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Lecture

The lecture expands on Markov chains.
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Discrete Time Markov Chain

A discrete time Markov chain (MC) {Xn|n = 0, 1, . . .} is a discrete
time, random sequence with values in a discrete state space SX , such
that

P(Xn+1 = j |Xn = i ,Xn−1 = in−1, . . . ,X0 = i0)

= P(Xn+1 = j |Xn = i) = pij

pij is the transition probability

State Xn summarizes the past history needed to predict Xn+1
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Discrete Time Markov Chain

P(Xn+1 = j |Xn = i ,Xn−1 = in−1, . . . ,X0 = i0)

= P(Xn+1 = j |Xn = i) = pij

The condition is known as the Markov property. MC is assumed time
homogeneous, i.e.,

P(Xn+1 = j |Xn = i) = P(X1 = j |X0 = i)

TK Biostatistics 02.08.2018 4 / 78



Markov Chain: Lack of Memory

The significance of an MC lies in the fact that if Xn = j is a future event,
then the conditional probability of this event given the past history
X0 = j0,X1 = j1, . . . ,Xn−1 = jn−1 depends only upon the immediate past
Xn−1 = jn−1 and not upon the remote past
X0 = j0,X1 = j1, . . . ,Xn−2 = jn−2.
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Transition Probabilities Properties

pij ≥ 0

∑j∈SX pij = 1

Finite Markov chain: SX = {0, 1, . . . ,K}
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Transition matrix

P = (pij )
K ,K
i=0,j=0

P =


p00 p01 . . . p0K
p10 p11 . . . p1K

...
...

...
...

pK0 pK1 . . . pKK

 .

P is an K + 1×K + 1 matrix to be called a transition matrix.
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Binary Autoregression

Yn+1 = Yn +2 Xn, +2 is binary addition, Xn I.I.D. Be(p), Y0 binary,
independent of Xn. This MC has the transition matrix

P =

(
1− p p
p 1− p

)
; 0 ≤ p ≤ 1

0 ≤ p ≤ 1.
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State transition graph

P =

(
1− p p
q 1− q

)
0 ≤ p ≤ 1, 0 ≤ q ≤ 1

1−p 1−q0 1

q

  p 
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n-step transition probabilities

The n-step transition probabilities are

pij (n) = P(Xn+m = j |Xm = i)

This does not depend on m.

Chapman-Kolmogorov equations:

pij (n+m) = ∑
k∈SX

pik(n) · pkj (m)
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Chapman-Kolmorogorov equations, Matrix Form:

Using a matrix notation we can write the Chapman - Kolmogorov equation
as the following matrix multiplication

P(n+m) = P(m) ·P(n).

⇒

P(n) = Pn.
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State probabilities at step n

pj (n) = P (Xn = j)

The probability that the MC visits the state j at time n.
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Computation of State probabilities at step n

One iteration with n-step transition probs:

pj (n) = ∑
i

pij (n)pi (0)

n iterations with 1-step transition probs:

pj (n) = ∑
i

pi (n− 1)pij
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Matrix Formalism

n step transition matrix: P(n) = Pn

pj (n) := P (Xn = j)

p(n) = (p0(n) · · · pK (n))

Recursion for p(n):

p(n) = p(0)Pn = p(n− 1)P
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Limiting State Probabilities

MC with states {0, 1, 2, . . .}
initial state probabilities {pj (0)}
The limiting state probabilities, when they exist, are {πj} s.t.

πj = lim
n→∞

pj (n) = lim
n→∞

P(Xn = j)

where

∑
j∈SX

πj = 1.
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Stationary Probabilities

If the limiting state probabilities exist, then

π = lim
n→∞

p(n) = lim
n→∞

p(n− 1)P

⇔
π = πP

We shall call a probability distribution on SX that satisfies the equation
(system of equations) above a stationary distribution.
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Stationary Probabilities

If
π = πP

and p(0) = π, then p(n) = π for all n ≥ 1, since

p(n) = p(0)Pn = πPn = πPPn−1 = πPn−1 =

. . . = π.
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Three Questions

Existence of solution to π = πP ?

Uniqueness of π ?

Convergence
π = lim

n→∞
p(n) =

lim
n→∞

p(0)Pn

for any p(0) ?
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Three Questions

The questions above have clearly to do with Pn, (the probabilities pij (n)),
i.e., with the structure of the transition matrix P. We shall consider first
the case of finite state spaces SX = {0, 1, . . . ,K}.
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Part B: Classification of states of finite MCs

TK Biostatistics 02.08.2018 20 / 78



Phenomenon: limn→∞ Pn does not exist

P =

(
0 1
1 0

)

P2n =

(
1 0
0 1

)
,P2n+1 =

(
0 1
1 0

)
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Phenomenon: different limits
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Phenomenon: The probability mass drifts away

Vn I.I.D. Be(p), Xn = V1 + . . . + Vn, X0 = 0 is MC. SX = {0, 1, 2, . . .},
(countably) infinite state space needed for this phenomen

......

pp p p

1−p 1−p 1−p 1−p 

0 1 2 3
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Concepts

We shall now develop concepts for dealing with the phenomena above. We
need to study the structure of the transition matrices or the transition
graph.
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Accessibility

State j in a finite MC is accessible from state i , written i → j , if

pij (n) > 0,

for some n > 0
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Communicating States

i and j communicate, (i ↔ j), if there is a path from i to j , i → j ,
and a path from j to i with positive probability, j → i .

TK Biostatistics 02.08.2018 26 / 78



Communicating States

i and j communicate, (i ↔ j), if there is a path from i to j and a
path from j to i , or there are n and m such that

pij (n) > 0, pji (m) > 0.
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Communicating Class

A communicating class is a subset C of states C ⊆ SX that all
communicate
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Transient States

In a finite MC a state i is transient, if there is a state j such that i → j
but j 6→ i .
Example: Xn = V1 + . . . + Vn, X0 = 0, Vn I.I.D. Be(p), all states of
{Xn} are transient.
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Recurrernt States

In a finite MC a state i is recurrent, if there is no state j such that i → j
but j 6→ i .
Example: All states of a binary autoregression are recurrent.

If i is recurrent and i ↔ j , then j is recurrent.
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Class properties I

An MC with a finite number of states always has a set of recurrent
states.
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Class Properties II

For a communicating class of a finite Markov chain, one of the
following must be true:

All states are transient
All states are recurrent
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Example: Comm Classes

Positive transition probs shown. What are communicating classes?

0

1 3

5

4 62
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Irreducible Markov Chain

A finite Markov chain is irreducible if there is only one communicating
class.
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Example of a Reducible Markov Chain
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Periodic and Aperiodic States

State i has period d if d is the largest integer such that p
(n)
ii = 0

whenever n is not divisible by d .

If d = 1, then state i is called aperiodic.

All states in the same communicating class have same period
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Periodic States in Other Words

A state has period d > 1, if it is possible to return to this state with
positive probability only when the number of steps is a multiple of d .
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Periodicity
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Example: Periods of Communicating Classes

Positive transition probs shown. What are the periods of the

communicating classes?

0

1 3

5

4 62
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Finite Irreducible Aperiodic Chain

For an irreducible, aperiodic, finite MC, π = (π0, . . . , πK ) is the
unique nonnegative solution of

πj =
K

∑
i=0

πipij
K

∑
j=0

πj = 1

It will be seen that πj is the limiting fraction of time spent in state j
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Limit Theorems (1) for Finite Irreducible Aperiodic Chain

For an irreducible, aperiodic, finite MC,

lim
n→∞

Pn =
π0 · · · πK
...

...
...

π0 · · · πK
...

...
...

π0 · · · πK

 = π1.

where 1 is a row vector of ones. π = πP ∑K
j=0 πj = 1
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Limit Theorems (2) for Finite Irreducible Aperiodic Chain

For an irreducible, aperiodic, finite MC, with initial distribution p(0)

lim
n→∞

p(n) = π.

Proof:
lim
n→∞

p(n) = lim
n→∞

p(0)Pn

= p(0)π1 = π
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Ergodic Markov chain

MC is ergodic if it has a stationary distribution and the state probabilities
converge to it.
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Solving π = πP

Note that there are many solutions to

πj =
K

∑
i=0

πipij , j = 0, 1, . . . ,K

Uniqueness may be obtained by replacing one of the equations by

K

∑
j=0

πj = 1.
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Stationary Markov chain

An ergodic Markov chain is a stationary stochastic process if p(X0) = π,
since

P (Xn = in,Xn−1 = in−1, . . . ,X0 = i0) =

=
n

∏
l=1

P (Xl = il |Xl−1 = il−1)πi0 =
n

∏
l=1

pil−1il πi0

and this is invariant to the shift of time, 0 7→ h, l 7→ l + h, l = 1, . . . , n.
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Why worry about stationarity: McCabe’s library in a
special case

p1 = Pr(β), p2 = Pr(B), p3 = Pr(M)
β BM β MB B β M BM β M β B M B β

β BM p1 0 p2 0 p3 0
β MB 0 p1 p2 0 p3 0
B β M p1 0 p2 0 0 p3
BM β p1 0 0 p2 0 p3
M β B 0 p1 0 p2 p3 0
M B β 0 p1 0 p2 0 p3

.
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McCabe’s library: stationary distribution

It is easily seen that this is an aperiodic, irreducible MC. There is an explicit formula for the stationary distribution: Let
k = 1, 2, . . . , 6 be a numbering of the permutations of the three books,

{βBM, βMB,BβM,BMβ,MβB,MBβ} = {1, 2, 3, 4, 5, 6}

Then the stationary probability of the kth state (permutation) is

πk =
3

∏
n=1

(
pin

∑3
j=n pin

)
,

For example, for k = 2, pi1 = p1, pi2 = p3, pi3 = p2 and

π2 = π (βMB) =
p1

p1 + p2 + p3
· p3
p3 + p2

· p2
p2

=
p1p3

p2 + p3
.
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McCabe’s library: stationary distribution

We see that the most probable state in the stationary distribution is the
one in which the books are ordered from left to right in decreasing order of
probability.
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McCabe’s library

If the library is stationary, then various important quantities like expected
search time for an item can be computed.
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How to compute Pn

Let λi , xi (a row vector 1×K + 1) be the left eigenvalues and
eigenvectors of a symmetric P, i.e.,

xiP = λixi

P = U−1ΛU

where Λ is a diagonal with the eigenvalues at the main diagonal, U is
an orthogonal matrix that has the standardized left eigenvectors as
rows.

Pn = U−1ΛnU
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Example: Binary Autoregression

P =

(
1− p p
p 1− p

)
λ1 = 1, λ2 = 1− 2p, x1 =

1√
2
(1, 1), x2 =

1√
2
(1,−1)

U =
1√
2

(
1 1
1 −1

)
U−1 = U
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Example: Binary MC

For

P =

(
1− p p
q 1− q

)
a similar expansion can be done, see example 12.6 on page 449 in (Yates
& Goodman Second Edition).
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Example: Pn for Binary Autoregression

P =

(
1− p p
p 1− p

)
=

1√
2

(
1 1
1 −1

)(
1 0
0 1− 2p

)
1√
2

(
1 1
1 −1

)
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Example: Pn for Binary Autoregression

Pn =
1√
2

(
1 1
1 −1

)(
1n 0
0 (1− 2p)n

)
1√
2

(
1 1
1 −1

)
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Example: limn→∞ Pn for Binary Autoregression

Λn =

(
1n 0
0 (1− 2p)n

)
→
(

1 0
0 0

)
since | (1− 2p)n |< 1, if 0 < p < 1.
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Example: limn→∞ Pn for Binary Autoregression

Pn = U−1ΛnU =→
(

1
2

1
2

1
2

1
2

)
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Limiting State Probabilities

πj = lim
n→∞

pj (n) = lim
n→∞

P(Xn = j)

p(n) = (p0(n) · · · pK (n)), row vector,

lim
n→∞

p(n) = lim
n→∞

p(0)Pn

= lim
n→∞

p(0)U−1ΛnU
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Limiting State Probabilities for Binary Autoregression

From the above

lim
n→∞

p(0)U−1ΛnU = p(0)

(
1
2

1
2

1
2

1
2

)

= (p0(0), p1(0))

(
1
2

1
2

1
2

1
2

)
=

(
1

2
,

1

2

)
since p0(0) + p1(0) = 1. Hence (π0, π1) =

(
1
2 , 1

2

)
.

Notice that this convergence holds for an arbitrary initial distribution,
(p0(0), p1(0)).
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Limiting State Probabilities for Binary Autoregression are
Stationary:

π = (π0, π1) =
(
1
2 , 1

2

)
.

(1/2, 1/2)P = (1/2, 1/2)

(
1− p p
p 1− p

)
= (1/2, 1/2)

i.e.,
πP = π
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Del C: Countable number of states
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Auxiliary random variables

Starting in state i , Vij is the event that the system eventually1 visits
state j .

For states i and j with P(Vij ) = 1, the first transition time Tij is the
number of transitions required to enter state j when starting from
state i .

1s̊a småningom, omsider
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Auxiliary probabilities

We have

P (Tij = n) = P (Xn = j ,Xk 6= j , 1 ≤ k ≤ n− 1|X0 = i)

We denote also fij (n) := P (Tij = n). Then

P(Vij ) =
∞

∑
n=1

fij (n)

E (Tij ) =
∞

∑
n=1

nfij (n)
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Binary Autoregression

fjj (0) = 0, fjj (1) = 1− p, fjj (n) = p · (1− p)n−2 · p, n ≥ 2.

E (Tij ) =
∞

∑
n=1

nfij (n) = 2
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Transient and Recurrent States

A state j is either

Transient if P(Vjj ) < 1
Null Recurrent if P(Vjj ) = 1, and ETjj = ∞
Positive Recurrent if P(Vjj ) = 1 and ETjj < ∞
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Recurrent States

For a communicating class of a Markov chain, one of the following
must be true:

All states are transient
All states are null recurrent
All states are positive recurrent
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Recurrent States

Positive recurrent and null recurrent states are thus recurrent states.
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Limiting State Probabilities

Assume

States i and j with P(Vij ) = 1

∑∞
n=1 P (Tij = nd) = 1 for d = 1 but for no larger d .

Then

the limiting prob of state j given the MC starts in state i is

lim
n→∞

pij (n) =
1

ETjj
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Transient States

The state j is transient if

∞

∑
n=1

pjj (n) < ∞
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Transition matrices/graphs

How do we know when P(Vij ) = 1 ? It is in most cases difficult to
compute fij (n) = P (Tij = n).
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Recurrent States

We say that the state j is recurrent, if P(Vij ) = 1.

The state j is recurrent ⇔
∞

∑
n=1

pjj (n) = ∞,

where pjj (n) is the element in position j , j in P(n).
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Transition matrices/graphs

How do we know when P(Vij ) = 1 ? It is also in most cases difficult to
calculate ∑∞

n=1 pjj (n).

TK Biostatistics 02.08.2018 72 / 78



Aperiodic Irreducible Chain

For an aperiodic irreducible Markov chain, either

States are all transient or all null recurrent, limn→∞ pij (n) = 0. No
stationary probabilities

All states are positive recurrent, and

πj =
1

ETjj
= lim

n→∞
Pn
ij > 0

are unique stationary probabilities satisfying

πj = ∑
i∈SX

πipij
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Stationary distribution

The components in the stationary distribution can be interpreted as the
asymptotic percentages of time the chain spends in each of the states.

To see this, let Tj (1),Tj (1) + Tj (2),Tj (1) + Tj (2) + Tj (3), · · · be
the times, when the MC returns to j .

Then
Tj (k) = the time between the k :th and k − 1:th visits j .

It can be shown that Tj (k) are I.I.D. random variables, if P(Vij ) = 1.
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Stationary distribution

Hence the portion of time the MC has spent in state j after k returns

number of visits

total time
=

k

Tj (1) + Tj (2) + . . . + Tj (k)

=
1

Tj (1)+Tj (2)+...+Tj (k)
k

→ 1

ETjj

by the law of large numbers.
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Renewal Equation

pij (n) =
n

∑
k=1

fij (k)pjj (n− k)

From this renewal equation we can get

lim
n→∞

pij (n) =
1

∑∞
n=1 nfij (n)

(Renewal theorem)
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Binary Autoregression

E (Tij ) =
∞

∑
n=1

nfij (n) = 2

lim
n→∞

pij (n) =
1

∑∞
n=1 nfij (n)

=
1

2
.
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If MC irreducible, then

lim
n→∞

pij (n) = πj

and the limit is the same for all i and depends only on j .
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