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1 Introduction

This lecture deals with stochastic processes known as Markov chains in con-
tinuous time. These processes will in the next lecture describe the substitu-
tion process on a sequence position. The lecture corresponds to sections 4.1,
10.7, and 13.3.1 in Ewens and Grant.

2 Definition and some first properties

Let X = {X(t) | t ≥ 0} be a family of random variables taking values in a
discrete, countable, alphabet or state space X . The variable t is called time.
We denote the generic elements of X by j, i, . . . ,. The special case we have
in mind is the finite state space X = {A, T, C,G}.

2.1 The Markov property

The process X = {X(t) | t ≥ 0} is called a continuous-time Markov chain if
it satisfies the following definition.

Definition 2.1 X = {X(t) | t ≥ 0} satisfies the Markov property, if

P (X(tn) = j|X(t1), X(t2), . . . , X(tn−1)) = P (X(tn) = j|X(tn−1)) (2.1)

for j ∈ X , i ∈ X , and any sequence t1 < t2 < . . . < tn−1 < tn of times.

The evolution of continuous-time Markov chains can be described in very
much the same terms as those used for Markov Chains.

The general situation is as follows. For Markov Chains we wrote the n-
step transition probabilities in matrix form and expressed them in terms of
the one-step matrix P. In continuous time there is no analogue for P, since
there is no implicit unit length of time. Some differential calculus enables us
to see that there is a matrix Q, called the generator of the continuous-time
chain, which takes over the role of P.
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2.2 The transition probability

Definition 2.2 The time-homogeneous transition probability is de-
noted by Pij(t) and is defined as

Pij(t) = P (X(t) = j|X(0) = i) (2.2)

or
Pij(t− s) = P (X(t) = j|X(s) = i) (2.3)

for j ∈ X .

This is most readily presented in a matrix form.

P(t) = {Pij(t)}i∈X ,j∈X .

2.3 Chapman - Kolmogorov equations

Proposition 2.1 The family {P(t)|t ≥ 0} satisfies

(a) P(0) = I (= the identity matrix).

(b) P(t) is a stochastic matrix.

(c) the Chapman - Kolmogorov equations

P(t+ s) = P(t)P(s). (2.4)

Proof:

(a) This is obvious by the definitions.

(b) Clearly
Pij(t) ≥ 0. (2.5)

Also, since the events {X(t) = j} are disjoint,∑
j∈X

Pij(t) = P (∪j∈X{X(t) = j}|X(0) = i) = 1 (2.6)

Hence P(t) is a stochastic matrix.
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(c)
Pik(t+ s) = P (X(t+ s) = j|X(0) = i) =

=
∑
k∈X

P (X(t+ s) = j|X(s) = k)P (X(s) = k|X(0) = i)

=
∑
k∈X

Pik(t)Pkj(s), (2.7)

where we used the Markov property (2.1). The equality is in matrix
form written as

P(t+ s) = P(t)P(s). (2.8)

By this the proof is completed.
Most questions about X = {X(t) | t ≥ 0} can be answered in terms of the
matrices P(t).

Assumption 2.1 We shall now assume that the transition probabilities Pij(t)
are continuous functions of t. We shall also assume that

P(t)→ I, as t ↓ 0. (2.9)

This is to say that

Pij(t)→ 0, i 6= j, Pii(t)→ 1, i = j, as t ↓ 0.

3 The generator

We make another assumption.

Assumption 3.1 We assume that

Pij(h) = qijh+ o(h), i 6= j, (3.1)

and
Pii(h) = 1 + qiih+ o(h), (3.2)

where o(h) (‘small ordo’) is a function such that o(h)/h→ 0,as h→ 0.
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The numbers qij are known as the instantaneous transition rates or inten-
sities of the continuous-time Markov chain. We are here assuming that the
probability of two or more transitions in an interval t, t + h is small. This
can in fact be proved in a more rigorous treatment. Note that we are also
implicitly thinking that the transition rates are not infinite.

From (3.1) and (3.2) we get

1 =
∑
j∈X

Pij(h) = h
∑

j∈X ,j 6=i
qij + 1 + qiih+ o(h), (3.3)

and this implies
h

∑
j∈X ,j 6=i

qij = −qiih+ o(h)

or, by dividing by h and letting h go to zero,∑
j∈X ,j 6=i

qij = −qii (3.4)

or ∑
j∈X

qij = 0 (3.5)

We introduce the symbol qi by

qi
def
=

∑
j∈X ,j 6=i

qij. (3.6)

The assumption (3.2) gives thus

lim
h↓0

Pii(h)− 1

h
= qii = −qi, (3.7)

and the assumption (3.2)

lim
h↓0

Pij(h)

h
= qij, i 6= j. (3.8)

We introduce the square matrix

Q = (qij)i,j∈X . (3.9)
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In matrix form (3.7) and (3.8) are

lim
h↓0

P(h)− I

h
= Q. (3.10)

The matrix Q is called the generator.
The generator for a Markov chain on a state space with four elements is

in general

Q =


−q1 q12 q13 q14
q21 −q2 q23 q24
q31 q32 −q3 q34
q41 q42 q43 −q4

 .

3.1 An Example: the Poisson process

Let X = {X(t) | t ≥ 0} be a process that has the set of non-negative integers
as the state space. One way of defining X as a Poisson process is to assume
the following ((1)−(3)).

(1) The increments of the process are independent or

P (X(t)−X(s), X(u)−X(v)) = P (X(t)−X(s)) · P (X(u)−X(v))

for v < u ≤ s < t.

(2) X(0) = 0.

(3) X(t)−X(s) ∈ Po(λ(t− s)).

By these assumptions X is a continuous-time Markov chain. This is found
by

P (X(tn) = jn|X(t1) = j1, X(t2) = j2, . . . , X(tn−1) = jn−1) =

= P (X(tn)−X(tn−1) = jn − jn−1|X(t1) = j1, X(t2) = j2, . . . , X(tn−1) = jn−1)

= P (X(tn)−X(tn−1) = jn − jn−1)

by assumptions (1) and (2), and this equals

= P (X(tn)−X(tn−1) = jn − jn−1|X(tn−1)−X(0) = jn−1)

= P (X(tn) = jn|X(tn−1) = jn−1) ,
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again by assumption (1). By assumption (3)

Pij(t) = P (X(t+ s) = j|X(s) = i) = P (X(t+ s)−X(s) = j − i)

= e−λt
(λt)j−i

(j − i)!
.

Then from (3.7) we get

lim
h↓0

Pii(h)− 1

h
= lim

h↓0

e−λh − 1

h
= −λ,

and from (3.8)

lim
h↓0

Pij(h)

h
= lim

h↓0

e−λh (λh)j−i

(j−i)!

h

=

{
λ, j = i+ 1
0 otherwise.

We have the generator

Q =


−λ λ 0 0 . . .
0 −λ λ 0 . . .

0 0 −λ λ
. . .

...
...

...
. . . . . .

 .

A Poisson proces is thus a continuous time Markov chain with qi = λ, so
that from (3.6) and (3.4) we have

Pii(h) = 1− λh+ o(h),

or
1− Pii(h) = λh+ o(h),

so that the total intensity of leaving i is λ. But, by (3), λ is the intensity of
one jump upwards for the proces X.
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3.2 An Example: The random telegraph

Let Y ∈ Be(1/2) and N = {N(t)|t ≥ 0} be a Poisson process like in the
previous example, and let Y be independent of N . Set

X(t) = (−1)Y+N(t) .

Then X = {X(t) | t ≥ 0} is a continuous-time Markov chain, as esentially
follows by the same argument as used in the preceding example. The tran-
sition matrix is

P(t) =

 1
2

(
1 + e−2λt

)
1
2

(
1− e−2λt

)
1
2

(
1− e−2λt

)
1
2

(
1 + e−2λt

)  .
The sample paths of X, the random telegraph, are sequences of −1 and 1,
each digit prevailing a random (exponentially distributed time).

4 Forward and backward equations

The meaning of the notion of a generator can be explained as follows. Sup-
pose that X(0) = i, and by conditioning X(t + h) on X(t) we get by the
Chapman-Kolmogorov equations

Pij(t+ h) = P (X(t+ h) = j|X(0) = i) =

=
∑
k∈X

Pik(t)Pkj(h)

= Pij(t) (1 + qjjh+ o(h)) +
∑

k∈X ,k 6=j
Pik(t) (qkjh+ o(h))

from (3.1) and (3.2). Then we get

= Pij(t) + h
∑
k∈X

Pik(t)qkj + o(h).

Thus we get that

Pij(t+ h)− Pij(t)
h

=
∑
k∈X

Pik(t)qkj + o(h)/h.
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Hence we have, letting h → 0, and letting P
′
ij(t) denote the first derivative

with respect to t,

P
′

ij(t) =
∑
k∈X

Pik(t)qkj = (P(t)Q)ij.

Thus we have derived the following proposition.

Proposition 4.1
P
′

ij(t) =
∑
k∈X

Pik(t)qkj, (4.1)

or the matrix forward equation

P
′
(t) = P(t)Q. (4.2)

By a similar way, we can prove

Proposition 4.2
P
′

ij(t) =
∑
k∈X

qikPkj(t), (4.3)

or the matrix backward equation

P
′
(t) = QP(t). (4.4)

Thus we have the system of differential equations

P
′
(t) = P(t)Q

with the initial conditions
P (0) = I.

In courses on differential equations the solution is often written using the
exponential of a matrix

P(t) = eQt =
∞∑
l=0

tl

l!
Ql. (4.5)

Hence we see that we can generate P(t) from knowledge of Q. The represen-
tation (4.5) is the unique solution to the forward and backward equations, if
the state space is finite.
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In many cases the series expansion eQt =
∑∞
l=0

tl

l!
Ql is useless for practical

computations, since arbitrary high powers of Q are needed, see also (Moler
and Van Loan 1978). There is, however, a special case of interest in com-
putational evolutionary biology, where the sum can be explicitly evaluated,
a fact that leads to important results. We shall develope this in section 7
below.

5 Absolute probabilities

Definition 5.1 Let X = {X(t) | t ≥ 0} be continuous-time Markov chain.
The probability

pi(t) = P (X(t) = i)

is called the absolute probability for the chain to be in state i ∈ X at time
t. The vector p(t) is a row vector whose components are pi(t). In particular
p(0) is called the initial vector or the initial distribution.

The law of total probability gives

pi(t) = P (X(t) = i) =
∑
k∈X

P (X(t) = i|X(0) = k)P (X(0) = k) =

=
∑
k∈X

Pki(t)pk(0),

which we write in matrix form as

p(t) = p(0)P(t). (5.1)

This gives p
′
(t) = p(0)P

′
(t). If we multiply the forward equation (4.2) by

p(0) from the left, we get

p
′
(t) = p(0)P

′
(t) = p(0)P(t)Q = p(t)Q. (5.2)

If the state space is finite, this is a correct computation, in the case of count-
able state spaces there are things to be checked. When the equation (5.2) is
expressed elementwise, we get

p
′

j(t) =
∑
i∈X

pi(t)qij = pj(t)qjj +
∑

i∈X ,i 6=j
pi(t)qij
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= −qjpj(t) +
∑

i∈X ,i 6=j
pi(t)qij.

This can be seen as a flow of probabilities. The probability pj(t) gets an
increment that corresponds to the probability that the process is in state
i at time t, which is pi(t) multiplied by the instantaneous transition rate
from i to j, qij. This is summed over all states i 6= j. On the other hand
pj(t) is depleted with the probability that the chain is already in the state
j multiplied by the instantaneous transition rate to leave the state, i.e., qj.
Inflow minus outfow equals the rate of change p

′
j(t).

6 Stationary distribution

6.1 Definition & the global balance equations

Definition 6.1 The vector π = (πi)i∈X is a stationary distribution of the
chain if

π = πP(t) for all t ≥ 0

and
∑
i∈X πi = 1 and πi ≥ 0.

Thus, (5.1) yields that if p(0) = π, then the absolute probabilities are

p(t) = π

for all t ≥ 0.

Proposition 6.1
π = πP(t)⇔ πQ = 0. (6.1)

Here 0 is matrix of zeros.

Proof:
πQ = 0

⇔
πQn = 0 for all n ≥ 1

⇔
∞∑
n=1

tn

n!
πQn = 0 for all t ≥ 0
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⇔

π
∞∑
n=0

tn

n!
Qn = π for all t ≥ 0

⇔

πP(t) = π for all t ≥ 0 ,

as was claimed.
If we write πQ = 0 elementwise we get∑

i∈X
πiqij = 0, for every j,

and this we write as ∑
i∈X ,i 6=j

πiqij = −πjqjj = πjqj. (6.2)

The left hand side is interpreted as the flow into the state j, since qij is the
instantaneous transition rate from i to j and this is weighted by πi, which
is the probability that the chain is in the state i. These are summed over
all states i 6= j. In the same way the right hand side is flow out from the
state j, since qj =

∑
k 6=j qjk is the total instantaneous transition rate out from

that state. A stationary state is reasonably described by inflow being equal
to outflow. The system of equations πQ = 0 is called the global balance
equations. The global balance equations or (6.2) will be used in several
evolutionary biological contexts in the next lecture.

6.2 Rate of Change

Let the rate of change, R, be defined as

R
def
= lim

h↓0

P (X(t+ h) 6= X(t))

h
. (6.3)

We get

P (X(t+ h) 6= X(t)) =
∑
i∈X

P (X(t+ h) 6= i | X(t) = i)P (X(t) = i) =

=
∑
i∈X

∑
j∈X j 6=i

P (X(t+ h) = j | X(t) = i)P (X(t) = i) .
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Then, assuming that the state space is finite,

R =
∑
i∈X

∑
j∈X j 6=i

lim
h↓0

P (X(t+ h) = j | X(t) = i)

h
P (X(t) = i) ,

where from (3.8) we get

lim
h↓0

P (X(t+ h) = j | X(t) = i)

h
= qij.

Thus
R =

∑
i∈X

∑
j∈X j 6=i

qij P (X(t) = i)

= −
∑
i∈X

qiiP (X(t) = i) ,

where we have used (3.4). Assuming stationary state we get the final result.

R = −
∑
i∈X

qiiπi. (6.4)

7 A special generator

We shall next compute the solution to πQ = 0 and the rate of change R in
(6.4) and eQt, when the generator is of the form

Q =


−(u− u1) u2 u3 u4

u1 −(u− u2) u3 u4
u1 u2 −(u− u3) u4
u1 u2 u3 −(u− u4)

 , (7.1)

where
u = u1 + u2 + u3 + u4. (7.2)

7.1 Rate of change

Proposition 7.1 If X is a continuous time Markov chain with the generator
Q in (7.1), then

πQ = 0

has the solution

π =
(
u1
u
,
u2
u
,
u3
u
,
u4
u

)
(7.3)
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The proof is left to the reader.

Proposition 7.2 If X is a continuous time Markov chain with the generator
Q in (7.1), then the rate of change is

R = lim
h↓0

P (X(t+ h) 6= X(t))

h
= u

(
1−

∑
i∈X

π2
i

)
. (7.4)

where u is given in (7.2).

Proof: We have shown in (6.4) that

R = −
∑
i∈X

qiiπi.

If we insert from (7.1) and (7.3) we get

−
∑
i∈X

qiiπi =
∑
i∈X

(u− ui)
ui
u

= u
∑
i∈X

(1− ui
u

)
ui
u

= u
∑
i∈X

(1− πi)πi = u

(∑
i∈X

πi −
∑
i∈X

π2
i

)
= u

(
1−

∑
i∈X

π2
i

)
.

7.2 The exponential of a generator

Now we find
P(t) = eQt,

when the generator is given in (7.1). For this a couple of smart observations
are needed. We introduce the matrix

A =


π1 π2 π3 π4
π1 π2 π3 π4
π1 π2 π3 π4
π1 π2 π3 π4

 .

One notes that
Q = −u (I−A) . (7.5)
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The interesting thing about A is, that it is idempotent, i.e.,

An = A, for n ≥ 1.

This is easily verified by a computation

A2 =


π1(π1 + π2 + π3 + π4) . . . . . . π4(π1 + π2 + π3 + π4)
π1(π1 + π2 + π3 + π4) . . . . . . π4(π1 + π2 + π3 + π4)
π1(π1 + π2 + π3 + π4) . . . . . . π4(π1 + π2 + π3 + π4)
π1(π1 + π2 + π3 + π4) . . . . . . π4(π1 + π2 + π3 + π4)


= A.

Thus An = A for all n ≥ 1.
Next we recall that

e−utI =
∞∑
l=0

(−ut)l

l!
Il = I

∞∑
l=0

(−ut)l

l!
= e−utI.

Then we have
eQt = e−ut(I−A) = e−utIeutA

= e−utI
∞∑
l=0

(ut)l

l!
Al = e−utI

[
I +

∞∑
l=1

(ut)l

l!
Al

]

= e−utI

[
I + A

∞∑
l=1

(ut)l

l!

]
= e−utI

[
I + A(e−ut − 1)

]
= e−utI + A

(
1− e−ut

)
.

To summarize

P(t) = eQt = e−utI + A
(
1− e−ut

)
, for Q in (7.1). (7.6)

If we write this elementwise, we get

Pij(t) = e−utδi,j +
(
1− e−ut

)
πj, (7.7)

where δi,j is the Kronecker delta defined by

δi,j =

{
1 i = j
0 i 6= j.

(7.8)
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7.3 Separation of Species

We are still assuming Q in (7.1), and make the additional assumption of
reversibility. We assume namely first that

πiPij(t) = πjPji(t) for all t, i, j X . (7.9)

This implies by (3.8) even that

πiqij = πjqji.

We see immediately that this is satisfied for Q in (7.1).
Let us now suppose that we have two continuous-time Markov chains X

and Y , with the same generator Q in (7.1), assuming reversibility, and such
that

X(0) = Y (0).

Then we have

Proposition 7.3 Assume two continuous-time Markov chains X and Y ,
with the same generator Q in (7.1), assuming reversibility, and such that

X(0) = Y (0) ∈ π,

but evolving independently thereafter. Then

P (X(t) = i, Y (t) = j) = πiPij(2t) =

=

{
πi (1− e−2ut) πj i 6= j,
πie
−2ut + πi (1− e−2ut) πj i = j.

(7.10)

Proof:

P (X(t) = i, Y (t) = j) =
∑
k∈X

P (X(t) = i, Y (t) = j | X(0) = Y (0) = k)P (X(0) = Y (0) = k)

=
∑
k∈X

P (X(t) = i, Y (t) = j | X(0) = Y (0) = k)πk

=
∑
k∈X

P (X(t) = i | X(0) = k)P (Y (t) = j | Y (0) = k) πk

=
∑
k∈X

Pki(t)Pkj(t)πk =
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= πi
∑
k∈X

Pik(t)Pkj(t)

where we used reversibility (7.9), and the right hand side is

= πiPij(2t),

where we invoked the Chapman-Kolmogorov equations (2.7). Then we insert
from (7.7) to obtain the rightmost expression in (7.10).

7.4 Fraction of divergence

Next we compute
P (X(t) 6= Y (t)) .

From the preceding proposition we get

P (X(t) 6= Y (t)) =
∑
i 6=j

P (X(t) = i, Y (t) = j)

=
∑
i 6=j

πiPij(2t) =
∑
i 6=j

πi
(
1− e−2ut

)
πj,

in view of (7.10). The right hand side equals

=
(
1− e−2ut

)∑
i 6=j

πiπj.

Here the sum
∑
i 6=j πiπj is actually a double sum∑

i 6=j
πiπj =

∑
i∈X

πi
∑

j∈X ,j 6=i
πj =

=
∑
i∈X

πi(π1 + π2 + . . . πi−1 + πi+1 + . . .) =

=
∑
i∈X

πi(1− πi) =
∑
i∈X

πi −
∑
i∈X

π2
i = 1−

∑
i∈X

π2
i .

Now we recall the rate of change from (7.4), and get

P (X(t) 6= Y (t)) =
R

u

(
1− e−2ut

)
.

This will lead to a famous formula of evolutionary biology, Jukes-Cantor
formula, later on.
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8 Exponential holding times

Assume that X(t) = i. Let

T = inf{s ≥ 0|X(t+ s) 6= i}.

Then T is the further time the continuous time chain remains in the state i.
The time T is called the holding time.

Proposition 8.1 T |X(t) = i ∈ Exp (qj).

Proof: We start by

P (T ≥ t+ h) = P (T ≥ t)P (T ≥ t+ h|T ≥ t) .

The continuous-time Markov chain lacks memory and is time-homogeneous.
Hence we get that

P (T ≥ t+ h) = P (T ≥ t)P (T ≥ h) .

But the probability P (T ≥ h) is the probability that the continuous-time
Markov chain has not moved from i before the time h. From the assumption
(3.2) we obtain

P (T ≥ h) = Pii(h) = 1 + qiih+ o(h) = 1− qih+ o(h).

Hence
P (T ≥ t+ h) = P (T ≥ t) (1− qih) + o(h).

This is rearranged as

P (T ≥ t+ h)− P (T ≥ t)

h
= −qiP (T ≥ t) +

o(h)

h
.

Letting h→ 0 this yields

d

dt
P (T ≥ t) = −qiP (T ≥ t) .

This differential equation has the general solution

P (T ≥ t) = Ce−qit,
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for some constant C. For t = 0 we get C = 1. Thus

P (T ≥ t) = e−qit,

or
P (T ≤ t) = 1− e−qit,

which ‘verifies’ the claim as asserted.
The mean time spent at i is thus 1

qj
. Assume that X(0) = i. Let

T1 = inf{s ≥ 0|X(s) 6= i}.

Proposition 8.2

P (X(T1) = j|X(0) = i) =
qij
qi
, j 6= i.

Sketch of Proof: Let us define for i 6= j,

rij(h) = P (X(h) = j|X(0) = i,X(h) 6= i) ,

Next, if 0 ≤ T1 ≤ h,

P (X(T1) = j|X(0) = i) = P ( X jumps to j | X jumps only once in [0, h] )

≈ rij(h)

for small h. But

rij(h) = P (X(h) = j|X(0) = i,X(h) 6= i) =
P (X(h) = j,X(0) = i,X(h) 6= i)

P (X(0) = i,X(h) 6= i)

=
P (X(h) = j,X(0) = i)

P (X(0) = i,X(h) 6= i)

=
P (X(h) = j|X(0) = i)

P (X(h) 6= i|X(0) = i)

=
Pij(h)

1− Pii(h)
=

Pij(h)/h

(1− Pii(h))/h
.

For small h
Pij(h)/h

(1− Pii(h))/h
≈ qij
−qii

=
qij
qi
,

as was claimed.
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9 The imbedded Markov chain

From the preceding, if X(t) = i, it remains there for an exponentially dis-
tributed time T and jumps then to another state with the probability qij

qi
.

Let us set
X̃0 = X(0), T0 = 0.

Take n ≥ 1. Suppose that X̃n−1 has been defined. Let Un ∈ Exp(qi). Let

Tn = Tn−1 + Un

and
X̃n = X (Tn) .

By lack of memory and time homogeneity {X̃n}∞n=0 is a Markov chain that
jumps from i to j with probability qij

qi
, if i 6= j and jumps from i to i with

probability 0. This is called the imbedded Markov chain.
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