Linear functions and scalar products

Kramer Alpar-Vajk

Institut for Informatics and Practical Mathematics, Kiel, Germany

February 13, 2004

In what follows let $\mathbb{K} := \mathbb{R}$ or \mathbb{C} .

<u>Theorem:</u>Let X a linear space (vector space) over \mathbb{K} , let $\langle \cdot, \cdot \rangle \colon X \times X \to \mathbb{K}$ a scalar product and let $f: X \to X$ a linear function such that

$$\forall x \in X \setminus \{0_X\}, f(x) \neq 0_X. \tag{1}$$

Then,the function $\|\cdot\|: X \to \mathbb{R}, \forall x \in X, \|x\| := \sqrt{\langle f(x), f(x) \rangle}$ is a norm. Proof:Let $\alpha_1, \alpha_2 \in \mathbb{K}, x_1, x_2 \in X$.

 $\Rightarrow \|\alpha_1 x_1 + \alpha_2 x_2\| \le |\alpha_1| \|x_1\| + |\alpha_2| \|x_2\| \Rightarrow \|\cdot\| \text{ is a seminorm.}$

In light of (1) and from the positive definitness of the scalar product we have that $\forall x \neq 0_X \Rightarrow \langle f(x), f(x) \rangle > 0 \Rightarrow ||x|| > 0$. Therefore we can finally say that $||\cdot||$ is a norm.

<u>Remark</u>: If we consider the identic function $f: X \to X, \forall x \in X, f(x) := x$ then we obtain the well known scalar product-norm connection, (which is a basic idea in the definition of the Hilbert space) namely that $\forall x \in X, \|x\| := \sqrt{\langle x, x \rangle}$ is a norm.

Basic calculus show that if in a vector space X over \mathbb{K} a norm $\|\cdot\|: X \to \mathbb{R}$ is generated by a scalar product $\langle \cdot, \cdot \rangle \colon X \times X \to \mathbb{K}$ besides a linear function $f: X \to X$ with property (1),then the parallelogram-equation holds,namely $\forall x \in X, \forall y \in X: \|x+y\|^2 + \|x-y\|^2 = 2(\|x\|^2 + \|y\|^2)$. Therefore the

 $\forall x \in A, \forall y \in A$: $||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$. Inerefore the parallelogram-equation is invariant over the set of scalar products and over the set of linear functions with property (1).

Let's take a look on a nice application.Let $n \in \mathbb{N}^*$. On the vector space \mathbb{R}^n we consider the usual norm, $\forall x \in \mathbb{R}^n$, $||x|| := (\sum_{i=1}^n ||x_i||^2)^{\frac{1}{2}}$, and the usual scalar prod-

uct $\forall x \in \mathbb{R}^n, \forall y \in \mathbb{R}^n, \langle x, y \rangle := \sum_{i=1}^n x_i \cdot y_i$. Let further $\sigma \in S_n$, apermutation.

Consider the function $f: \mathbb{R}^n \to \mathbb{R}^n$, defined as

$$\forall x \in \mathbb{R}^n, x := (x_1, x_2, ..., x_n), f(x) := (x_{\sigma(1)}, x_{\sigma(2)}, ..., x_{\sigma(n)}). \tag{2}$$

Obviously function f is linear and condition (1) is also fulfilled ,so in the light of the Theorem, $\forall x \in \mathbb{R}^n, \sqrt{< f(x), f(x)>}$ is a norm. Moreover, if we complete the calculus we will obtain that $\forall x \in \mathbb{R}^n, \sqrt{< f(x), f(x)>} = \|x\|$. Since $\sigma \in S_n$ was arbitrary chosen we conclude that for every permutation $\sigma \in S_n$ the function defined in (2) generate the same norm, namely the usual norm on \mathbb{R}^n . If $\sigma \in S_n$ is the identic permutation then f is the identitic function on \mathbb{R}^n and we obtain once again the well-known norm-scalar product connection. As conclusion, we can say that $\forall n \in \mathbb{N}^*$ there are at least n! different linear functions with property (1) which generate the usual norm on \mathbb{R}^n . In fact there are more than n! but this aspect will be discussed elsewhere.