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1 Introduction

Simulated annealing is a term derived from the physical process of heating
and then slowly cooling a crystalline substance and the observation that, if
the structure is cooled sufficiently slowly, the molecules will line up in a rigid
pattern corresponding to a state of minimum energy. This indicates a deep
connection between statistical physics and optimization of functions of many
variables.

The simulated annealing algorithm (SA) imitates this process by produc-
ing a sequence of samples from a series of probability distributions that move
towards the point mass at the minimum of a chosen objecitvd function as
’temperature’ is lowered.

We are going to interpret SA via the Metropolis-Hastings algorithm.

2 A Concept for Optimization Theory

We recognize first the following result found in (Pincus 1968).

Proposition 2.1 Consider h(x) a real-valued continuous function defined
on a closed and bounded set X ⊂ Rn. If there exists a unique x∗ satisfying

x∗ = argmaxx∈Xh(x), (2.1)
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then

lim
λ→∞

∫
X xe

λh(x)dx∫
X e

λh(x)dx
= x∗. (2.2)

The proof of this is given in Appendix A below.
The result in the proposition shows that the for large λ the major contri-

bution to the integral in (2.2) comes from a small neighborhood of x∗. Hence
a Markov Chain Monte Carlo method that generates a Markov chain that
spends, in the long run, most of the time visiting states near the maximizing
point could find x∗.

Let us think of generating samples with the (target) density

fλ(x) =


1∫

X e
λh(x)dx

eλh(x) x ∈ X ,

0 elsewhere.
(2.3)

We make a discretization, as discussed in (Pincus 1970). Let us partition
the region X into a finite nubmer of N mutually disjoint subsets Xj. We fix
points yj ∈ Xj. Then one consructs an irreducible, aperiodic finite Markov
chain {Xn}n≥0 with state space

S = {y1, y2, . . . , yN},

with target distribution (invariant distribution)

fj =
eλh(y

j)∑N
j=1 e

λh(yj)

where the subsets Xj have been assumed to have equal volumes. Then, the
strong law of large numbers for {Xn}n≥0 gives

lim
n→∞

1

n

n∑
i=1

Xi →
∫
X xe

λh(x)dx∫
X e

λh(x)dx
≈ x∗.

This is a technique of optimization that can be implemented by a simulated
annealing algorithm, which is a special kind of Metropolis algorithm.

C-R. Hwang (1980) has in more general setting shown that the probability
measure Pλ that corresponds to the density fλ(x) in (2.3) converges (weakly)
to a measure that is uniform on the set M of maxima of h(x), or

M = {x∗ ∈ Rn|x∗ = argmaxx∈Xh(x)}.

(Häggström 2002, chapter 13).
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3 The Simulated Annealing Algorithm

3.1 Definition of SA as as a Metropolis algorithm

First let us recall the Metropolis Algorithm with the target distriubtion (den-
sity) f and a symmetric proposal density q(y|x). In a quite general manner
we can acheive symmetry by assuming that

q(y|x) = q (‖y − x‖)

The probability of acceptance in the Metropolis Algorithm depends only
on the ratio f(y)/f(x), or

ρ(x, y) = min

{
1,
f(y)

f(x)

}
. (3.1)

Let us now consider target distribution of the following form

f(x) =
e
h(x)
T

Z
, (3.2)

where 1/Z is the normalizing constant, and h(x) is some function of x, T > 0,
where x is notation for a vector of real numbers.

Then the probability of acceptance in (3.1) becomes

ρ(x, y) = min
{

1, e
C(y)−h(x)

T

}
. (3.3)

If h(y) > h(x), then y is accepted with probability one. However, even if

h(y) < h(x), y may be accepted with probability e
h(y)−h(x)

T . Both of these
probabilities depend on the scale T .

We take T first as a constant independent of n. Then we get

Definition 3.1 [Homogeneous Simulated Annealing Algorithm] Given
that Xn = xn

1. Generate Yn+1 ∼ q (y|xn).

2. Take

Xn+1 =

{
Yn+1 with probability ρ (xn, Yn+1)
i with probability 1− ρ (xn, Yn+1),

where

ρ(x, y) = min
{

1, e
h(y)−h(x)

T

}
. (3.4)
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3. Xn+1 7→ xn and return to 1.

Let us allow T as a decreasing function of n, denoted by Tn,

T1 > T2 > . . . > Tn > . . .

is called a cooling schedule. The cooling will have to be slow enough, and
a usual choice is

Tn =
c

log(n+ 1)
, n ≥ 1. (3.5)

where c is a positive constant. Then we have

Definition 3.2 [Simulated Annealing Algorithm] Given that Xn = xn

1. Generate Yn+1 ∼ q (y|xn).

2. Take

Xn+1 =

{
Yn+1 with probability ρn (xn, Yn+1)
i with probability 1− ρn (xn, Yn+1),

where

ρn(x, y) = min
{

1, e
h(y)−h(x)

Tn

}
. (3.6)

3. Update Tn to Tn+1.

4. Xn+1 7→ xn and return to 1.

The definition (3.2) constructs a Markov chain, which is not homogeneous.
The sequence Tn is decreasing to zero,

3.2 Optimization

The function h(x) can be thought of as a criterion, which we want to optimize
as a function of x. In statistical physics this is the energy function to be
minimized. We shall, however, think of maximization, minimization can be
handled by maximizing −h(x).
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We suppose that h(x) is a function that cannot be optimized by straight-
forward means, or that contains a very large number of variables, and that
may have many local maxima.

But from the aforementioned first properties of SA we see that proposals

with h(y) < h(x), y can be accepted with probability e
h(y)−h(x)

Tn , and therefore
the algorithm is allowed to escape local maxima. The probability of this es-
cape depends on the scaling Tn. As Tn decreases to zero, the values simulated
become more and more concentrated around the local maxima.

4 Exercises

Corollary 4.1 Let π (θ) be a positive density on on a closed and bounded
set Θ. If there exists a unique maximum likelihood estimator θ∗, it satisfies
then

lim
λ→∞

∫
xeλl(θ|x)π (θ) dθ∫
eλl(θ|x)π (θ) dθ

= θ∗. (4.1)

5 Appendix A: Proof of proposition 2.1

We follow Pincus (1968) and give first a lemma.

Lemma 5.1 For any ε > 0, set

Nε (x∗) = {x ∈ X | ‖x− x∗‖ < ε} (A.1)

Then it there exists δ > 0 such that

max
x∈X\Nε(x∗)

| h(x)− h (x∗) |< −δ. (A.2)

Proof pf proposition 2.1: We prove the asserion by contradiction. Assume
that

max
x∈X\Nε(x∗)

| h(x)− h (x∗) |= 0.

Since X \ Nε (x∗) is a bounded set in Rn, and h(x) is continuous, there
exists then a sequence {xi} of points in X \Nε (x∗) such that

lim
i→∞
| h (xi)− h (x∗) |→ 0,
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Since X \ Nε (x∗) is compact (Nε (x∗) is open), there exists a subsequence
{xij} that converges. Let

lim
j→∞

xij = y.

Then y ∈ X \Nε (x∗), and by continuity we have

lim
j→∞

h
(
xij
)

= h(y) = h (x∗) .

Since h(x) attains by assumtion a unique global maximum at x∗, it follows
that x∗ = y. This is a contradiction, since y ∈∈ X \Nε (x∗).
Then we prove the proposition, i.e., the limit in (2.2). It sufficse to prove

lim
λ→∞

∫
X |xk − x∗k | eλh(x)dx∫

X e
λh(x)dx

= 0, k = 1, . . . , n. (A.3)

The quantity in the left hand side can be written as∫
Nε(x∗) | xk − x

∗
k | eλh(x)dx+

∫
X\Nε(x∗) |xk − x

∗
k | eλh(x)dx∫

X e
λh(x)dx

By definition of Nε (x∗) we have∫
Nε(x∗) | xk − x

∗
k | eλh(x)dx∫

X e
λh(x)dx

<

∫
Nε(x∗) εe

λh(x)dx∫
X e

λh(x)dx

< ε

∫
X εe

λh(x)dx∫
X e

λh(x)dx
= ε.

We let
M = max

X
| xk − x∗k |,

and let V (B) designate the n-dimensional volume of B. Then∫
X\Nε(x∗) |xk − x

∗
k | eλh(x)dx∫

X e
λh(x)dx

<
M
∫
X\Nε(x∗) e

λ(h(x)−h(x∗))dx∫
X e

λ(h(x)−h(x∗))dx
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<
MV (X \Nε (x∗)) e−λδ∫

X e
λ(h(x)−h(x∗))dx

, (A.4)

where we invoked the lemma above.
Since h(x) is continuous we can choose η > 0 so that if Nη (x∗) = {x ∈

X | ‖x− x∗‖ < η},

e−λδ/2 ≤ eλ(h(x)−h(x
∗)), x ∈ Nη (x∗).

Therefore we have in the denominator∫
X
eλ(h(x)−h(x

∗))dx ≥
∫
Nη(x∗)

eλ(h(x)−h(x
∗))dx

≥ V (Nη (x∗)) e−λδ/2.

Combining the last inequality with (A.4) we get∫
X\Nε(x∗) |xk − x

∗
k | eλh(x)dx∫

X e
λh(x)dx

≤MV (X \Nε (x∗)) e−λδ/2/V (Nη (x∗)) .

Hence we obtained the claim in the proposition, as asserted.
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