel{\text{def}}{=} \lim_{h \downarrow 0} \frac{P\left(X(t+h) \neq X(t)\right)}{h}.$$
(6.3)

We get

$$P(X(t+h) \neq X(t)) = \sum_{i \in \mathcal{X}} P(X(t+h) \neq i \mid X(t) = i) P(X(t) = i) =$$
$$= \sum_{i \in \mathcal{X}} \sum_{j \in \mathcal{X}_j \neq i} P(X(t+h) = j \mid X(t) = i) P(X(t) = i).$$

Then, assuming that the state space is finite,

$$R = \sum_{i \in \mathcal{X}} \sum_{j \in \mathcal{X} j \neq i} \lim_{h \downarrow 0} \frac{P\left(X(t+h) = j \mid X(t) = i\right)}{h} P\left(X(t) = i\right),$$

where from (3.8) we get

$$\lim_{h \downarrow 0} \frac{P(X(t+h) = j \mid X(t) = i)}{h} = q_{ij}.$$

Thus

$$R = \sum_{i \in \mathcal{X}} \sum_{j \in \mathcal{X} j \neq i} q_{ij} P(X(t) = i)$$
$$= -\sum_{i \in \mathcal{X}} q_{ii} P(X(t) = i),$$

where we have used (3.4). Assuming stationary state we get the final result.

$$R = -\sum_{i \in \mathcal{X}} q_{ii} \pi_i. \tag{6.4}$$

7 A special generator

We shall next compute the solution to $\pi \mathbf{Q} = \mathbf{0}$ and the rate of change R in (6.4) and $e^{\mathbf{Q}t}$, when the generator is of the form

$$\mathbf{Q} = \begin{pmatrix} -(u-u_1) & u_2 & u_3 & u_4 \\ u_1 & -(u-u_2) & u_3 & u_4 \\ u_1 & u_2 & -(u-u_3) & u_4 \\ u_1 & u_2 & u_3 & -(u-u_4) \end{pmatrix},$$
(7.1)

where

$$u = u_1 + u_2 + u_3 + u_4. (7.2)$$

7.1 Rate of change

Proposition 7.1 If X is a continuous time Markov chain with the generator \mathbf{Q} in (7.1), then

$$\pi \mathbf{Q} = \mathbf{0}$$

has the solution

$$\pi = \left(\frac{u_1}{u}, \frac{u_2}{u}, \frac{u_3}{u}, \frac{u_4}{u}\right) \tag{7.3}$$

The proof is left to the reader.

Proposition 7.2 If X is a continuous time Markov chain with the generator \mathbf{Q} in (7.1), then the rate of change is

$$R = \lim_{h \downarrow 0} \frac{P\left(X(t+h) \neq X(t)\right)}{h} = u\left(1 - \sum_{i \in \mathcal{X}} \pi_i^2\right).$$
(7.4)

where u is given in (7.2).

Proof: We have shown in (6.4) that

$$R = -\sum_{i \in \mathcal{X}} q_{ii} \pi_i.$$

If we insert from (7.1) and (7.3) we get

$$-\sum_{i\in\mathcal{X}}q_{ii}\pi_i = \sum_{i\in\mathcal{X}}(u-u_i)\frac{u_i}{u} = u\sum_{i\in\mathcal{X}}(1-\frac{u_i}{u})\frac{u_i}{u}$$
$$= u\sum_{i\in\mathcal{X}}(1-\pi_i)\pi_i = u\left(\sum_{i\in\mathcal{X}}\pi_i - \sum_{i\in\mathcal{X}}\pi_i^2\right) = u\left(1-\sum_{i\in\mathcal{X}}\pi_i^2\right).$$

7.2 The exponential of a generator

Now we find

$$\mathbf{P}(t) = e^{\mathbf{Q}t},$$

when the generator is given in (7.1). For this a couple of smart observations are needed. We introduce the matrix

$$\mathbf{A} = \begin{pmatrix} \pi_1 & \pi_2 & \pi_3 & \pi_4 \\ \pi_1 & \pi_2 & \pi_3 & \pi_4 \\ \pi_1 & \pi_2 & \pi_3 & \pi_4 \\ \pi_1 & \pi_2 & \pi_3 & \pi_4 \end{pmatrix}$$

One notes that

$$\mathbf{Q} = -u\left(\mathbf{I} - \mathbf{A}\right). \tag{7.5}$$

.

The interesting thing about A is, that it is idempotent, i.e.,

$$\mathbf{A}^n = \mathbf{A}, \quad \text{for } n \ge 1.$$

This is easily verified by a computation

$$\mathbf{A}^{2} = \begin{pmatrix} \pi_{1}(\pi_{1} + \pi_{2} + \pi_{3} + \pi_{4}) & \dots & \pi_{4}(\pi_{1} + \pi_{2} + \pi_{3} + \pi_{4}) \\ \pi_{1}(\pi_{1} + \pi_{2} + \pi_{3} + \pi_{4}) & \dots & \pi_{4}(\pi_{1} + \pi_{2} + \pi_{3} + \pi_{4}) \\ \pi_{1}(\pi_{1} + \pi_{2} + \pi_{3} + \pi_{4}) & \dots & \pi_{4}(\pi_{1} + \pi_{2} + \pi_{3} + \pi_{4}) \\ \pi_{1}(\pi_{1} + \pi_{2} + \pi_{3} + \pi_{4}) & \dots & \pi_{4}(\pi_{1} + \pi_{2} + \pi_{3} + \pi_{4}) \end{pmatrix}$$

$$= \mathbf{A}.$$

Thus $\mathbf{A}^n = \mathbf{A}$ for all $n \ge 1$.

Next we recall that

$$e^{-ut\mathbf{I}} = \sum_{l=0}^{\infty} \frac{(-ut)^l}{l!} \mathbf{I}^l = \mathbf{I} \sum_{l=0}^{\infty} \frac{(-ut)^l}{l!} = e^{-ut} \mathbf{I}.$$

Then we have

$$e^{\mathbf{Q}t} = e^{-ut(\mathbf{I}-\mathbf{A})} = e^{-ut}\mathbf{I}e^{ut\mathbf{A}}$$
$$= e^{-ut}\mathbf{I}\sum_{l=0}^{\infty} \frac{(ut)^l}{l!}\mathbf{A}^l = e^{-ut}\mathbf{I}\left[\mathbf{I} + \sum_{l=1}^{\infty} \frac{(ut)^l}{l!}\mathbf{A}^l\right]$$
$$= e^{-ut}\mathbf{I}\left[\mathbf{I} + \mathbf{A}\sum_{l=1}^{\infty} \frac{(ut)^l}{l!}\right] = e^{-ut}\mathbf{I}\left[\mathbf{I} + \mathbf{A}(e^{-ut} - 1)\right]$$
$$= e^{-ut}\mathbf{I} + \mathbf{A}\left(1 - e^{-ut}\right).$$

To summarize

$$\mathbf{P}(t) = e^{\mathbf{Q}t} = e^{-ut}\mathbf{I} + \mathbf{A}\left(1 - e^{-ut}\right), \quad \text{for } \mathbf{Q} \text{ in (7.1)}.$$
(7.6)

If we write this elementwise, we get

$$P_{ij}(t) = e^{-ut}\delta_{i,j} + \left(1 - e^{-ut}\right)\pi_j,$$
(7.7)

where $\delta_{i,j}$ is the Kronecker delta defined by

$$\delta_{i,j} = \begin{cases} 1 & i = j \\ 0 & i \neq j. \end{cases}$$
(7.8)

7.3 Separation of Species

We are still assuming \mathbf{Q} in (7.1), and make the additional assumption of *reversibility*. We assume namely first that

$$\pi_i P_{ij}(t) = \pi_j P_{ji}(t) \quad \text{for all } t, \, i, j \ \mathcal{X}.$$
(7.9)

This implies by (3.8) even that

$$\pi_i q_{ij} = \pi_j q_{ji}.$$

We see immediately that this is satisfied for \mathbf{Q} in (7.1).

Let us now suppose that we have two continuous-time Markov chains X and Y, with the same generator \mathbf{Q} in (7.1), assuming reversibility, and such that

$$X(0) = Y(0).$$

Then we have

Proposition 7.3 Assume two continuous-time Markov chains X and Y, with the same generator \mathbf{Q} in (7.1), assuming reversibility, and such that

$$X(0) = Y(0) \in \pi,$$

but evolving independently thereafter. Then

$$P(X(t) = i, Y(t) = j) = \pi_i P_{ij}(2t) =$$

$$= \begin{cases} \pi_i (1 - e^{-2ut}) \pi_j & i \neq j, \\ \pi_i e^{-2ut} + \pi_i (1 - e^{-2ut}) \pi_j & i = j. \end{cases}$$
(7.10)

Proof:

$$P(X(t) = i, Y(t) = j) = \sum_{k \in \mathcal{X}} P(X(t) = i, Y(t) = j \mid X(0) = Y(0) = k) P(X(0) = Y(0) = k)$$
$$= \sum_{k \in \mathcal{X}} P(X(t) = i, Y(t) = j \mid X(0) = Y(0) = k) \pi_k$$
$$= \sum_{k \in \mathcal{X}} P(X(t) = i \mid X(0) = k) P(Y(t) = j \mid Y(0) = k) \pi_k$$
$$= \sum_{k \in \mathcal{X}} P_{ki}(t) P_{kj}(t) \pi_k =$$

$$= \pi_i \sum_{k \in \mathcal{X}} P_{ik}(t) P_{kj}(t)$$

where we used reversibility (7.9), and the right hand side is

$$=\pi_i P_{ij}(2t),$$

where we invoked the Chapman-Kolmogorov equations (2.7). Then we insert from (7.7) to obtain the rightmost expression in (7.10).

7.4 Fraction of divergence

Next we compute

$$P\left(X(t) \neq Y(t)\right).$$

From the preceding proposition we get

$$P(X(t) \neq Y(t)) = \sum_{i \neq j} P(X(t) = i, Y(t) = j)$$
$$= \sum_{i \neq j} \pi_i P_{ij}(2t) = \sum_{i \neq j} \pi_i \left(1 - e^{-2ut}\right) \pi_j,$$

in view of (7.10). The right hand side equals

$$= \left(1 - e^{-2ut}\right) \sum_{i \neq j} \pi_i \pi_j.$$

Here the sum $\sum_{i\neq j} \pi_i \pi_j$ is actually a double sum

$$\sum_{i \neq j} \pi_i \pi_j = \sum_{i \in \mathcal{X}} \pi_i \sum_{j \in \mathcal{X}, j \neq i} \pi_j =$$
$$= \sum_{i \in \mathcal{X}} \pi_i (\pi_1 + \pi_2 + \dots + \pi_{i-1} + \pi_{i+1} + \dots) =$$
$$= \sum_{i \in \mathcal{X}} \pi_i (1 - \pi_i) = \sum_{i \in \mathcal{X}} \pi_i - \sum_{i \in \mathcal{X}} \pi_i^2 = 1 - \sum_{i \in \mathcal{X}} \pi_i^2.$$

Now we recall the rate of change from (7.4), and get

$$P\left(X(t) \neq Y(t)\right) = \frac{R}{u} \left(1 - e^{-2ut}\right).$$

This will lead to a famous formula of evolutionary biology, *Jukes-Cantor* formula, later on.

8 Exponential holding times

Assume that X(t) = i. Let

$$T = \inf\{s \ge 0 | X(t+s) \neq i\}.$$

Then T is the further time the continuous time chain remains in the state i. The time T is called the *holding time*.

Proposition 8.1 $T|X(t) = i \in \text{Exp}(q_j).$

Proof: We start by

$$P(T \ge t + h) = P(T \ge t) P(T \ge t + h | T \ge t)$$

The continuous-time Markov chain lacks memory and is time-homogeneous. Hence we get that

$$P(T \ge t + h) = P(T \ge t) P(T \ge h).$$

But the probability $P(T \ge h)$ is the probability that the continuous-time Markov chain has not moved from *i* before the time *h*. From the assumption (3.2) we obtain

$$P(T \ge h) = P_{ii}(h) = 1 + q_{ii}h + o(h) = 1 - q_ih + o(h).$$

Hence

$$P(T \ge t + h) = P(T \ge t)(1 - q_i h) + o(h).$$

This is rearranged as

$$\frac{P\left(T \ge t + h\right) - P\left(T \ge t\right)}{h} = -q_i P\left(T \ge t\right) + \frac{o(h)}{h}.$$

Letting $h \to 0$ this yields

$$\frac{d}{dt}P\left(T\geq t\right) = -q_iP\left(T\geq t\right).$$

This differential equation has the general solution

$$P\left(T \ge t\right) = Ce^{-q_i t},$$

for some constant C. For t = 0 we get C = 1. Thus

$$P\left(T \ge t\right) = e^{-q_i t},$$

or

$$P\left(T \le t\right) = 1 - e^{-q_i t},$$

which 'verifies' the claim as asserted.

The mean time spent at i is thus $\frac{1}{q_j}$. Assume that X(0) = i. Let

$$T_1 = \inf\{s \ge 0 | X(s) \ne i\}.$$

Proposition 8.2

$$P(X(T_1) = j | X(0) = i) = \frac{q_{ij}}{q_i}, \quad j \neq i.$$

Sketch of Proof: Let us define for $i \neq j$,

$$r_{ij}(h) = P(X(h) = j | X(0) = i, X(h) \neq i),$$

Next, if $0 \leq T_1 \leq h$,

 $P\left(X(T_1)=j|X(0)=i\right)=P\left(\ X \text{ jumps to } j \ | \ X \text{ jumps only once in } [0,h] \ \right)$

 $\approx r_{ij}(h)$

for small h. But

$$r_{ij}(h) = P(X(h) = j | X(0) = i, X(h) \neq i) = \frac{P(X(h) = j, X(0) = i, X(h) \neq i)}{P(X(0) = i, X(h) \neq i)}$$
$$= \frac{P(X(h) = j, X(0) = i)}{P(X(0) = i, X(h) \neq i)}$$
$$= \frac{P(X(h) = j | X(0) = i)}{P(X(h) \neq i | X(0) = i)}$$
$$= \frac{P_{ij}(h)}{1 - P_{ii}(h)} = \frac{P_{ij}(h)/h}{(1 - P_{ii}(h))/h}.$$

For small h

$$\frac{P_{ij}(h)/h}{(1 - P_{ii}(h))/h} \approx \frac{q_{ij}}{-q_{ii}} = \frac{q_{ij}}{q_i},$$

as was claimed.

9 The imbedded Markov chain

From the preceding, if X(t) = i, it remains there for an exponentially distributed time T and jumps then to another state with the probability $\frac{q_{ij}}{q_i}$. Let us set

$$X_0 = X(0), T_0 = 0.$$

Take $n \geq 1$. Suppose that \tilde{X}_{n-1} has been defined. Let $U_n \in \text{Exp}(q_i)$. Let

$$T_n = T_{n-1} + U_n$$

and

$$X_n = X\left(T_n\right).$$

By lack of memory and time homogeneity $\{\tilde{X}_n\}_{n=0}^{\infty}$ is a Markov chain that jumps from *i* to *j* with probability $\frac{q_{ij}}{q_i}$, if $i \neq j$ and jumps from *i* to *i* with probability 0. This is called the *imbedded Markov chain*.

10 References

G.R. Grimmett and D.R. Stirzaker (1994): Probability and Random Processes 2nd Ed.. Oxford Science Publications. Clarendon Press, Oxford.
C.B. Moler and C.F. Van Loan (1978): Nineteen Dubious Ways to Compute the Exponential of a Matrix. SIAM Review, 20, pp. 801-836.
J.R. Norris (1998): Markov Chains. Cambridge University Press.
M. Waterman (1995): Introduction to Computational Biology. Maps, Sequences and Genomes. Chapman and Hall, London, et.al.,