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A hypergeometric type equation satisfying certain conditions defines
either a finite or an infinite system of orthogonal polynomials. We present in
a unified and explicit way all these systems of orthogonal polynomials, the
associated special functions and the corresponding raising/lowering operators
[2,3,4]. Our systematic study recovers a number of earlier results in a natural
unified way and also leads to new findings. Certain results well-known in the
case of infinite systems of orthogonal polynomials [5] are extended to the
case of finite systems, less studied to our knowledge.

The polynomials we analyse are directly related to the bound-state eigen-
functions of some important Schrödinger equations (Pöschl-Teller, Scarf,
Morse, etc) and allow us to analyse these equations together, in a unified
formalism. Our systems of polynomials can be expressed in terms of the
classical ones [5], but in certain cases one has to consider the classical poly-
nomials outside the interval where they are orthogonal or for complex values
of parameters [1]. Generally, our results can not be obtained in a simple
way from those concerning the classical polynomials, and we think that our
general approach is useful.
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Physics, Birkhäuser, Basel (1988).


