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Any Lagrangian function on a closed finite-dimensional manifold M, when
depending 27 periodically on the evolution parameter generates so called La-
grangian flow. Its related group of diffeomorphisms na T(M) x S' makes it
possible to constuct the set of normed (probabilistic) invariant measures on
T(M) x S'. The latter appears to be a convex set completely characterized by
means of so called extreme points being at the same time due to a result of J.
Mather ergodic measures of the Lagrangian flow under regard. On the other
hand, there exists a natural mapping from the space of all invarian mesure space
mentioned above into the first homology group H (M;R) of the manifold M via
a well known Mather’s construction, whose image is exactly the measure homol-
ogy of our Lagrangian system. Its properties prove to be very very important
for detecting the corresponding ergodic mesures, making use a new tool of its
studing related with so called Legendrian transformations and Poincare -Cartan
invariants. Moreover in the case when our Lagrangian funcion depends adiabat-
ically on a small parameter ] 0 through the expession et € R/27Z, the suitable
application of the Legendrian transformation together with the technique of
Poincare -Cartan invariants makes it possible to investiagte the existence and
properties of so called adiabatic invariants and the corresponding limiting er-
godic measures on T'(M) x S'. These same properties are studied simultaneously
making use also of the theory of spectral invariants applied to the generator of
the corresponding Hamiltonian flow on the symplectic phase space T*(M).



