Statistical Bioinformatics, Makerere More on Markov Chains Timo Koski

TK
02.08.2018

Lecture

The lecture expands on Markov chains.

Discrete Time Markov Chain

- A discrete time Markov chain (MC) $\left\{X_{n} \mid n=0,1, \ldots\right\}$ is a discrete time, random sequence with values in a discrete state space S_{X}, such that

$$
\begin{aligned}
P\left(X_{n+1}\right. & \left.=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right) \\
& =P\left(X_{n+1}=j \mid X_{n}=i\right)=p_{i j}
\end{aligned}
$$

- $p_{i j}$ is the transition probability
- State X_{n} summarizes the past history needed to predict X_{n+1}

Discrete Time Markov Chain

$$
\begin{aligned}
P\left(X_{n+1}\right. & \left.=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right) \\
& =P\left(X_{n+1}=j \mid X_{n}=i\right)=p_{i j}
\end{aligned}
$$

The condition is known as the Markov property. MC is assumed time homogeneous, i.e.,

$$
P\left(X_{n+1}=j \mid X_{n}=i\right)=P\left(X_{1}=j \mid X_{0}=i\right)
$$

Markov Chain: Lack of Memory

The significance of an MC lies in the fact that if $X_{n}=j$ is a future event, then the conditional probability of this event given the past history $X_{0}=j_{0}, X_{1}=j_{1}, \ldots, X_{n-1}=j_{n-1}$ depends only upon the immediate past $X_{n-1}=j_{n-1}$ and not upon the remote past $X_{0}=j_{0}, X_{1}=j_{1}, \ldots, X_{n-2}=j_{n-2}$.

Transition Probabilities Properties

- $p_{i j} \geq 0$
- $\sum_{j \in S_{X}} p_{i j}=1$
- Finite Markov chain: $S_{X}=\{0,1, \ldots, K\}$

Transition matrix

$$
\begin{gathered}
\mathbf{P}=\left(p_{i j}\right)_{i=0, j=0}^{K, K} \\
\mathbf{P}=\left(\begin{array}{cccc}
p_{00} & p_{01} & \ldots & p_{0 K} \\
p_{10} & p_{11} & \ldots & p_{1 K} \\
\vdots & \vdots & \vdots & \vdots \\
p_{K 0} & p_{K 1} & \ldots & p_{K K}
\end{array}\right) .
\end{gathered}
$$

\mathbf{P} is an $K+1 \times K+1$ matrix to be called a transition matrix.

Binary Autoregression

$Y_{n+1}=Y_{n}+2 X_{n},+_{2}$ is binary addition, X_{n} I.I.D. $\operatorname{Be}(p), Y_{0}$ binary, independent of X_{n}. This MC has the transition matrix

$$
\mathbf{P}=\left(\begin{array}{cc}
1-p & p \\
p & 1-p
\end{array}\right) ; 0 \leq p \leq 1
$$

$$
0 \leq p \leq 1
$$

State transition graph

$$
\mathbf{P}=\left(\begin{array}{cc}
1-p & p \\
q & 1-q
\end{array}\right) \quad 0 \leq p \leq 1,0 \leq q \leq 1
$$

n-step transition probabilities

- The n-step transition probabilities are

$$
p_{i j}(n)=P\left(X_{n+m}=j \mid X_{m}=i\right)
$$

This does not depend on m.

- Chapman-Kolmogorov equations:

$$
p_{i j}(n+m)=\sum_{k \in S_{X}} p_{i k}(n) \cdot p_{k j}(m)
$$

Chapman-Kolmorogorov equations, Matrix Form:

Using a matrix notation we can write the Chapman - Kolmogorov equation as the following matrix multiplication

$$
\begin{aligned}
\mathbf{P}^{(n+m)}= & \mathbf{P}^{(m)} \cdot \mathbf{P}^{(n)} . \\
& \Rightarrow \\
\mathbf{P}^{(n)} & =\mathbf{P}^{n}
\end{aligned}
$$

State probabilities at step n

$$
p_{j}(n)=P\left(X_{n}=j\right)
$$

The probability that the MC visits the state j at time n.

Computation of State probabilities at step n

- One iteration with n-step transition probs:

$$
p_{j}(n)=\sum_{i} p_{i j}(n) p_{i}(0)
$$

- n iterations with 1 -step transition probs:

$$
p_{j}(n)=\sum_{i} p_{i}(n-1) p_{i j}
$$

Matrix Formalism

- n step transition matrix: $\mathbf{P}^{(n)}=\mathbf{P}^{n}$

$$
\begin{gathered}
p_{j}(n):=P\left(X_{n}=j\right) \\
p(n)=\left(p_{0}(n) \cdots p_{K}(n)\right)
\end{gathered}
$$

- Recursion for $p(n)$:

$$
p(n)=p(0) \mathbf{P}^{n}=p(n-1) \mathbf{P}
$$

Limiting State Probabilities

- MC with states $\{0,1,2, \ldots\}$
- initial state probabilities $\left\{p_{j}(0)\right\}$
- The limiting state probabilities, when they exist, are $\left\{\pi_{j}\right\}$ s.t.

$$
\pi_{j}=\lim _{n \rightarrow \infty} p_{j}(n)=\lim _{n \rightarrow \infty} P\left(X_{n}=j\right)
$$

where

$$
\sum_{j \in S_{X}} \pi_{j}=1
$$

Stationary Probabilities

If the limiting state probabilities exist, then

$$
\pi=\lim _{n \rightarrow \infty} p(n)=\lim _{n \rightarrow \infty} p(n-1) \mathbf{P}
$$

\Leftrightarrow

$$
\pi=\pi \mathbf{P}
$$

We shall call a probability distribution on S_{X} that satisfies the equation (system of equations) above a stationary distribution.

Stationary Probabilities

If

$$
\pi=\pi \mathbf{P}
$$

and $p(0)=\pi$, then $p(n)=\pi$ for all $n \geq 1$, since

$$
\begin{gathered}
p(n)=p(0) \mathbf{P}^{n}=\pi \mathbf{P}^{n}=\pi \mathbf{P} \mathbf{P}^{n-1}=\pi \mathbf{P}^{n-1}= \\
\ldots=\pi
\end{gathered}
$$

Three Questions

- Existence of solution to $\pi=\pi \mathbf{P}$?
- Uniqueness of π ?
- Convergence

$$
\begin{gathered}
\pi=\lim _{n \rightarrow \infty} p(n)= \\
\lim _{n \rightarrow \infty} p(0) \mathbf{P}^{n}
\end{gathered}
$$

for any $p(0)$?

Three Questions

The questions above have clearly to do with \mathbf{P}^{n}, (the probabilities $p_{i j}(n)$), i.e., with the structure of the transition matrix \mathbf{P}. We shall consider first the case of finite state spaces $S_{X}=\{0,1, \ldots, K\}$.

Part B: Classification of states of finite MCs

$$
\begin{gathered}
\mathbf{P}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
\mathbf{P}^{2 n}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \mathbf{P}^{2 n+1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{gathered}
$$

Phenomenon: different limits

Phenomenon: The probability mass drifts away

V_{n} I.I.D. $\operatorname{Be}(p), X_{n}=V_{1}+\ldots+V_{n}, X_{0}=0$ is MC. $S_{X}=\{0,1,2, \ldots\}$, (countably) infinite state space needed for this phenomen

Concepts

We shall now develop concepts for dealing with the phenomena above. We need to study the structure of the transition matrices or the transition graph.

Accessibility

State j in a finite MC is accessible from state i, written $i \rightarrow j$, if

$$
p_{i j}(n)>0,
$$

for some $n>0$

Communicating States

- i and j communicate, $(i \leftrightarrow j)$, if there is a path from i to $j, i \rightarrow j$, and a path from j to i with positive probability, $j \rightarrow i$.

Communicating States

- i and j communicate, $(i \leftrightarrow j)$, if there is a path from i to j and a path from j to i, or there are n and m such that

$$
p_{i j}(n)>0, p_{j i}(m)>0
$$

Communicating Class

- A communicating class is a subset C of states $C \subseteq S_{X}$ that all communicate

Transient States

In a finite MC a state i is transient, if there is a state j such that $i \rightarrow j$ but $j \nrightarrow i$.
Example: $X_{n}=V_{1}+\ldots+V_{n}, X_{0}=0, V_{n}$ I.I.D. $\operatorname{Be}(p)$, all states of $\left\{X_{n}\right\}$ are transient.

Recurrernt States

In a finite MC a state i is recurrent, if there is no state j such that $i \rightarrow j$ but $j \nrightarrow i$.
Example: All states of a binary autoregression are recurrent.

- If i is recurrent and $i \leftrightarrow j$, then j is recurrent.

Class properties I

- An MC with a finite number of states always has a set of recurrent states.

Class Properties II

- For a communicating class of a finite Markov chain, one of the following must be true:
- All states are transient
- All states are recurrent

Example: Comm Classes

- Positive transition probs shown. What are communicating classes?

Irreducible Markov Chain

A finite Markov chain is irreducible if there is only one communicating class.

Example of a Reducible Markov Chain

Periodic and Aperiodic States

State i has period d if d is the largest integer such that $p_{i i}^{(n)}=0$ whenever n is not divisible by d.

- If $d=1$, then state i is called aperiodic.
- All states in the same communicating class have same period

Periodic States in Other Words

A state has period $d>1$, if it is possible to return to this state with positive probability only when the number of steps is a multiple of d.

Periodicity

KTH Matomatik

Example: Periods of Communicating Classes

- Positive transition probs shown. What are the periods of the

KTH Matomatik

Finite Irreducible Aperiodic Chain

- For an irreducible, aperiodic, finite $\mathrm{MC}, \pi=\left(\pi_{0}, \ldots, \pi_{K}\right)$ is the unique nonnegative solution of

$$
\pi_{j}=\sum_{i=0}^{K} \pi_{i} p_{i j} \quad \sum_{j=0}^{K} \pi_{j}=1
$$

- It will be seen that π_{j} is the limiting fraction of time spent in state j

Limit Theorems (1) for Finite Irreducible Aperiodic Chain

For an irreducible, aperiodic, finite MC,

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \mathbf{P}^{n}= \\
\left(\begin{array}{ccc}
\pi_{0} & \cdots & \pi_{K} \\
\vdots & \vdots & \vdots \\
\pi_{0} & \cdots & \pi_{K} \\
\vdots & \vdots & \vdots \\
\pi_{0} & \cdots & \pi_{K}
\end{array}\right)=\pi \mathbf{1} .
\end{gathered}
$$

where $\mathbf{1}$ is a row vector of ones. $\pi=\pi \mathbf{P} \quad \sum_{j=0}^{K} \pi_{j}=1$

Limit Theorems (2) for Finite Irreducible Aperiodic Chain

For an irreducible, aperiodic, finite MC, with initial distribution $p(0)$

$$
\lim _{n \rightarrow \infty} p(n)=\pi .
$$

Proof:

$$
\begin{gathered}
\lim _{n \rightarrow \infty} p(n)=\lim _{n \rightarrow \infty} p(0) \mathbf{P}^{n} \\
=p(0) \pi \mathbf{1}=\pi
\end{gathered}
$$

Ergodic Markov chain

MC is ergodic if it has a stationary distribution and the state probabilities converge to it.

Solving $\pi=\pi \mathrm{P}$

- Note that there are many solutions to

$$
\pi_{j}=\sum_{i=0}^{K} \pi_{i} p_{i j}, \quad j=0,1, \ldots, K
$$

Uniqueness may be obtained by replacing one of the equations by

$$
\sum_{j=0}^{K} \pi_{j}=1
$$

Stationary Markov chain

An ergodic Markov chain is a stationary stochastic process if $p\left(X_{0}\right)=\pi$, since

$$
\begin{gathered}
P\left(X_{n}=i_{n}, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right)= \\
=\prod_{l=1}^{n} P\left(X_{l}=i_{l} \mid X_{l-1}=i_{l-1}\right) \pi_{i_{0}}=\prod_{l=1}^{n} p_{i_{l-1} i_{l}} \pi_{i_{0}}
\end{gathered}
$$

and this is invariant to the shift of time, $0 \mapsto h, I \mapsto I+h, I=1, \ldots, n$.

Why worry about stationarity: McCabe's library in a special case

$p_{1}=\operatorname{Pr}(\beta), p_{2}=\operatorname{Pr}(B)$,	$p_{3}=\operatorname{Pr}(M)$					
	$\beta \mathrm{BM}$	$\beta \mathrm{MB}$	$\mathrm{B} \beta \mathrm{M}$	$\mathrm{BM} \beta$	$\mathrm{M} \beta \mathrm{B}$	$\mathrm{M} \mathrm{B} \beta$
$\beta \mathrm{BM}$	p_{1}	0	p_{2}	0	p_{3}	0
$\beta \mathrm{MB}$	0	p_{1}	p_{2}	0	p_{3}	0
$\mathrm{~B} \beta \mathrm{M}$	p_{1}	0	p_{2}	0	0	p_{3}
$\mathrm{BM} \beta$	p_{1}	0	0	p_{2}	0	p_{3}
$\mathrm{M} \beta \mathrm{B}$	0	p_{1}	0	p_{2}	p_{3}	0
$\mathrm{M} \mathrm{B} \beta$	0	p_{1}	0	p_{2}	0	p_{3}

McCabe's library: stationary distribution

It is easily seen that this is an aperiodic, irreducible MC. There is an explicit formula for the stationary distribution: Let $k=1,2, \ldots, 6$ be a numbering of the permutations of the three books,

$$
\{\beta B M, \beta M B, B \beta M, B M \beta, M \beta B, M B \beta\}=\{1,2,3,4,5,6\}
$$

Then the stationary probability of the k th state (permutation) is

$$
\pi_{k}=\prod_{n=1}^{3}\left(\frac{p_{i n}}{\sum_{j=n}^{3} p_{i n}}\right)
$$

For example, for $k=2, p_{i_{1}}=p_{1}, p_{i_{2}}=p_{3}, p_{i_{3}}=p_{2}$ and

$$
\begin{aligned}
\pi_{2}=\pi(\beta M B)= & \frac{p_{1}}{p_{1}+p_{2}+p_{3}} \cdot \frac{p_{3}}{p_{3}+p_{2}} \cdot \frac{p_{2}}{p_{2}} \\
& =\frac{p_{1} p_{3}}{p_{2}+p_{3}}
\end{aligned}
$$

McCabe's library: stationary distribution

We see that the most probable state in the stationary distribution is the one in which the books are ordered from left to right in decreasing order of probability.

McCabe's library

If the library is stationary, then various important quantities like expected search time for an item can be computed.

How to compute \mathbf{P}^{n}

- Let $\lambda_{i}, \mathbf{x}_{i}$ (a row vector $1 \times K+1$) be the left eigenvalues and eigenvectors of a symmetric \mathbf{P}, i.e.,

$$
\mathbf{x}_{i} \mathbf{P}=\lambda_{i} \mathbf{x}_{i}
$$

$$
\mathbf{P}=\mathbf{U}^{-1} \Lambda \mathbf{U}
$$

where Λ is a diagonal with the eigenvalues at the main diagonal, \mathbf{U} is an orthogonal matrix that has the standardized left eigenvectors as rows.

$$
\mathbf{P}^{n}=\mathbf{U}^{-1} \Lambda^{n} \mathbf{U}
$$

Example: Binary Autoregression

$$
\begin{gathered}
\mathbf{P}=\left(\begin{array}{cc}
1-p & p \\
p & 1-p
\end{array}\right) \\
\lambda_{1}=1, \lambda_{2}=1-2 p, \mathbf{x}_{1}=\frac{1}{\sqrt{2}}(1,1), \mathbf{x}_{2}=\frac{1}{\sqrt{2}}(1,-1) \\
\mathbf{U}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \\
\mathbf{U}^{-1}=\mathbf{U}
\end{gathered}
$$

Example: Binary MC

For

$$
\mathbf{P}=\left(\begin{array}{cc}
1-p & p \\
q & 1-q
\end{array}\right)
$$

a similar expansion can be done, see example 12.6 on page 449 in (Yates \& Goodman Second Edition).

Example: \mathbf{P}^{n} for Binary Autoregression

$$
\begin{gathered}
\mathbf{P}=\left(\begin{array}{cc}
1-p & p \\
p & 1-p
\end{array}\right) \\
=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1-2 p
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
\end{gathered}
$$

Example: \mathbf{P}^{n} for Binary Autoregression

$$
\mathbf{P}^{n}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
1^{n} & 0 \\
0 & (1-2 p)^{n}
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Example: $\lim _{n \rightarrow \infty} \mathbf{P}^{n}$ for Binary Autoregression

$$
\Lambda^{n}=\left(\begin{array}{cc}
1^{n} & 0 \\
0 & (1-2 p)^{n}
\end{array}\right) \rightarrow\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

since $\left|(1-2 p)^{n}\right|<1$, if $0<p<1$.

Example: $\lim _{n \rightarrow \infty} \mathbf{P}^{n}$ for Binary Autoregression

$$
\mathbf{P}^{n}=U^{-1} \Lambda^{n} U=\rightarrow\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

Limiting State Probabilities

$$
\pi_{j}=\lim _{n \rightarrow \infty} p_{j}(n)=\lim _{n \rightarrow \infty} P\left(X_{n}=j\right)
$$

$p(n)=\left(p_{0}(n) \cdots p_{K}(n)\right)$, row vector,

$$
\begin{gathered}
\lim _{n \rightarrow \infty} p(n)=\lim _{n \rightarrow \infty} p(0) \mathbf{P}^{n} \\
=\lim _{n \rightarrow \infty} p(0) U^{-1} \Lambda^{n} U
\end{gathered}
$$

Limiting State Probabilities for Binary Autoregression

From the above

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} p(0) U^{-1} \Lambda^{n} U=p(0)\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) \\
= & \left(p_{0}(0), p_{1}(0)\right)\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)=\left(\frac{1}{2}, \frac{1}{2}\right)
\end{aligned}
$$

since $p_{0}(0)+p_{1}(0)=1$. Hence $\left(\pi_{0}, \pi_{1}\right)=\left(\frac{1}{2}, \frac{1}{2}\right)$.
Notice that this convergence holds for an arbitrary initial distribution, ($\left.p_{0}(0), p_{1}(0)\right)$.

Limiting State Probabilities for Binary Autoregression are

 Stationary:$\pi=\left(\pi_{0}, \pi_{1}\right)=\left(\frac{1}{2}, \frac{1}{2}\right)$.

$$
(1 / 2,1 / 2) \mathbf{P}=(1 / 2,1 / 2)\left(\begin{array}{cc}
1-p & p \\
p & 1-p
\end{array}\right)=(1 / 2,1 / 2)
$$

i.e.,

$$
\pi \mathbf{P}=\pi
$$

Del C: Countable number of states

Auxiliary random variables

- Starting in state $i, V_{i j}$ is the event that the system eventually ${ }^{1}$ visits state j.
- For states i and j with $P\left(V_{i j}\right)=1$, the first transition time $T_{i j}$ is the number of transitions required to enter state j when starting from state i.

Auxiliary probabilities

We have

$$
P\left(T_{i j}=n\right)=P\left(X_{n}=j, X_{k} \neq j, 1 \leq k \leq n-1 \mid X_{0}=i\right)
$$

We denote also $f_{i j}(n):=P\left(T_{i j}=n\right)$. Then

$$
\begin{gathered}
P\left(V_{i j}\right)=\sum_{n=1}^{\infty} f_{i j}(n) \\
E\left(T_{i j}\right)=\sum_{n=1}^{\infty} n f_{i j}(n)
\end{gathered}
$$

Binary Autoregression

$$
\begin{gathered}
f_{j j}(0)=0, f_{j j}(1)=1-p, f_{j j}(n)=p \cdot(1-p)^{n-2} \cdot p, \quad n \geq 2 . \\
E\left(T_{i j}\right)=\sum_{n=1}^{\infty} n f_{i j}(n)=2
\end{gathered}
$$

Transient and Recurrent States

- A state j is either
- Transient if $P\left(V_{j j}\right)<1$
- Null Recurrent if $P\left(V_{j j}\right)=1$, and $E T_{j j}=\infty$
- Positive Recurrent if $P\left(V_{j j}\right)=1$ and $E \mathrm{~T}_{j j}<\infty$

Recurrent States

- For a communicating class of a Markov chain, one of the following must be true:
- All states are transient
- All states are null recurrent
- All states are positive recurrent

Recurrent States

Positive recurrent and null recurrent states are thus recurrent states.

Limiting State Probabilities

Assume

- States i and j with $P\left(V_{i j}\right)=1$
- $\sum_{n=1}^{\infty} P\left(T_{i j}=n d\right)=1$ for $d=1$ but for no larger d.

Then

- the limiting prob of state j given the MC starts in state i is

$$
\lim _{n \rightarrow \infty} p_{i j}(n)=\frac{1}{E T_{j j}}
$$

Transient States

The state j is transient if

$$
\sum_{n=1}^{\infty} p_{j j}(n)<\infty
$$

Transition matrices/graphs

How do we know when $P\left(V_{i j}\right)=1$? It is in most cases difficult to compute $f_{i j}(n)=P\left(T_{i j}=n\right)$.

Recurrent States

- We say that the state j is recurrent, if $P\left(V_{i j}\right)=1$.
- The state j is recurrent \Leftrightarrow

$$
\sum_{n=1}^{\infty} p_{j j}(n)=\infty
$$

where $p_{j j}(n)$ is the element in position j, j in $\mathbf{P}^{(n)}$.

Transition matrices/graphs

How do we know when $P\left(V_{i j}\right)=1$? It is also in most cases difficult to calculate $\sum_{n=1}^{\infty} p_{j j}(n)$.

Aperiodic Irreducible Chain

For an aperiodic irreducible Markov chain, either

- States are all transient or all null recurrent, $\lim _{n \rightarrow \infty} p_{i j}(n)=0$. No stationary probabilities
- All states are positive recurrent, and

$$
\pi_{j}=\frac{1}{E T_{j j}}=\lim _{n \rightarrow \infty} P_{i j}^{n}>0
$$

are unique stationary probabilities satisfying

$$
\pi_{j}=\sum_{i \in S_{X}} \pi_{i} p_{i j}
$$

Stationary distribution

The components in the stationary distribution can be interpreted as the asymptotic percentages of time the chain spends in each of the states.

- To see this, let $T_{j}(1), T_{j}(1)+T_{j}(2), T_{j}(1)+T_{j}(2)+T_{j}(3), \cdots$ be the times, when the MC returns to j.
- Then
$T_{j}(k)=$ the time between the k :th and $k-1$ th visits j.
- It can be shown that $T_{j}(k)$ are I.I.D. random variables, if $P\left(V_{i j}\right)=1$.

Stationary distribution

Hence the portion of time the MC has spent in state j after k returns

$$
\begin{aligned}
& \frac{\text { number of visits }}{\text { total time }}=\frac{k}{T_{j}(1)+T_{j}(2)+\ldots+T_{j}(k)} \\
& \quad=\frac{1}{\frac{T_{j}(1)+T_{j}(2)+\ldots+T_{j}(k)}{k}} \rightarrow \frac{1}{E T_{j j}}
\end{aligned}
$$

by the law of large numbers.

Renewal Equation

$$
p_{i j}(n)=\sum_{k=1}^{n} f_{i j}(k) p_{j j}(n-k)
$$

From this renewal equation we can get

$$
\lim _{n \rightarrow \infty} p_{i j}(n)=\frac{1}{\sum_{n=1}^{\infty} n f_{i j}(n)}
$$

(Renewal theorem)

Binary Autoregression

$$
\begin{aligned}
E\left(T_{i j}\right) & =\sum_{n=1}^{\infty} n f_{i j}(n)=2 \\
\lim _{n \rightarrow \infty} p_{i j}(n) & =\frac{1}{\sum_{n=1}^{\infty} n f_{i j}(n)}=\frac{1}{2} .
\end{aligned}
$$

- If MC irreducible, then

$$
\lim _{n \rightarrow \infty} p_{i j}(n)=\pi_{j}
$$

and the limit is the same for all i and depends only on j.

