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Differential delay equations appear as mathematical models of a wide variety of real life phe-
nomena in physiology, mathematical biology, laser optics, economics, and other fields [1, 3, 4, 5].
This talk discusses the global stability properties and the existence of periodic solutions of scalar
differential delay equations of the form

x′(t) =

∣∣∣∣
f1(x(t − τ)) g1(x(t))
f2(x(t − τ)) g2(x(t))

∣∣∣∣ = f1(x(t − τ))g2(x(t)) − f2(x(t− τ))g1(x(t)). (1)

Functions fi and gi, i = 1, 2, are assumed to be continuous and such that the equation has a unique
equilibrium. Equation (1) includes several important partial cases coming from applications.

For the global asymptotic stability two types of sufficient conditions are established: (i) delay
independent, and (ii) conditions involving the size τ of the delay. Delay independent conditions
make use of the global stability in the limiting (as τ → ∞) difference equation f1(xn)g2(xn+1) =
f2(xn)g1(xn+1): the latter always implying the global stability in the differential equation for all
values of the delay τ ≥ 0. The delay dependent conditions involve the global attractivity in specially
constructed one-dimensional maps (difference equations) that include the nonlinearities fi and gi,
and the delay τ . The global stality results are established in [2]

Sufficient conditions are given for equation (1) to have a nontrivial periodic solution. This
typically happens when the unique equilibrium is unstable, the equation possesses the negative
feedback, and there is a uniform boundedness of all solutions.

Relevance to existing models from applications is also discussed.
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