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Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) is an important computational tool in
Bayesian statistics, since it allows inferences to be drawn from complex
posterior distributions, where analytical or numerical integration
techniques cannot be applied.
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Markov Chain Monte Carlo

The idea is is to generate a Markov chain via iterative Monte Carlo
simulation that has, at least in the asymptotic sense, the desired posterior
distribution as its invariant or stationary distribution.
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Markov Chain Monte Carlo

Since direct sampling from a posterior distribution may not be possible,
the Metropolis-Hastings algorithm starts by generating candidate draws
from a so-called proposal distribution. These draws are the corrected so
that they behave asymptotically as random observations from the desired
invariant or target distribution.
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Markov Chain Monte Carlo

The MC constructed by the algorithm at each stage is thus built in two
steps: a proposal step and an acceptance step. These two steps are
associated with the proposal and acceptance distributions, respectively.
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Time Reversible Markov Chains

{Xn}n≥0 ∼ Markov (P, φ(0)) with the state space S . A probability
distribution a on S is said to be reversible for the chain (or for the matrix
P), if for all i , j ∈ S × S we have

aipi |j = ajpj |i

The MC is said to be reversible, if there exists a reversible distribution for
it.
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Time Reversible Markov Chains

{Xn}n≥0 ∼ Markov (P, φ(0)) with the state space S . Assume that a on S
is reversible for the chain. Then a is an invariant distribution for the chain.
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Time Reversible Markov Chains

Proof:
ai = ai ∑

j∈S
pi |j = ∑

j∈S
aipi |j ,

and by above
= ∑

j∈S
ajpj |i ,

⇔

a = aP.

Here we regard a as a 1× J row vector.
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Metropolis-Hastings Problem

Let f = {fj}j∈S be an arbitrary probability mass function, target
distribution, on a discrete subset S of R, i.e.,

fj ≥ 0.

∑J
j=0 fj = 1.

The Metropolis problem is to give a Markov chain such that f is its invariant distribution. We shall next show that it is always

possible to solve the stated problem by constructing an appropriate transition probability matrix. In fact there are infinitely many

solutions to the stated problem.
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Metropolis-Hastings Solution

Q =
(
qi |j
)J,J

i=0,j=0
is a transition probability matrix. Given that Xn = i

1 Generate Yn+1 ∼ {qi |j }Jj=0.

2 Take

Xn+1 =

{
Yn+1 with probability αHi ,Yn+1
i with probability 1− αHi ,Yn+1

,

where

αHi ,j = min

{
1,

fjqj |i
fi qi |j

}
.
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Metropolis-Hastings Solution

This gives a reversible Markov chain with f as stationary distribution.
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Gibbs sampler

Gibbs sampling from lecture I is a special case of the Metopolis-Hastings
algorithm.
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Gibbs sampler

Gibbs sampling is an MCMC scheme for generating samples from a
distribution of interest when the full distribution is not available but when
generating a sample from a full conditional distribution

P (Xi | X1, . . . ,Xi−1,Xi+1, . . . ,Xd )

is possible.
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Gibbs sampler

Sample X
(j)
1 , . . . ,X

(j)
d at iteration j is given, then

X
(j+1)
1 ∼ P

(
X1 | X

(j)
2 , . . . ,X

(j)
d

)
...

X
(j+1)
i ∼ P

(
Xi | X

(j)
1 , . . . ,X

(j)
i−1,X

(j)
i+1, . . . ,X

(j)
d

)
...

X
(j+1)
d ∼ P

(
Xd | X

(j)
1 , . . . ,X

(j)
d−1

)
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Simulated Annealing

Simulated annealing is a term derived from the physical process of heating
and then slowly cooling a crystalline substance and the observation that, if
the structure is cooled sufficiently slowly, the molecules will line up in a
rigid pattern corresponding to a state of minimum energy.
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Simulated Annealing

A simulated annealing algorithm (SA) imitates this process by producing a
sequence of samples from a series of probability distributions that move
towards the point mass at the minimum of a chosen objective function as
’temperature’ is lowered.
The aforementioned indicates a deep connection between statistical
physics and optimization of functions of many variables.
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Simulated Annealing

Consider h(x) a real-valued continuous function defined on a closed and
bounded set X ⊂ Rn. If there exists a unique x∗ satisfying

x∗ = argmaxx∈X h(x),

then

lim
λ→∞

∫
X xeλh(x)dx∫
X eλh(x)dx

= x∗.
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Simulated Annealing

The preceding says in fact that for large λ the major contribution to the
integral above comes from a small neighbourhood of x∗. Hence a Monte
Carlo method that generates samples that spend, in the long run, most of
the time visiting states near the maximizing point could find x∗.
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Simulated Annealing

Let us think of generating samples with the (target) density

fλ(x) =

{
1∫

X eλh(x)dx
eλh(x) x ∈ X ,

0 elsewhere

for the purpose of calculating the expectation

Iλ =
∫
X
xfλ(x)dx

by a Monte Carlo method.
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Simulated Annealing

We make a digitalized variant of this. We us partition the region X into a finite number of N mutually disjoint subsets Xj . We

fix points y j ∈ Xj . Then we construct an irreducible, aperiodic finite Markov chain {Xn}n≥0 with state space

S = {y1, y2, . . . , yN },

with target distribution (invariant distribution)

fj (λ) =
e

λh
(
yj
)

∑N
j=1 e

λh
(
yj
) ,

where the subsets Xj have been assumed to have equal volumes.
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Simulated Annealing

Then, the strong law of large numbers for the Markov chain {Xn}n≥0 gives

lim
n→∞

1

n

n

∑
i=1

Xi = Iλ

and for large values of λ we have that

Iλ ≈ x∗.
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Simulated Annealing

The question is, how to choose λ in the implementation. There are a couple of
opportunities:

1) Run the Metropolis MC for several values of λ and choose the best value of
optimizer found.

2) Develop a schedule for changing λ as a function of n.

3) Hybridize the two preceding by running with a fixed λ for a time and then
change. This is the strategy most commonly used in practice, but is difficult
to couch in other than pragmatic terms.
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Simulated Annealing

Statistical mechanics studies physical systems consisting of a large number of identical components, such as molecules in a gas.
This can be justified in two ways. Either chance plays a fundamental part in laws of physics, or the laws are deterministic, but it
is impossible to collect enough data to be able to apply them deterministically, whereby probability covers up ignorance.
If a classical system is in thermal equilibrium with its surroundings, and is in state x with energy h(x), then the probability
density in the phase space of th point representing x is proportional to

e
− 1

kT h(x)

where T is the absolute temperature, and k is Boltzmann’s constant. According to ergodic theory the proportion of time that

the system spends in state x is also proportional to e
− 1

kT h(x)
.
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Simulated Annealing

Then the probability of acceptance becomes

ρ(x , y) = min
{

1, e
h(y )−h(x)

T

}
.

If h(y) > h(x), then y is accepted with probability one. However, even if

h(y) < h(x), y may be accepted with probability e
h(y )−h(x)

T . The
acceptance probabilities depend on the scale T .
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Simulated Annealing

Let us assume that we want to optimize a function h(i) on a finite set of
states, now also called ’configurations’, i ∈ S . The word configuration is
an idiosyncratic phrase from statistical physics. We assume that we have a
symmetric transition probability matrix, the proposal matrix,

Q = {q (i |j)}i ,j∈S×S .
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Simulated Annealing

Given that Xn = xn

1. Generate Yn+1 ∼ q (j |xn).
2. Take

Xn+1 =

{
Yn+1 with probability ρn (xn ,Yn+1)
i with probability 1− ρn (xn ,Yn+1),

where

ρn(i , j) = min

{
1, e

h(i)−h(j)
Tn

}
.

3. Update Tn to Tn+1.

4. Xn+1 7→ xn and return to 1.
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Simulated Annealing

The proposals Yn+1 = j with h(j) < h(i), can be accepted with

probability e
h(i)−h(j)

Tn , and therefore the algorithm is allowed to escape local
maxima. The probability of this escape depends on the scaling Tn. If Tn

decreases to zero with increasing n, the values simulated become more and
more concentrated around the maxima of h.
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Simulated Annealing

By the preceding lectures we know that the one-step transition probabilities
of the Markov chain constructed by the algorithm above are, for i 6= j ,

pi |j (n) = qi |j · ρn(i , j).

Hence the transition probabilities depend on n through the scales Tn , and
therefore we have a non-homogeneous Markov chain. (Note that pi |j (n) is
no longer the n-step transition probability from the previous lectures.)
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Simulated Annealing

The matrix
æ(n) = {ρn(i , j)}i ,j∈S×S

is called the acceptance matrix.
We need a symbol for the set of globally maximal configurations of h, and
set

Sopt = {i ∈ S|h(i) = max
x∈S

h(x)}.
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Simulated Annealing

We say that such a simulated annealing algorithm obtains
asymptotically a global maximum, if

lim
k→∞

P
(
Xk ∈ Sopt

)
= 1.

The necessary and sufficient conditions on the acceptance and proposal
matrices for this convergence to be true are surveyed in (van Laarhoven
and Aarts 1987).
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Simulated Annealing

T as a decreasing function of n, denoted by Tn,

T1 ≥ T2 ≥ . . . > Tn ≥ . . . .

An idiosyncratic name for this is cooling schedule.

Tn =
c

log(n+ 1)
, n ≥ 1.

where c is a positive constant. It turns out that c will have to satisfy an
additional condition.
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Non-homogeneous Markov Chains

We start by giving a notation for the inhomogeneous multi step transition
probabilities for a Markov chain {Xn}n≥0 with the finite state space S ,

pi |j (m, k) = P (Xk = j |Xm = i) .

We designate the corresponding transition matrix by

P(m, k) = {pi |j (m, k)}i ,j∈S×S .
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Non-homogeneous Markov Chains

An inhomogeneous Markov chain {Xn}n≥0 is weakly ergodic, if for all
m ≥ 1, and all i , j , l ∈ S × S × S

lim
k→∞

(
pi |l (m, k)− pj |l (m, k)

)
= 0.
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Non-homogeneous Markov Chains

An inhomogeneous Markov chain {Xn}n≥0 is strongly ergodic, if there
exists a vector π = (πi )i∈S satisfying

∑
i∈S

πi = 1, πi ≥ 0,

such that for all m ≥ 1, and all i , j ,∈ S × S

lim
k→∞

pi |j (m, k) = πj .
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Non-homogeneous Markov Chains

Strong ergodicity implies convergence in distribution, and

lim
k→∞

P (Xk = j) = πj .
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Non-homogeneous Markov Chains

An inhomogeneous Markov chain is strongly ergodic, if it is weakly ergodic and if for all k there exists a vector π(k) such that
π(k) is an eigenvector corresponding to the eigenvalue 1 of P(k − 1, k), ∑i∈S πi (k) = 1, and

∞

∑
k=0

∑
i∈S
| πi (k)− πi (k + 1) |< ∞.

If
π = lim

k→∞
π(k),

then π satisfies
lim
k→∞

pi |j (m, k) = πj .
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Simulated Annealing for HMM

Bayesian learning for HMM can be done by simulated annealing.
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Simulated Annealing for HMM

Bayesian learning for HMM can be done by simulated annealing.

P (λ | Y0 = o0, . . . ,Yn = on; ) =

P (Y0 = o0, . . . ,Yn = on; λ) p (λ)∫
P (Y0 = o0, . . . ,Yn = on; λ) p (λ) dλ
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Simulated Annealing for HMM

We do not need to compute∫
P (Y0 = o0, . . . ,Yn = on; λ) p (λ) dλ
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SA for learning HMM

C. Andrieu & A.Doucet (2000): Simulated Annealing for Maximum A
Posteriori Parameter Estimation of Hidden Markov
Models, IEEE Transactions on Information Theory , 46, pp. 994−1002.
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SA for learning HMM

Andrieu & Doucet construct an inhomogeneous MC whose sequence of
invariant distributions concentrates
on the set of MAP parameters. The algorithm is done so that the
structure of HMM is taken into account.

TK Biostatistics 02.08.2018 42 / 46



SA with Data Augmenting

x = j0 . . . jn, y = o0 . . . on

1) Initialization.
(

λ(0), x(0)
)

randomly.

2) Iteration n n ≥ 1.

sample x(n) from P
(

x(∗) | y; λ(n−1)
)

sample λpr from P
(

λ | y; x(∗)
)
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SA with Data Augmenting

sample x(n) from P
(

x(∗) | y; λ(n−1)
)

sample λpr from P
(

λ | y; x(∗)
)

P
(

x(∗) | y; λ(n−1)
)

can be calculated by a ’forward filtering-backward

recursion‘
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SA with Data Augmenting

Evaluate the acceptance probability

αn

(
λpr , λ(n−1)

)
= min

1,

[
p (λpr | y)

p
(
λ(n−1) | y

)]1/(Tn+1)
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SA with Data Augmenting

Take a uniform random number U,if

U ≤ αn

(
λpr , λ(n−1)

)
then λ(n) = λpr , otherwise λ(n) = λ(n−1)

3) Set n = n+ 1 and go to step 2).

TK Biostatistics 02.08.2018 46 / 46


