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1 Introduction

Simulated annealing is a term derived from the physical process of heating
and then slowly cooling a crystalline substance and the observation that, if
the structure is cooled sufficiently slowly, the molecules will line up in a rigid
pattern corresponding to a state of minimum energy. This indicates a deep
connection between statistical physics and optimization of functions of many
variables.

The simulated annealing algorithm (SA) imitates this process by produc-
ing a sequence of samples from a series of probability distributions that move
towards the point mass at the minimum of a chosen objecitvd function as
‘temperature’ is lowered.

We are going to interpret SA via the Metropolis-Hastings algorithm.

2 A Concept for Optimization Theory

We recognize first the following result found in (Pincus 1968).

Proposition 2.1 Consider h(x) a real-valued continuous function defined
on a closed and bounded set X C R"™. If there exists a unique z* satisfying

" = argmax,c vh(x), (2.1)
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The proof of this is given in Appendix A below.

The result in the proposition shows that the for large A the major contri-
bution to the integral in (2.2) comes from a small neighborhood of z*. Hence
a Markov Chain Monte Carlo method that generates a Markov chain that
spends, in the long run, most of the time visiting states near the maximizing
point could find z*.

Let us think of generating samples with the (target) density
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We make a discretization, as discussed in (Pincus 1970). Let us partition
the region X into a finite nubmer of N mutually disjoint subsets X;. We fix
points ¥/ € X;. Then one consructs an irreducible, aperiodic finite Markov

chain {X,, },>0 with state space

S: {y17y27"'7yN}7

with target distribution (invariant distribution)
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where the subsets &; have been assumed to have equal volumes. Then, the
strong law of large numbers for {X,, },>0 gives
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This is a technique of optimization that can be implemented by a simulated
annealing algorithm, which is a special kind of Metropolis algorithm.
C-R. Hwang (1980) has in more general setting shown that the probability
measure Py that corresponds to the density fy(z) in (2.3) converges (weakly)
to a measure that is uniform on the set M of maxima of h(z), or

M = {z" € R"|2" = argmax,vh(x)}.
(Haggstrom 2002, chapter 13).



3 The Simulated Annealing Algorithm

3.1 Definition of SA as as a Metropolis algorithm

First let us recall the Metropolis Algorithm with the target distriubtion (den-
sity) f and a symmetric proposal density ¢(y|z). In a quite general manner
we can acheive symmetry by assuming that

q(ylz) = q(lly — =)

The probability of acceptance in the Metropolis Algorithm depends only
on the ratio f(y)/f(z), or
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Let us now consider target distribution of the following form
= .2

where 1/7 is the normalizing constant, and h(x) is some function of z, T' > 0,
where x is notation for a vector of real numbers.
Then the probability of acceptance in (3.1) becomes

p(x,y) = min {1, =t } . (3.3)

If h(y) > h(z), then y is accepted with probability one. However, even if
h(y)—h(z)
7. Both of these

h(y) < h(z), y may be accepted with probability e
probabilities depend on the scale T
We take T first as a constant independent of n. Then we get

Definition 3.1 /Homogeneous Simulated Annealing Algorithm/ Given
that X,, = z,

1. Generate Y, 11 ~ q (y|z,).
2. Take

X Y,+1  with probability p(x,, Y1)
LA with probability 1 — p (z,,, Yn11),

where

p(x,y) = min {1, " } . (3.4)



3. Xp41 — x, and return to 1.

Let us allow T as a decreasing function of n, denoted by T,,,
T >Ty>...>T,> ...

is called a cooling schedule. The cooling will have to be slow enough, and

a usual choice is c

Ty =T—7=, > 1
log(n + 1) "=

where c¢ is a positive constant. Then we have

(3.5)

Definition 3.2 [Simulated Annealing Algorithm/ Given that X,, = z,,
1. Generate Y, 11 ~ q (y|z,).
2. Take

X Y,+1  with probability p, (2, Y1)
LT with probability 1 — p, (2, Yni1),

where
. h(y)—h(z)
pn(,y) = min {1, e Tn } . (3.6)
3. Update T;, to T,41.

4. X,41 — z, and return to 1.

The definition (3.2) constructs a Markov chain, which is not homogeneous.
The sequence T,, is decreasing to zero,

3.2 Optimization

The function h(x) can be thought of as a criterion, which we want to optimize
as a function of z. In statistical physics this is the energy function to be
minimized. We shall, however, think of maximization, minimization can be
handled by maximizing —h(x).



We suppose that h(x) is a function that cannot be optimized by straight-
forward means, or that contains a very large number of variables, and that
may have many local maxima.

But from the aforementioned first properties of SA we see that proposals
h(y)=h(z)

with h(y) < h(z), y can be accepted with probability e~ T, and therefore
the algorithm is allowed to escape local maxima. The probability of this es-
cape depends on the scaling T,,. As T,, decreases to zero, the values simulated
become more and more concentrated around the local maxima.

4 Exercises

Corollary 4.1 Let 7 (6) be a positive density on on a closed and bounded
set ©. If there exists a unique maximum likelihood estimator 6*, it satisfies

then

A(6]z)
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5 Appendix A: Proof of proposition 2.1

We follow Pincus (1968) and give first a lemma.

Lemma 5.1 For any € > 0, set

Ne(z")={z e X ||z —2"| <€} (A1)

Then it there exists § > 0 such that
— * —J. A2
Lenax h(z) —h(z") |< =0 (A.2)

Proof pf proposition 2.1: We prove the asserion by contradiction. Assume
that

max
2EX\Nc(z*)

Since X \ N (z*) is a bounded set in R", and h(x) is continuous, there
exists then a sequence {z;} of points in X'\ N, (z*) such that

lim [ h (z;) = h(27) |[= 0,

1—00

h(z) —h(z*) |= 0.



Since X \ N, (2*) is compact (N, (z*) is open), there exists a subsequence
{x;,} that converges. Let

lim x;, = y.

j—o0
Then y € X \ N (z*), and by continuity we have

jlirgloh (xlj) = h(y) = h(z").

Since h(x) attains by assumtion a unique global maximum at z*, it follows
that * = y. This is a contradiction, since y €€ X'\ N, (z*). n
Then we prove the proposition, i.e., the limit in (2.2). It sufficse to prove
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lim [ Mz =0, k=1,...,n. (A.3)

The quantity in the left hand side can be written as
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By definition of N, (z*) we have
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We let

M:m)fémx|xk—xk |,
and let V(B) designate the n-dimensional volume of B. Then
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where we invoked the lemma above.
Since h(z) is continuous we can choose 1 > 0 so that if N, (z*) = {z €
A [z =2 <n},
6—/\5/2 < eA(h(J:)—h(a:*))’ xr e ]\/’77 (l‘*)

Therefore we have in the denominator

/ M@ =RE) g > / ANR(@)=h()) 7.
X Ny (z*)

>V (N, (z%)) e /2.
Combining the last inequality with (A.4) we get

rp — o} | M@ dy

fX eAh(:):) dx
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< MV (X \ Ne () 2V (N, ().

Hence we obtained the claim in the proposition, as asserted. .
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