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1 Introduction

Power-law tails have been observed in the distributions of the sizes of incomes,
cities, internet files, biological taxa, and, after the sequencing of genomes, in
(size) distributions of molecular parts (like protein families, and folds, and
their functions, occurrence of pseudogenes) in nature.

The purpose of this lecture is to present the results in [22, 23, 24], and in
[12, 13] to the effect that the state probabilities of well known birth-and-death
processes provides a natural source of power law distributions. This was first
realized by G.U. Yule1, who established a model (a pure birth process) to
explain the observed size distribution of genera with respect to the number
of species [31].

Mathematical models yielding power laws have also been derived by Hill,
Rouault, and Simon, see [7, 8, 9, 25, 27]. The work of Simon, to the extent
it coincides with Yule’s, is presented in detail in the sequel. In appendix D
there is an outline of Hill’s theory on the emergence of power laws. Further
fundamental mathematical work on power laws is found in [15], and [27].
H. Kesten [15] points out the biological interpretation of the multiplicative
model (c.f., example 1.7 below) he is studying.

1.1 Definition and Examples of Power Laws

A discrete probability mass function pk has a power-law tail or is a Power
law, if it holds that

pk := P (X = k) ∼ k−γ, as k →∞. (1.1)

The notation f(x) ∼ g(x) is explained in appendix A. A probability density
function can also have a power-law tail defined in an analogous manner.

Let us take a look at a few enlightening and important examples.

1George Udny Yule (1871−1951), educated in engineering and physics, later reader in
statistics in Cambridge,
http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Yule.html
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Example 1.1 (Zipf’s Law (rank-frequency form)) We count the frequen-
cies of occurrencies of some N events (e.g., English words in today’s issue of
New Vision). Then we determine the rank k of each event by the frequency
of occurrence (the most frequent is number one and so on). Then, if we
consider pk as the frequency of a word of rank k, this is very likely found to
be

pk = c · k−γ, (1.2)

where γ is close to one, and where c is the normalizing constant

c = 1/
N∑
k=1

k−γ.

The probability mass function in (1.2) is known as Zipf’s law, and is an
empirical or experimental assertion, which seems to arise in many situations,
but is not based on any theoretical model2. The case with γ = 2 is known
as (Zipf-)Lotka’s Law 3 [19], and was found as a bibliometric law on the
number of authors making k contributions.

Many want to talk about Zipf’s laws strictly in the rank-frequency spe-
cific form, i.e., when referring to properties of ranked frequencies. However,
in biology (or taxonomy) there is a legitimate generic-specific form4 of
Zipf’s law. This deals with the numbers of species per genus, as in [31]. Hill
[8, 9] provides connections between these two forms using Hill’s model.

Troll and beim Graben [30] show that Zipf’s law for word rank statistics
is in a certain sense (see [30]) equivalent to a power law of word frequencies.

When plotted , for log pk with Zipf’s law in (1.2) becomes a straight line
as a function of log k, with negative slope given by the exponent γ.

Example 1.2 ( Discrete Pareto’s Law or Zipf-Mandelbrot’s law) Benoit
Mandelbrot5 is said to have formulated the problem of finding the probability

2George Kingsley Zipf (1902-1950), linquist and philologist at Harvard University, stud-
ied Chinese languages and the statistical properties of language.

3Alfred James Lotka (1880-1949), a mathematician and biologist, more known for the
predator-prey model (Lotka-Volterra) of population dynamics.

4The terminology for this distinction is due to [8].
5(1924−), mathematician known for fractal geometry

http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Mandelbrot.html
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mass function pk such that
R∑
k=1

pk log2 k

is minimized, under constraint that the entropy

H = −
R∑
k=1

pk log2 pk

has a value given in advance. The interpetation is minimization of the mean
cost of words in a natural language, given average information H per word,
and the potential number of words R. Mandelbrot found that the solution is

pk = c · (k + q)−γ , (1.3)

where c is the pertinent normalization constant. An analogy to the Man-
delbrot scheme is suggested in [21] that replaces ’words’ with proteins, and
thinks in terms of energy minimization in protein synthesis. The parameter
q represents then the bias of the organism towards positive regulation, i.e.,
repression of gene expression. These interpretations will probably also be
met with scepticism.

This law had been earlier found by the economist V. Pareto6, as a fre-
quency of wealth as a function of income category (above a certain bottom
level). In plain words this means: most success seems to migrate to those
people or companies who are already popular.

It is found in [17] that all observed gene-expression levels (e.g., yeast
cells) appear to follow (1.3) with the range of k depending on the size of the
gene-expression library.

6Nordisk familjbok, Tjugoförsta bandet, Uggleupplagan, 1915: ” Pareto [-t̊a] Vilfredo,
italiensk-schweizisk nationalekonom, född 1848 i Paris, (d. 1923, förf.anm.), utbildades
till ingenjör, men öfvergick s̊a sm̊aningom till nationalekonomien, . . . , P. har tilldragit
sig mycken uppmärksamhet genom sin med matematiska formler demonstrerade och
af rikhaltiga statistiska uppgifter belysta teori om inkomstfördelningen mellan de olika
samhällsmedlemmarna i skilda länder, en fördelning som mindre motsvara en egentlig
pyramid än en s̊adan med konkava sidor och konvex bas, en toppsnäcka enligt P:s egen
beskrivning.”
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Example 1.3 (Continuous Pareto Distribution) A probability distribu-
tion for a continuous random variable with the density

f(x) =

{
αqα

xα+1 x > q,
0 x ≤ q,

(1.4)

where q > 0, α > 0, is called a Pareto density with parameters q and α.
The distribution function is thus

F (x) =
∫ x

−∞
f(u)du =

{
1− qα

xα
x ≥ q,

0 x ≤ q.
(1.5)

Example 1.4 (Yule-Simon’s Law) G.U. Yule [31] explained theoretically
in the 1920’s the observation that the number of genera (pk) having k species
is distributed approximately as in Zipf’s law (in the generic-specific form).
We shall establish Yule’s model (the pure birth process) and his result in
example 5.2 and in section 6 below. Yule obtained a special case of the
following probability mass function, which was later given a more general
treatment in [27]

pk = δB (δ + 1, k) , k = 1, 2, . . . , . (1.6)

Here δ > 0 is real, B (δ + 1, k) is the Beta function, i.e.,

B (x, y) =
∫ 1

0
ux−1 · (1− u)y−1du =

Γ(x)Γ(y)

Γ(x+ y)
, (1.7)

where Γ(·) is, for z with positive real part, the Euler gamma function

Γ(z) =
∫ ∞

0
tz−1e−tdt. (1.8)

It is established in appendix B (see (B.5)) that

pk ∼ δΓ (δ + 1) · 1

kδ
, as k →∞. (1.9)
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Example 1.5 (A Bayesian Zipf’s Law) By assigning a prior distribution
for numbers of species belonging to a genus Hill [7] derived for the expectation
E [pk] of the number of genera having k species the expression

E [pk] =
1

k(k − 1)
,

which is a weak version of Zipf’s law. Hill obtained also the Yule-Simon law
in this weak sense. This is discussed in appendix D.

Example 1.6 (Exponential Growth Observed at a Random Time)
Let us consider the deterministic process of exponential growth, or

X(t) = eµt, µ > 0.

We observe, or kill , the process at an exponentially distributed time T
∈ Exp(ν). Now, we compute the distribution of the state of the process at
radmon time of observing, or at random age, X(T ).

P (X(T ) ≤ x) = P
(
eµT ≤ x

)
= P

(
T ≤ log x

µ

)
=

= 1− e−
ν
µ

log x = 1−
(

1

x

) ν
µ

.

Hence the probability density function of X(T ) is

fX(T )(x) =
d

dx
P (X(T ) ≤ x) =

 ν
µ

(
1
x

) ν
µ
−1

x > 0,

0 x ≤ 0.

This is a power law, which holds for all x. This simple example is found in
[23], which also gives additional, substantial, examples of stochastic processes
killed at a random time, where the state of the killed (or observed) process
has power-law tail. The idea of killing at an exponential time will be applied
again in in section 6.2.
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Example 1.7 (A Multiplicative Process) Harry Kesten7 considered in
[15] the (matrix version) of the following process.

St+1 = Qt +MtSt, (1.10)

where Mt and Qt are sequences positive independent random variables. He
showed that the solution of this process

St+1 = Qt +Mt (Qt−1 +Mt−1St−1) = . . . =

= Qt +MtQt−1 +MtMt−1Qt−2 + . . .+MtMt−1 · · ·M2Q1 +MtMt−1 · · ·M1S0

has a power-law tail. More on the physics of this kind of processes (’multi-
plicative processes’) is found in [28].

1.2 Scale-Free Property

Let ξ be a random variable with the Pareto distribution in example 1.3. Then
we have for b > a > q using (1.5) that

P (ξ > b | ξ > a) =
1− F (b)

1− F (a)
=
(
a

b

)α
.

The term scale-free is used of any distribution (discrete or continuous or
mixed) that looks essentially the same when looked at any scale, or such
that

P (ξ > b | ξ > a)

depends only on the ratio a/b, and not on the individual scales a and b.
Zipf’s law is scale-free in this sense.

Recently the scale-free property has been observed for the degree dis-
tribution of many networks, where it is associated with the so-called small
world phenomenon8. Examples are the World Wide Web, and human web of

7Professor emeritus of mathematics at Cornell University, amongst other things
the holder of ’Tage Erlanders gästprofessur’ (Vetenskapsr̊adet) during the year 2002,
http://www.vr.se/omvr/ff/sida.jsp?resourceId=728

8A small world network is a graph in which the distribution of connectivity is not
confined to any scale and where every node can be reached from each other by a small
number of steps.
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sexual contacts ([18]) and many networks of interaction in molecular biology.
The mathematics (or physics) of the scale-free property and power laws in
networks is reviewed in [2, 3].

1.3 The Presence of Power Laws in Genomic Data

It has been found empirically (see, e.g., [11] and [20] and their references)
that the power law behaviour applies to the distribution of a wide range of
genome-associated quantities. These include the frequency distribution of
gene family sizes, the number of transcripts per gene, the number of interac-
tions per protein, the number of genes or pseudogenes in paralogous families,
the occurrence of DNA words (short base sequences), as well as distribu-
tions of the connections of enzymes and metabolites in metabolic networks,
the frequencies of distinct DNA and protein domains. Power laws have also
emerged as distributions of lengths of biased random walks in non-coding
DNA [1].

A figure digitally scanned from [11] shows the frequencies of gene family
sizes. The family size is exponentially binned9. Linear regression shows that
the slopes of the curves are

−2.18, 2.84,−3.17,−3.17,−3.27,−3.62,−3.45,−2.69,−4.02,−3.8,

and these slopes differ significantly from zero.

9Family size 1 falls in class 1, family sizes 2 and 3 in class 2, family sizes 4, 5, 6, and 7
fall in class 3, e.t.c., in logarithmic scale.

7



1.4 The Meaning of Power Laws in Genomic Data

The preceding list of observed cases of power laws could be dismissed as a
mere list of biological trivia. However, as pointed out in [20], the power law
behaviour is a mathematical-statistical expression of an important biological
feature: the dominance of a few members over the overall population.

To quote one example of many in [20], out of the 247 distinct protein
folds currently assigned in the worm genome, just 10 account for the over
half of the 7805 assigned domains.

2 Birth and Death Processes: a General Case

One possible explanation of how the power laws arise, e.g., at the protein
level, could be an underlying process of gene duplication. Should we treat
gene duplication as a stochastic process, the chance of a given gene being
duplicated is proportional to its occurrence in the genome. With each dupli-
cation some genes will increase their presence in the population, enhancing
their chance of further duplication. Combined with selective pressure ac-
counting for the functional significance of different protein products, such a
process gives prominence to some gene types, or families, over others.

Next we describe a general class of stochastic processes with relevant
properties, a general model for the branchings of a species into two species
or extinction of a species. This is known as a birth-and-death process, which
turns out to be linked to power laws in various ways.

2.1 Birth and Death Process: The Generator

A birth and death process is a continuous time Markov chain for the branch-
ings of a species into two species or extinction of a species in which the rates
of birth and death are constant through time. For the facts on continuous
time Markov chains required here we refer to, e.g., [6, 16].

Lineages give rise to new lineages at rates λi, where i is the number of
current lineages. At each split the parent can be thought of as either being
replaced by its two daughters, or as adding a new member to the population
and remaining a member itself, and the process moves from i to i + 1. The
parameters λi represent the reproductive power of the population, effects of
sex and age are ignored. Similarly, lineages go extinct at rates µi. A lineage
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does not lose its power to reproduce before it dies. The reproductive and
mortality effects are acting simultaneously and independently of each other.

We have the generator

Q =



−λ0 λ0 0 0 . . .
µ1 − (µ1 + λ1) λ1 0 . . .
0 µ2 − (µ2 + λ2) λ2 . . .
0 0 µ3 − (µ3 + λ3) . . .
...

...
...

...
...

 , (2.11)

where
µ0 = 0, λ0 ≥ 0, µi ≥ 0, λi ≥ 0, i = 1, 2, . . . , .

This generates a well-defined continuous time Markov chain X = {X(t)|t ≥
0}, which has the non-negative integers as state space.

Example 2.1 (Linear Birth-and Death Process ) A linear birth-and-death
process is obtained by

µi = µi, λi = λi, i ≥ 1, λ0 > 0. (2.12)

Example 2.2 (Poisson Process ) A Poisson process is obtained by

µi = 0, λi = λ, i ≥ 1, λ0 = λ. (2.13)

We know that, if p(t) is the row vector with components,

pi(t) = P (X(t) = i) ,

then we have
p
′
(t) = p(t)Q. (2.14)

Due to (2.11) this can be written componentwise as (a system of differential-
difference equations)

p
′

0(t) = −λ0p0(t) + µ1p1(t)

(2.15)

p
′

j(t) = λj−1pj−1(t)− (λj + µj)pj(t) + µj+1pj+1(t), j ≥ 1,

with some initial condition p(0).
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2.2 Equilibrium Distributions for Birth and Death
Processes

The equilibrium distribution, if it exists, satisfies the system of equations

πQ = 0,

where 0 is a vector of zeros. Hence we obtain from (2.15) the equations

0 = −λ0π0 + µ1π1

(2.16)

0 = λj−1πj−1 − (λj + µj)πj + µj+1πj+1, j ≥ 1.

We solve these by induction. We set

w0 = 1, wj =
λ0λ1λ2 · · ·λj−1

µ1µ2 · · ·µj
, j ≥ 1. (2.17)

Then we get from (2.16) that

π1 =
λ0

µ1

π0 = w1π0.

If we assume that πk = wkπ0 for k = 1, . . . , j, we have

µj+1πj+1 = −λj−1πj−1 + (λj + µj)πj

= −λj−1wj−1π0 + (λj + µj)wjπ0

= λjwjπ0 + (µjwj − λj−1wj−1)π0.

From the definition of wj in (2.17) we get µjwj − λj−1wj−1 = 0 and thus we
obtain

µj+1πj+1 = λjwjπ0 ⇔ πj+1 =
λj
µj+1

wjπ0 = wj+1π0.

This completes the induction. We see that

∞∑
j=0

πj = 1⇔ 1 +
∞∑
j=1

wj <∞. (2.18)

is required for the existence of an equilibrium distribution.
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Example 2.3 [Equilibrium Distribution for a Linear Birth and Death Pro-
cess] For the linear birth and death process, where with regard to (2.18) we
find

∞∑
j=1

wj =
λ0

µ

∞∑
j=1

1

j

(
λ

µ

)j−1

= −λ0

λ
log

(
1− λ

µ

)

under the assumption that
λ

µ
< 1.

This means clearly that the process has an equilibrium distribution, as soon
as the death rate is larger than the birth rate for all i ≥ 1. We set

C =
1

1− λ0
λ

log
(
1− λ

µ

) .
Then the equilibrium distribution for the linear birth and death process is

πj =

 C j = 0,

C λ0
µ

1
j

(
λ
µ

)j−1
j ≥ 1.

(2.19)

3 Birth and Death Processes for Frequencies

of Domain Families

3.1 Another interpretation of birth-and-death

In [12] the following picture is painted. A genome is treated as a bag of
genes coding for protein domains, to be called domains. Domains are treated
as independently evolving units. Each domain is considered as a member
of a family, which may have one or more members. Following events are
considered:

• domain birth, which generates a new member in the same family as a
result of gene duplication.

• domain death
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• innovation, which generates s new family with one member. Innova-
tion may occur via domain evolution from a non-coding sequence, or
a sequence of non-globular protein, via horizontal gene transfer from
another species or in other ways.

The rates of the elementary events are considered to be independent of time,
and of structure, biological function, and other features of families. We
assume that N is the maximum possible number of domain family members.

This is a situation similar to that Yule [31] considered in the 1920’s.
We study first a birth-and death process with a finite number of states and
reflection at boundaries.

3.2 The Generator

We consider a birth-and-death process with a finite number of states and
reflecting boundaries. Here

pi(t) = the relative frequency of a domain family of size i, i = 0, . . . , N

= P (X(t) = i) .

The forward equations for these probabilities are

p
′

0(t) = −λ0p0(t) + µ1p1(t)

p
′

j(t) = λj−1pj−1(t)− (λj + µj)pj(t) + µj+1pj+1(t), 1 < j < N,

(3.20)

p
′

N(t) = λN−1pN−1(t)− µNpN(t),

with some initial condition p(0). The generator is

Q =



−λ0 λ0 0 0 . . . 0
µ1 − (µ1 + λ1) λ1 0 . . . 0
0 µ2 − (µ2 + λ2) λ2 . . . 0
...

...
...

. . . λN−2 0
...

...
...

. . . − (µN−1 + λN−1) λN−1

0 0 0 . . . µN −µN


,

(3.21)
We set

C =
1

1 +
∑N
l=1

∏j
i=1

λi−1

µi
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This model has a unique equilibrium distribution given by

πj =

{
C j = 0

C
∏j
i=1

λi−1

µi
1 ≤ j ≤ N.

(3.22)

A variant of the above describes, e.g., the evolution of the size of a domain
family that includes an essential (indispensable) gene that is not allowed to
go extinct, and is

p
′

j(t) = λj−1pj−1(t)− (λj + µj)pj(t) + µj+1pj+1(t), 1 < j < N,

(3.23)

p
′

N(t) = λN−1pj−1(t)− µNpN(t), j = N,

with some initial condition p(0). We set

C =
1

1 +
∑N
l=2

∏j
i=2

λi−1

µi

.

For this model the unique equilibrium distribution is given by

πj =

{
C j = 1

C
∏j
i=2

λi−1

µi
2 ≤ j ≤ N.

(3.24)

4 Power Laws from Equilibrium Distributions

of Birth and Death Processes

Let us assume that the birth-and-death process is linear, i.e.

µi = µi, λi = λi, i ≥ 1, λ0 > 0. (4.25)

Then we get in (3.22)

πj = C
j∏
i=1

λi−1

µi
∼ C

(
λ

µ

)j
· 1

j
. (4.26)

Hence, if λ = µ, we have a power law

πj ∼
1

j
, (4.27)
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i.e., the exponent γ in (1.1) is equal to one.
Let us consider a slightly more complicated model, where

µi = µ(i+ a), λi = λ(i+ a), i ≥ 1, λ0 > 0. (4.28)

Then we get in (3.22)

πj = C
j∏
i=1

λi−1

µi
= C

Γ(1 + b)

Γ(1 + a)

λ0

λ

(
λ

µ

)j
Γ(j + a)

Γ(j + 1 + b)
. (4.29)

In view of (B.5) we get with x = i+ a and y = 1 + b− a

Γ(j + a)

Γ(j + 1 + b)
∼ 1

j1+b−a

and thus

πj ∼
(
λ

µ

)j
1

j1+b−a .

This probability goes, however, to zero faster than a power law due to the

factor
(
λ
µ

)j
. This is a power law if λ = µ. This analysis has been extended to

more complicated forms of birth and death rates as functions of i in [13, 14].
Next we show another way power laws arise from birth-and-death processes.

5 Palm’s Formulae for a Linear Birth and

Death Process with Absorption at Zero

Let λ0 = 0 so that zero is an absorbing state. The equations (2.15) reduce
to

p
′

0(t) = µp1(t)

(5.30)

p
′

j(t) = (j − 1)λpj−1(t)− j(λ+ µ)pj(t) + (j + 1)µpj+1(t), j ≥ 1.

The initial conditions are

p1(0) = 1, pj(0) = 0, for j 6= 1. (5.31)
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These equations describe the flow of probability in a Markov branching pro-
cess, which starts at state 1, i.e., with one ancestor. We assume that

λ 6= µ. (5.32)

Let us introduce the auxiliary function

β(t) :=
1− e(λ−µ)t

µ− λe(λ−µ)t
(5.33)

which can be rewritten as

β(t) =
e−(λ−µ)t − 1

µe−(λ−µ)t − λ
, (5.34)

which is well defined since µ 6= λ holds. Conny Palm10 solved the differential-
difference equations (5.30) by the use of probability generating functions
outlined in Appendix C. It holds that

p0(t) = µβ(t) =
µe−(λ−µ)t − µ
µe−(λ−µ)t − λ

, t > 0, (5.35)

and
p1(t) = (1− p0(t)) · (1− λβ(t)), t > 0, (5.36)

which yields

p1(t) =
(λ− µ)2 e−(λ−µ)t

(λ− µe−(λ−µ)t)
2 , t > 0, (5.37)

and
pn(t) = p1(t) · (λβ(t))n−1 , t > 0, n ≥ 1. (5.38)

This is a geometric distribution with a modification for n = 0. We expand
the expression by some simple algebra, and get

pn(t) =
(λ− µ)2 e−(λ−µ)t

(λ− µe−(λ−µ)t)
2

[
λe−(λ−µ)t − λ
µe−(λ−µ)t − λ

]n−1

, t > 0, n ≥ 1. (5.39)

Since zero is absorbing, p0(t) is the probability of extinction. We have
that

1− p0(t) = 1− µβ(t) =
(µ− λ)e(λ−µ)t

µ− λe(λ−µ)t
. (5.40)

10Conny Palm (1907-1951), mathematician and telecommunications engineer in Stock-
holm.
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Therefore, if µ 6= λ,

P (0, t) :=
(µ− λ)e(λ−µ)t

µ− λe(λ−µ)t
(5.41)

is the probability that a Markov branching process, which starts with one
lineage has some descendant at time t. Note that P (0, 0) = 1. We can also
write

p1(t) = P (0, t) · (1− λβ(t)), t > 0. (5.42)

Let us next assume
λ

µ
< 1. (5.43)

Under the assumption (5.43) it holds obviously that

P (0, t)→ 0, as t→∞,

and thus it holds for the probability of extinction that

p0(t)→ 1, as t→∞. (5.44)

This is seen as almost certain extinction (in finite time). As an identity it
holds also that

λβ(t) = 1− (µ− λ)

µ− λe(λ−µ)t
. (5.45)

We see now under (5.43) that

λβ(t)→ λ

µ
, as t→∞. (5.46)

Next we observe the presence of a standard geometric distribution in this
model. This follows directly from (5.36), (5.38), and by the definition of a
conditional probability.

Lemma 5.1 The probability of n lineages conditioned on the event that the
birth-death process is not extinct at time t is

p(∗)
n (t) = (1− λβ(t)) (λβ(t))n−1 , t > 0, n ≥ 1. (5.47)

We get also from (5.46) and (5.32 ) that

p(∗)
n (t)→

(
1− λ

µ

)(
λ

µ

)n−1

n ≥ 1. (5.48)

This is in other words the (quasi)stationary probability distribution for the
number of lineages under the condition that the process has not gone extinct.
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Example 5.2 (A Pure Birth Process) The pure birth process, also known
as a Yule process, is obtained from the preceding by setting µ = 0 in (5.30)
and this gives

p
′

1(t) = −λp1(t)

(5.49)

p
′

j(t) = (j − 1)λpj−1(t)− jλpj(t), j > 1

with
p1(0) = 1, pj(0) = 0, for j 6= 1.

Then we get with (5.33)
λβ(t) = 1− e−λt, (5.50)

and
pn(t) = e−λt ·

(
1− e−λt

)n−1
, t > 0, n ≥ 1. (5.51)

6 Power Laws by Yule, and Reed & Hughes

6.1 Birth and Death Processes

Next we show how power laws are derived from the expressions for pn(t)
for birth-and-death processes in the preceding section. The analysis is taken
from [22, 23]. The case considered by Yule in [31] is given a special treatment
in the next subsection.

We assume that T ∈ Exp(ρ) independent of the birth-and-death process
X(t) and consider

qn+1 = P (X(T ) = n+ 1) , n ≥ 1,

which is the birth-and-death process killed or observed at T . The notion
behind T is that at the time we observe the various domains, these have
lived different times, which we assume to be exponentially distributed.

A standard rule of probability calculus gives that

qn+1 = P (X(T ) = n+ 1) =
∫ ∞

0
P (X(t) = n+ 1 | T = t) fT (t)dt

17



=
∫ ∞

0
P (X(t) = n+ 1) fT (t)dt,

since X(t) is independent of T . By assumption fT (t) is the density of Exp (ρ),
and thus we have

=
∫ ∞

0
pn+1(t)ρe−ρtdt.

We insert from (5.39) and get

qn+1 =
∫ ∞

0

(λ− µ)2 e−(λ−µ)t

(λ− µe−(λ−µ)t)
2

[
λe−(λ−µ)t − λ
µe−(λ−µ)t − λ

]n
ρe−ρtdt (6.52)

=
∫ ∞

0

(λ− µ)2 e−(λ−µ)t

(λ− µe−(λ−µ)t)
2

[
λ− λe−(λ−µ)t

λ− µe−(λ−µ)t

]n
ρe−ρtdt. (6.53)

We make the change of variable of integration from t to τ by

t = (λ− µ)−1 log [n (1− µ/λ) /τ ] .

Thus t =∞ ↔ τ = 0 , t = 0, ↔ τ = n (1− µ/τ), and

dt =
−1

(λ− µ)τ
dτ.

In addition

e−(λ−µ)t =
λ

λ− µ
τ

n
,

λ− µe−(λ−µ)t = λ− µ λ

λ− µ
τ

n
≈ λ,

for large n,

e−ρt = (1− 1− µ/λ)−ρ/(λ−µ) · τ−ρ/(λ−µ) · n−ρ/(λ−µ),

and [
λ− λe−(λ−µ)t

λ− µe−(λ−µ)t

]n
=

1− λ
λ−µ

τ
n

1− µ
λ−µ

τ
n

n

∼ e−
λ

λ−µ τ

e−
µ

λ−µ τ
= e−τ

Collecting from the above we get after some algebra that

qn+1 ∼
ρ

λ
(1− µ/λ)−ρ/(λ−µ) · n−1−ρ/(λ−µ)

∫ ∞
0

e−ττ−ρ/(λ−µ)dτ.

18



We note that
Γ (1 + ρ/(λ− µ)) =

∫ ∞
0

e−ττ−ρ/(λ−µ)dτ.

Hence we have for large n the power law with γ = 1 + ρ/(λ− µ),

qn ∼ C · n−1−ρ/(λ−µ), (6.54)

where
C =

ρ

λ
· (1− µ/λ)−ρ/(λ−µ) · Γ (1 + ρ/(λ− µ)) .

6.2 Pure Birth Processes and the Yule Distribution

We consider example 5.2 and the result in (5.51). We have

pn(t) = the relative frequency of a domain family of size n = P (X(t) = n) ,

Then, we have obtained in (5.51) that

pn(t) = e−λt ·
(
1− e−λt

)n−1
, t > 0, n ≥ 1. (6.55)

Let now T be a random variable with exponential distribution Exp (ρ) and
independent of X(t). We want to find

qn = P (X(T ) = n) , n ≥ 1,

which is the pure birth process killed or observed at T . It holds by a standard
rule of probability calculus that

qn = P (X(T ) = n) =
∫ ∞

0
P (X(t) = n | T = t) fT (t)dt

=
∫ ∞

0
P (X(t) = n) fT (t)dt,

since X(t) is independent of T . By assumption fT (t) is the density of Exp (ρ),
and thus we have

=
∫ ∞

0
pn(t)ρe−ρtdt.

Then we substitute from (6.55), and find

qn = ρ
∫ ∞

0
e−ρte−λt ·

(
1− e−λt

)n−1
dt

19



= ρ
∫ ∞

0

(
e−λt

) ρ
λ e−λt ·

(
1− e−λt

)n−1
dt.

The purpose of the strange-looking way of rewriting e−ρt will become clear,
when we make the change of variable

u = e−λt, dt =
−1

λ · u
du, t = 0↔ u = 1, t =∞↔ u = 0,

since this gives us

= −ρ
∫ 0

1
(u)

ρ
λ u · (1− u)n−1 1

λ · u
du

=
ρ

λ

∫ 1

0
(u)

ρ
λ · (1− u)n−1 du.

Here we recognize the Beta integral of (1.7), and get

qn =
ρ

λ
B
(
ρ

λ
+ 1, n

)
, n ≥ 1. (6.56)

This is the distribution in (1.6) with δ = ρ
λ

and k = n. The power-law tail

qn ∼ c · n−1−ρ/λ (6.57)

is established in (B.5) in the appendix B. This is also obtained, as it should,
by setting µ = 0 in (6.54).

The constant δ = ρ
λ

is seen to have a biological interpretation. We can
take ρ as the rate of mutation at generic level, and λ as the rate of mutation
at species level.

A Notations

The notation f(x) ∼ g(x) (at x = a) means [5, p. 432] the following

lim
x→a

f(x)

g(x)
= 1. (A.1)

This means that the functions grow at the same rate at a. For example, if

f(x) = x2, g(x) = x2 + x,

then

lim
x→∞

f(x)

g(x)
= lim

x→∞

1

1 + 1
x

= 1,

but at the same time f(x)− g(x) = x.
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B The Yule-Simon Distribution has a Power-

Law Tail

We want to establish that

P (X = k) = ρB (k, ρ+ 1) , k = 1, 2, . . . , (B.1)

is a power law. First we write B (x, y) using the beta integral, or in other
words

B (x, y) =
∫ 1

0
ux−1 · (1− u)y−1du.

We assume y > 1. The argument below follows in the main the treatment in
[29, p. 58].
Let us first substitute u = e−t, and get∫ 1

0
ux−1 · (1− u)y−1du = −

∫ 0

∞
e−t(x−1) ·

(
1− e−t

)y−1
e−tdt

=
∫ ∞

0
e−tx ·

(
1− e−t

)y−1
dt = I1 − I2,

where
I1 =

∫ ∞
0

e−tx · ty−1dt,

I2 =
∫ ∞

0

(
ty−1 −

(
1− e−t

)y−1
)
· e−txdt.

In the integral I1 we make the change of variable u = xt, dt = 1
x
du, and get∫ ∞

0
e−tx · ty−1dt =

∫ ∞
0

e−u · u
y−1

xy−1

1

x
du

(B.2)

=
1

xy

∫ ∞
0

e−u · uy−1du =
Γ(y)

xy
,

where we applied (1.8). Thus we have

B (x, y) =
Γ(y)

xy
−
∫ ∞

0

(
ty−1 −

(
1− e−t

)y−1
)
· e−txdt. (B.3)

We find an upper bound for the integral I2 in the right hand side of (B.3).
We note that I2 > 0, because 1− e−t < t, and

I2 =
∫ ∞

0

(
ty−1 −

(
1− e−t

)y−1
)
· e−txdt
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≤
∫ 1

0

(
ty−1 −

(
1− e−t

)y−1
)
· e−txdt+

∫ ∞
1

ty−1 · e−txdt.

For 0 ≤ t ≤ 1, it holds that

1− e−t ≥ t− 1

2
t2,

and therefore∫ 1

0

(
ty−1 −

(
1− e−t

)y−1
)
· e−txdt ≤

∫ 1

0

(
ty−1 −

(
t− 1

2
t2
)y−1

)
· e−txdt

and ∫ 1

0

(
ty−1 −

(
t− 1

2
t2
)y−1

)
· e−txdt =

=
∫ 1

0

(
1−

(
1− 1

2
t
)y−1

)
· ty−1e−txdt ≤ K(y)

∫ 1

0
ty−1e−txdt.

where K(y) =
(
1− 2−(y−1)

)
. Thus we have obtained the bound

I2 =
∫ ∞

0

(
ty−1 −

(
1− e−t

)y−1
)
· e−txdt

≤ K(y)
∫ 1

0
ty−1e−txdt+

∫ ∞
1

ty−1 · e−txdt.

For t ≥ 1, and y > 1, we have ty−1 ≤ ty, which gives

I2 ≤ K(y)
∫ 1

0
ty−1e−txdt+

∫ ∞
1

ty · e−txdt

≤ K(y)
∫ 1

0
ty−1e−txdt+

∫ ∞
0

ty · e−txdt =

= K(y)
∫ 1

0
ty−1e−txdt+

Γ(y + 1)

xy+1
,

where we reinvoked the change of variable (u = xt) from the above. By the
same change of variable∫ 1

0
ty−1e−txdt =

1

xy

∫ x

0
uy−1e−udu = H(x).

Thus we have the bound
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I2 ≤
K(y)

xy
H(x) +

Γ(y + 1)

xy+1
. (B.4)

In other words, we have by (B.3) and (B.4) obtained

B (x, y) = I1 − I2 ≥
Γ(y)

xy
− K(y)

xy
H(x)− Γ(y + 1)

xy+1

Also, as I2 > 0,

B (x, y) = I1 − I2 < I1 =
Γ(y)

xy
.

Hence
Γ(y)

xy
− K(y)

xy
H(x)− Γ(y + 1)

xy+1
≤ B (x, y) ≤ Γ(y)

xy
.

By definition of the beta function B (x, y) we have

Γ(y)

xy
− K(y)

xy
H(x)− Γ(y + 1)

xy+1
≤ Γ(x)Γ(y)

Γ(x+ y)
≤ Γ(y)

xy

Thus

1− K(y)

Γ(y)
H(x)− Γ(y + 1)/Γ(y)

x
≤

Γ(x)Γ(y)
Γ(x+y)

Γ(y)
xy

≤ 1

As x→∞,
∫ x
0 u

y−1e−udu→
∫∞

0 uy−1e−udu = Γ(y), and thus

K(y)

Γ(y)
H(x)→ K(y)

Γ(y)
Γ(y) = K(y).

Hence we have obtained for y > 1 that

1−K(y) ≤ lim
x→∞

 Γ(x)Γ(y)
Γ(x+y)

Γ(y)
xy

 ≤ 1

Since K(y) =
(
1− 2−(y−1)

)
can be arbitrarily close to zero independently of

x, we have for all practical purposes established that

Γ(x)

Γ(x+ y)
∼ 1

xy
, as x→∞. (B.5)

Let us note that this constitutes a liberal use of ∼ as defined in (A.1). The
case y ≤ 1 can be treated using the argument above and the properties of
the Euler function. We have thus shown that the Yule-Simon Distribution is
a power law, as claimed in (1.9).
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C Probability Generating Functions

The method of solution (which, as we have claimed, is due to Conny Palm)
of the equations (5.30), or of

p
′

0(t) = µp1(t)

(C.1)

p
′

j(t) = (j − 1)λpj−1(t)− j(λ+ µ)pj(t) + (j + 1)µpj+1(t), j ≥ 1.

is based on a probability generating function. By definition (see [5, p.19])
the probability generating function is

G(t, s) =
∞∑
j=0

sjpj(t).

From the initial condition in (5.31) we get obviously

G(0, s) = s.

On the other hand, we can multiply in (C.1) by sj and sum over j to get

∞∑
j=0

sjp
′

j(t) = λ
∞∑
j=1

(j−1)sjpj−1(t)− (λ+µ)
∞∑
j=0

jsjpj(t)+µ
∞∑
j=0

(j+1)sjpj+1(t).

(C.2)
We observe that

∂

∂t
G(t, s) =

∞∑
j=0

sjp
′

j(t).

Then we get in (C.2) that

∂

∂t
G(t, s) = λs2

∞∑
j=1

(j−1)sj−2pj−1(t)−(λ+µ)s
∞∑
j=0

jsj−1pj(t)+µ
∞∑
j=0

(j+1)sjpj+1(t).

We observe
∂

∂s
G(t, s) =

∞∑
j=1

jsj−1pj(t),

and by a change of variable of summation j − 1 = h and then setting again
j = h, that

∞∑
j=1

(j − 1)sj−2pj−1(t) =
∞∑
h=0

hsh−1ph(t) =
∞∑
j=0

jsj−1pj(t) =
∂

∂s
G(t, s),
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as well as (change of variable of summation j + 1 = h)

∞∑
j=0

(j + 1)sjpj+1(t) =
∂

∂s
G(t, s).

Thus we have

∂

∂t
G(t, s) = λs2 ∂

∂s
G(t, s)− (λ+ µ)s

∂

∂s
G(t, s) + µ

∂

∂s
G(t, s), (C.3)

which gives
∂

∂t
G(t, s) = (λs− µ)(s− 1)

∂

∂s
G(t, s) (C.4)

with the boundary condition

G(0, s) = s. (C.5)

This is a linear first order partial differential equation that can be solved by
standard methods (of characteristic curves)11. We have for µ 6= λ

G(t, s) =

(
µ · (1− s)− (µ− λs)e−t(λ−µ)

λ · (1− s)− (µ− λs)e−t(λ−µ)

)
. (C.6)

Then, as is known [5, p.20], we can obtain pn(t) in (5.39) by differentiation

∂n

∂sn
G(t, s) |s=0= pn(t),

as may be verified.
Since expectation and variance are also derivable from a probability gen-

erating function, we get

∂

∂s
G(t, s) |s=1= E [X(t)] = e(µ−λ)t, (C.7)

and, for λ 6= µ, by [5, p. 3]

∂2

∂s2
G(t, s) |s=1 +E [X(t)]− [E [X(t)]]2 = Var [X(t)]

(C.8)

=
λ+ µ

λ− µ
e(µ−λ)t

(
e(µ−λ)t − 1

)
.

11Metoden med karakteristikerna framställs t.ex. i kapitlen 1−2 av J. Malmquist,
V. Stenström, S. Danielson: Matematisk analys. Del III, Natur och Kultur, Uppsala
1953.
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D Weak Versions of of Zipf’s Law

Here we recapitulate without proofs the results due to Hill [7]. These results
have been refined and extended in [8, 9]. We suppose that a population
consists of N species and M non-empty genera. We let Li the number of
species belonging to the ith genus, i = 1, 2, . . . ,M , and then

M∑
i=1

Li = N. (D.1)

We set
L = (L1, . . . , LM) .

We assume that

P (L | N,M) =
1(

N − 1
M − 1

) . (D.2)

This can be viewed as a discrete analogue of the M -dimensional, degener-
ate, uniform distribution for the proportions N−1Li on the M -dimensional
simplex. The random allocation procedure (the Bose-Einstein procedure)
yielding (D.2) is that of placing N undistinquishable balls in M urns. In
order to secure that all M urns are non-empty, we first put one ball in each
of the urns, and then distribute the remaining N −M balls in the M urns at
random. The number of ways of doing this is(

M − 1 + (N −M)
N −M

)
=

(
N − 1
M − 1

)
.

Let next as be the (random) number of genera with exactly s species. Hence,
if

S = N −M + 1,
S∑
s=1

sas = M.

Then, the size distribution is

a = (a1, . . . , aN) ,

we have

P (a | N,M) =
M !∏S
s=1 as!

1(
N − 1
M − 1

) .

26



For this we note that the same a will arise from any permutation of the
components of the vector L, which has exactly as components of with the
value s, and that there are M !∏S

s=1
as!

combinations of giving rise to distinct

vectors L with such components.
Then

1

M
as

is the observed relative frequency of the number of genera with s species.
Hill shows that, when M,N → ∞, so that M

N
→ θ, there is convergence

in probability
1

M
as

p→ hs (θ) ,

where we have introduced

hs (θ) = θ · (1− θ)s−1, (D.3)

where θ is a random variable with the distribution F (·), obtained as

P
(
M

N
≤ x | N

)
→ F (x),

In the limit we have also

E
[

1

M
as | N

]
→ E [hs (θ)] =

∫ 1

0
θ · (1− θ)s−1dF (θ).

Hence, if the distribution of θ is the Beta distribution with parameters α and
β, we use (1.7) to get

E [hs (θ)] =
Γ(α + β)

Γ(α)Γ(β)

∫ 1

0
θ · (1− θ)s−1θα−1 · (1− θ)β−1dθ

=
Γ(α + β)

Γ(α)Γ(β)

Γ(α + 1)Γ(β + s− 1)

Γ(s+ α + β)
. (D.4)

With α = 1, β = δ this coincides with the Yule-Simon law in (1.6).
If θ has the uniform distribution (=the Beta distribution with parameters

α = β = 1), the computation above gives

E [hs (θ)] =
1

s(s− 1)
, (D.5)

which is a particularly simple form of Zipf’s law.
The results in (D.4) and (D.4) hold for expected size distributions, and

are thus weak versions of Zipf’s law.
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Remark D.1 The function in (D.3) appears in the Griffiths-Engen-McCloskey
(GEM) distribution, see e.g., [4, 10]. Let {Pn}n≥1 be a sequence of independent,
identically Beta distributed, with parameters α = 1 and β, random varibles. We
consider the sequence

Q1 = P1, Qi = Pi ·
i−1∏
j=1

(1− Pj) , i = 2, 3, . . . .

The distribution of
Q∗ = {Qi}i≥1

is the GEM distribution12.
By independence we get

E [Qi] = E [Pi] ·
i−1∏
j=1

E [(1− Pj)] ,

where (1.7) gives

E [Pi] =

∫ 1

0
x · β(1− x)β−1dx =

βΓ(2)Γ(β)

Γ(β + 2)

=
1

(β + 1)
,

where we used Γ(z + 1) = zΓ(z). In the same way we get

E [(1− Pj)] =

∫ 1

0
β(1− x)βdx =

β

(β + 1)
.

If we set

θ =
1

(β + 1)
,

then we have in view of the notation in (D.3) obtained

E [Qi] =
1

(β + 1)

(
β

(β + 1)

)i−1

= hi (θ) .

12Q∗ is a size-biased permutation of a random probability vector, which is Poisson-
Dirchlet distributed, [10].
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