On **Z**-equivalence of two forms associated with a quiver and one Roiter's conjecture

M. V. Zeldich

Let Γ is a quiver (i.e. oriented graph) with a finite number points $\{1, \ldots, n\}$ (vertices) and arrows (edges) without loops and oriented cycles. It is well known in representation theory so-called Tits quadratic form $T_{\Gamma}(x)$ of Γ (introduced by P.Gabriel [1]) defined as $T_{\Gamma}(x) = T_{\Gamma}(x_1, \ldots, x_n) = \sum_{i=1}^n x_i^2 - \sum_{i \to j} x_i x_j$ (where second sum is taken on the all arrows of a quiver Γ). Also it is naturally to call corresponding to $T_{\Gamma}(x)$ non-symmetric bilinear form $T_{\Gamma}(x, y) = T_{\Gamma}(x_1, \ldots, x_n, y_1, \ldots, y_n) = \sum_{i=1}^n x_i y_i - \sum_{i \to j} x_i y_j$ as non-symmetrical bilinear Tits form of Γ . On the other side, we can consider the another quadratic (resp. bilinear) form obtaining by natural way from the quiver Γ (see [3]). We call quadratic (resp. non-symmetric bilinear) pathes form of the Γ and denote by P_{Γ} the following form: $P_{\Gamma}(x) = \sum_{i,j=1}^n \lambda_{ij} x_i x_j$ (resp. $P_{\Gamma}(x, y) = \sum_{i,j=1}^n \lambda_{ij} x_i y_j$), where λ_{ij} is the number of pathes from *i* to *j* in Γ .

Theorem 1. Quadratic pathes form $P_{\Gamma}(x)$ and Tits form $T_{\Gamma}(x)$ is canonically Zequivalent. Non-symmetrical bilinear pathes form $P_{\Gamma}(x, y)$ of a quiver Γ is canonically Zequivalent to non-symmetrical Tits form $T_{\Gamma^0}(x, y)$ of the quiver Γ^0 which is anti-isomorphic to the quiver Γ .

As a **corollary**, in the case of finite partially ordered set (poset) $M = \{m_1, \ldots, m_n\}$ with simply connected Hasse graph Γ we obtain the canonical **Z**-equivalence between the characteristic form $\chi_M(x_1, \ldots, x_n)$ of partially ordered relation (introduced by A.V.Roiter), i.e. form $\sum_{m_i \leq m_j} x_i x_j$, and the Tits form T_{Γ} of corresponding to M Hasse graph $\Gamma = \Gamma_M$ (see [3]).

One of the criterions for finite (or tame) representation type of poset may be formulated in the terms of properties of χ_M , exactly, in the terms [2] of the norm of relation $||(M, \leq)|| = \min{\{\chi_M(x)|x \in K\}}$ where $K = \{x|\sum_{i=1}^n x_i = 1 \text{ and the all } x_i \geq 0\}$. Namely, (M, \leq) has finite (resp., tame) representation type iff $||(M, \leq)|| > \frac{1}{4}$ (resp., iff $||(M, \leq)|| \geq \frac{1}{4}$) (see [2]).

Following to [2] the posets (M, \leq) is said to be *P*-exact iff its norm may be achived only on exact vectors (i.e. vectors with non-zero coordinates) from the simplex *K*. For example, posets from classical lists of critical and hypercritical posets (given by M.Kleiner and L.Nazarova respectively) are *P*-exact.

Also, as in [2] the poset S is said to be *fence* if S is a union of t nonintersective chains (i.e full ordered subposets) Z_1, \ldots, Z_t , where $||Z_i|| \ge 2$ $(i = \overline{1, t}), t > 1$; $\min(Z_i) < \max(Z_{i+1}), i = \overline{1, t-1}$ and there are no other comparisons between elements of different chains.

In [2] A.V.Roiter found all fencies (which he called *uniform*) which may be P-exact and formulated conjecture, asserting that finite poset is P-exact iff it is disjoint union (cardinaly sum) of chains and (or) some uniform fensies.

In this talk we prove, that if connected poset M is P-exact, then χ_M is positive definite (**Theorem 2**) and corresponding to M Hasse graph $\Gamma = \Gamma_M$ is simply connected (**Theorem 3**). Hence, due to **corollary** of **Theorem 1**, in this case the Tits form T_{Γ} is also positive definite and therefore Γ is one of the Dynkin's graphs with ordinary edges. We show, that really Γ is \mathbf{A}_n and M is a chain or a fence. So, we obtain the full and explicit description of P-exact posets and prove ([3]) the Roiter's conjecture ([2]) about their structure.

1. Gabriel, P.: Unzerlegbare Darstellungen I. Manuscripta Math. 6 (1972), P.71-103.

2. Nazarova L.A., Roiter A.V. Norm of a ratio, separating functions and representations of marked quivers // Ukr. Math. J. (2002), vol. 54, N^o 6, P. 808-841.

3. Zeldich M.V. ρ-exact partially ordered sets and characteristic forms. Preprint. Kiev Taras Shevchenko National University (2002), 69p.

Kiev Taras Shevchenko National University, e-mail: zeldich@mail.ru; section 02 and(or) 06 Classificacion 15AG3; 16G20; Key words: pathes form and Tits form for a quiver; characteristic form of partially ordered relation; Hasse graph of partially ordered set (poset); *P*-exact poset.