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Abstract. Fractional spline wavelet is extended to all fractional degrees a > =t

5~ for solving

boundary integral equations. Its Galerkin discretization with N degrees of freedom on the bound-
ary with fractional spline wavelet as basis function is analyzed. By using fractional spline wavelet
bases and Galerkin method for these equations, a sparse matrix that can be mildly and moderately
ill-conditioned is obtained. Since, truncation strategy is presented which allows to reduce the number
of nonzero elements in the stiffness sparse matrix from O(N?) to O(N log N) entries. By introducing
two operators which map every spare matrix to circulant sparse matrix, are obtained two classes of
preconditioners that belong to a Banach space. Based on having some properties in the spectral
theory for these classes of matrices, it can concluded that the circulant matrices are a good class
of preconditioners for solving these equations. In general, we call them circulant fractional spline
wavelet (CFSW) preconditioners. Therefore, two classes of stable algorithms are introduced for rapid

numerical application.
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1 Introduction

Let us introduce the following boundary integral operators:

Tif(z) = Jpk(z,y) f(y)dsy
Ti: Dy = H3 (T) — R, = H3 (),

Tof (x fr 36 k(z,y f(y)dsy
TQ.DQ_H2( T) — Ry = H3(T),

Tsf(2) = Jo g k(@) f (v)dsy
3.D3:H2 (T) — Ry = H= (),



and
Tif(z) = —ga v 5oz k(@ y) f (y)dsy

1 -1 (4)
T4:D4:H2(P)l—>R4:H2 (P),

where £ € T and T is a polygon in IR?. The above mappings are continuous in the Sobolve

spaces (that are defined in [13]) and k(z,y) := log ||z — ||, =,y € R?\{0}.

All the considered boundary integral equations are integral equations of the first kind. For
regular elliptic boundary value problems in bounded or unbounded domains, the method of
reduction to boundary via Green’s identities leads to equivalent boundary integral equations.
Their discretization by finite element on the boundary manifold gives rise to the so-called
boundary element method, which has become a standard tool in engineering practice by now
(for a survey, we refer to [26] and the references there). While classically boundary element
methods have been based mainly on the so-called equations of the second kind, it was shown
more recently that a discretization based on the so-called equations of the first kind is also
possible [21]. In particular, in conjunction with a Galerkin type discretization one obtains
symmetric and positive definite stiffness matrices and approximations for unknown Cauchy
data of the original boundary value problem. Distinct advantages of boundary integral equa-
tion based methods are the dimensional reduction of the computational domain by one and
the discretization of exterior problems.

However, the resulting stiffness matrices are dense due to non-local nature of the boundary
integral operators. This substantially increases the complexity of the matrix generation and
of a matrix vector multiplication which is the basic step in an iterative solution of the linear
system. In addition, for integral equations of the first kind, the condition of the stiffness
matrices corresponding to standard finite element bases grows as the mesh width tends to
zero, i.e. the matrices are usually ill conditioned.

A substantial reduction in the complexity of the calculation of the stiffness matrix and of
the multiplication of the stiffness matrix with a vector is possible by multi-pole expansions
of the potentials proposed in [18] and the panel clustering proposed independently in [10].
Another avenue to overcome the above mentioned drawbacks of boundary integral equation
of integral operators which, through the choice of a special, so-called wavelet basis, yields
numerically sparse stiffness matrices, i.e. they are still densely populated, but most of their
entries are so small that they can be neglected without affecting the overall accuracy of the
discretization (so-called truncation of stiffness matrices). For Galerkin discretization of rather
general integral operators of order zero it was shown in [2] that generation of the stiffness ma-
trix and the matrix vector multiplication can be achieved with essentially optimal complexity

(i.e. up to possibly a logarithmic term) up to any prescribed fixed accuracy in [2]. These ob-



servations motivate the use of wavelet bases in boundary element methods. There, however,
one is less interested in truncating the stiffness matrices in order to achieve an a-prior fixed ac-
curacy as in [2], but rather in truncation which does not decrease the asymptotic convergence
rate of the overall boundary element scheme. This question was addressed recently in the
periodic setting for a wide class of boundary integral operators and basis functions for general
Galerkin-Petrov schemes in [7]. It was shown there in particular, that truncation schemes are
possible which preserve the asymptotic rate of convergence of the Galerkin-Petrov scheme
with optimal complexity. In addition, it was shown that for operators of nonzero order, a
simple diagonal preconditioning of the multi-scale discretization renders the condition num-
ber of the truncated stiffness matrices bounded, i.e. the above mentioned ill conditioning can
be completely avoided. In the present paper we use fractional spline wavelet basis instead
of wavelet basis. Experimental results will be shown that the optimal complexity for frac-
tional spline wavelet base may be better than other base. But, we remark that our aim is to
implement of new algorithms base on circulant fractional spline wavelet. The present paper
is devoted to the analysis of fractional spline wavelet based symmetric Galerkin schemes for
boundary integral equations of the first kind on polygonal in IR?. On the other hand, the goal
is to know how to precondition effectively, both in the case of numerical linear algebra (where
one usually thinks of a finite dimensional problem to be solved) and in function spaces where
the preconditioning corresponds to software which approximately solves the original problem.
Therefore, outlines of this paper is as follows: In section 2 the fractional spline wavelet basis
is introduced base and we introduced the Galerkin method for obtaining a system. For this
result it is essential that we considered Galerkin discretization of these integral equations. In
section 3, for speeding up the convergence non-stationary methods, we introduce two classes
of preconditioners. We also discuss properties of these classes of circulant preconditioners in
sections 3 and 4. Moreover, we confine ourselves to part stability plays in connection with
the finite section method in section 4 (see theorem 4). Finally, in section 5, is shown that
the classes of preconditioners to implement and in the numerical test cases considered leads

to very significant improvement in accuracy.
2 Galerkin Boundary Element Methods by FSP

Let I' be a bounded, polygonal and non-intersecting boundary with Ny straight sides I';
and vertices V = {P]Q}jzl,m,NO. The domain © C IR? is one of the components of ]R2\I‘, 1.
e., either the bounded interior or the unbounded exterior of the curve I'. The unit normal
vector on the boundary I' which points from © to Q¢ := IR*\Q is denoted by n ( it is defined

almost everywhere on I'). We can parameterize the boundary T' by a 1-periodic function



®: [0,1] — T satisfying '

?
No
where the components of ® are linear polynomials on each of the integrals
1,..., Np.

For the approximation of the solutions of the above equations we choose a positive integer

o(—) =P i=1,...,No,

2

i—1 z]
?

No * No =

N and use the uniform mesh with the mesh points @(NLNO), 7 =20,...,NNy. Then we define

the space S§ (where a > _71) of fractional spline wavelet functions with degree a. The
generating basis of this space (on the mesh) is defined as follows (see [24] and [25]):

Consider the Fractional Spline Wavelet (FSW) bases

l

a+i —1)* atitl a+i a+i
e (x/2)zzkez(2a—l+)iZzez( ) Zotitl (1 + k- 1) (z — k), (5)

i=0,1,2,..

where §%(z) is a fractional B-spline with degree «, also, we define the fractional causal

B-splines by taking (« + 1)th fractional difference of the one side power function

AYt! 7 1 X[ a+l
Bi(@) = ik = Z(O‘k )(w—k)i

(a+1) T(a+1)

k=0
and
AT g| 1 a+1
e T
o at Y gez \ B+ 55
where a > %1 in order to ensure square integrability. These functions interpolate the

usual polynomial B-splines; these are recovered for « integer. They are ”causal” in the
sense that their support belong to IRT. Here, we assume that the fractional has been ex-

tended to non-integer a by a! = I'(a + 1) using Euler’s gamma function. Here A% f(z) =

+1
SiZ(-1)° ( " ) f@— k),
z% a>0 %‘:@) if  «a not even
xl‘lf' = - . a'nd |x|3 = .582" lo 2$ .
0  otherwise (_1)714_%% if a=2n (even)

As S% is subspace of L?(T'), we can approximate the above boundary integral equations
with Galerkin method. It is clear that %" is a Riesz basis for L?(T") [25]. As the degree
« increases, the functions converge to modulated Gaussian which are known to optimally
time-frequency localized in sense of Eisenberh uncertainty principle. This limit behavior can
be inferred from the general convergence theorem in [1]. We use test and trial functions in

these finite dimensional subspace and obtain the following Galerkin approximations.



In general, we can use the fractional spline wavelet bases for representation of linear

operators. Hence, let f € D;, g € R; and T; is a linear operator such that
Tif=g i=1,234 (6)

First, we have the standard forms which starts with the decomposition of f and ¢ in a

wavelet fractional basis, by using P, as projection method:

Pof =" < fip3H > ygt,

=0
+j +j
Pug =Y <g, 7™ > 47
=0
Hence, we have:

TPf =Y < f,95M > Tyt

7=0

Also, we have

Tip = < Tip, S+ > 3™,

7=0

which gives:

TP f Z Z < T¢a+k,¢i+,7 >< f ¢a+k Oc+] _ Z < g,,lpa—f—k: ’(/)a+k. (7)

j=0k=0

Remark. In general, for Q C R" such that n > 2, we can write P, f = > aj, .. ]anC" o
where ® is the tensor product for producing the space of V;; ® ... ® V}, and a;,. j, are un-
known coefficients [5], [16].

Therefore, (7) can be depicted by on infinity matrix whose coefficients are
akj =< ﬂ¢a+k,¢i‘|ﬂ > 1/)(14'],

and the following system is obtained:

A,z =0b. (8)
Where
An = (agj =< TpS™ 97 > )0, 9)
and
= (<t >), b= (< gyt > ggth). (10)

Therefore, we observe that the equation (6) can have recourse to the finite systems that

is (8) we call this transformation finite section method. Let {A,}°2; be a sequence on n x n



matrices A,. This sequence is said to be stable if there is an ng such that the matrices A,
are invertible for all n > ny and

sup ||A;1|| < 00.

n>no
Using the convention to put ||T;|| = oo if T; is not invertible, we can say that {4,}22, is a
stable sequence if and only if

lim sup,, ,o0l|4; | < o0,

stability plays a central role in asymptotic linear algebra and numerical analysis. The our
aim is to confine ourselves to part stability that is plays in connection with the finite section
method.

On the other hand, Meyer [14], [15] and other authors [11], [16] have shown that integral
operators and Laplacian operators have the representation of sparse matrix if the wavelet
bases are used. Therefore, it can be assumed that the matrix of (9) is a sparse matrix. An
advantage for fast wavelet transforms on A, is that it requires O(n) or O(nlog(n)) opera-
tions. We claim that if circulant operators are used then the above order will reduce since we
know that convolution integral and elliptic operators have representations of sparse Toeplitz
matrices (see [8], [12] and [17]). Also, if a powerful method such as Krylov methods is used
for solving (8), then we have a super-linear convergence rate. A history of non-stationary
iterative methods (for matrices) is given in D. Young [28], and a recent survey can be found
in R. Freund, G. Golub and N. Nachtigal [28]. The very recent methods include GMRES by
Y. Saad and M. H. Schultz [28], QMR by R. Freund and Nachtigal [28], CG, see P. Sonneveld
[28], and different variants of GMRES due to H. A. van der Vorst and C. Vuik [28] (partly
motivated by the "EN-update” in T. Eirola and O. Nevanlinna [28]). Here, we remark that
in (8), A, may be mildly and and moderately ill-conditioned [27]. Is there the convergence
of Krylov subspace methods? for solving (8) by a non-stationary method ( see [19], [20] and
[21]). One standard way for speeding up the convergence rate of the Krylov methods is to
apply a preconditioner so that it causes to cluster the spectrum. But, how can we make a
preconditioner such that the spectrum of matrix is clustered? Also, we have to present some
properties for convergence analysis. For answering to these questions the following sections

are provided.
3 Circulant Fractional Spline Wavelet (CFSW) Preconditioners

We know that C, = Circ [cg,c1, ..., cn] = is called a circulant ma-

[Cz’—j( mod n+1)]?,j:0

trix and 1, = [tj—k]zn,jzo is called a Toeplitz matrix. Also, if n is a fixed integer, then



—2me

F = ﬁ(f(i_l)(j_l))”- is called the Fourier matrix of order n that { = exp(=) also we

Zi]:O
-1
assume that a > 5 -

Let ¢ be an operator that maps every n x n matrix A, to a circulant matrix C,. It is
also assumed that this operator is onto and 1-1. We denote the Banach algebra of all n x n
matrices over the complex field with (M,,xy,|.||) and we consider the subalgebra of all cir-
culant matrices (Cpxn, ||-||) as an inverse closed, commutative algebra. Also, we assume that

(Snxn, ||-]]) is the subalgebra of all sparse matrices. Let’s consider the following definitions:
g

Definition 1. The CFSW operator c is called the optimal CFSW (OCFSW) operator if

for finding the circulant matrix, we minimize ||C,, — Ay,|| over (Cpxn, ||-|])-

Definition 2. The CFSW operator c is called the super-optimal (SCFSW) operator if

for finding the circulant matrix, we minimize |1 — C;1A,|| over (Cpxn, ||.|)-

For any A, in Spxn, let 6(A,) denote the diagonal matrix whose diagonal is equal diag-

onal of the matrix A,. We first give two methods for finding c¢(4,,).

Theorem 1. Let A, = (a;j) € Spxn and c(A4,) be the minimize of ||C,, — A,|| over all
Cp € Cpxn- Then c¢(A4,) is uniquely determined A,,. Moreover,
(i) ¢(A4y) is given by

n—1
c(An) = Z (% Z apq) Q7 (11)
j=0 p—q )

=j(modn

where @ is the n X n circulant matrix

0 1
0
Q= 10 , (12)
0 1 0
(ii) ¢(Ay) is also given by
c(Ap) = F*§(FA,F*)F, (13)

where F' is the Fourier matrix and * denotes conjugate transposition.



Proof. For the proof of (i) (see [22], [23]). For (ii), we first note that any circulant matrix
C), can be expressed as F*A,F, where A, is a diagonal matrix containing the eigenvalues of

Ch; see Davis [6]. Since the Frobenius norm is unitary- invariant, we have:
|Cn — Anllp = |[F*AnF — Ap||p = [[An — F* AnF||p.

Thus, the problem of minimizing ||C,, — Ay||r over Cpx, is equivalent to the problem of
minimizing || A, — F*A, F||r over all diagonal matrices. Since A,, can only affect the diagonal
entries of F' A, F*, we see that the solution for the latter problem is A,, = §(F A, F*). Hence,
F*§(F A, F*)F is minimizer of ||C,, — A, ||r. It is clear from the argument above that A,, and
hence, ¢(Ay,) are uniquely determined by A,. O

We remark that by (14), the jth entry in the first column of ¢(4,,) is given by

1 1 .
[c(An)]jo = - Z apg = tr (4,Q7Y), 7=0,1,...,n—1 (14)
p—g=4( mod n)

where tr (.) denotes the trace. By (13), the eigenvalues of ¢(4,) are given by 6(FA,F*).
The following lemma, is on the algebraic properties of the CFSW operator.

Lemma 1.

(i) For all A,, B, € Spxn and «a, complex scalars, c(aA, + 8By,) = ac(Ay) + B(By).
Moreover, for all A,, € Syxn, ¢2(An) = ¢(c(4Ar)) = ¢(4,). Thus c is a linear projection

operator.

(ii) Let A, € Spxn then tr (c¢(4y)) = tr (4,) = E;-L:_Ol Xj(Ap), where X;j(Ap) are the

eigenvalues of A,,.
(iii) For all A,, € Spxn, we have: ¢(4}) = c(Ap)*.

(iv) Let A, € Spxpn and ¢, € Cpxp. Then
c(CrAy) = Cr.c(Ay),
c(A,Ch) = ¢(Ay).Ch.

Proof. The proofs of (i) and (ii) are trivial; therefore we omit them. By using (14) and
the fact that §(A}) = (6(An))*. One can easily prove (iii). For the proof of (iv), see theorem
2 in [3] and [17]. O

Next we are going to give some geometric properties of the CFSW operator. For all
Ap, By, € Spxn, let < Ap, By, >= (1/n) tr (A,B};). Obviously < A,,, B, > is an inner prod-
uct in Sy, and < Ap, Ap, >= (1/n)||An||%. It is easy to show that {Q’| j =0,...,n — 1},



where @ is given in (14), is an orthonormal basis of (Cpxn,|-||r). We show below that

A, — ¢(Ay) is perpendicular to the space Cy,xp,-

Lemma 2. Let A, € Syxn, then we have:
(i) < A, — ¢(4,),Cp >p=0 for all C), € Cpxp,

. =1
(ii) < An,c(An) >= i

(iii) [[An — c(An)l[F = [|AnllF — llc(An)lIZ-
Proof. For (i), since {Q’ ]"-:_(} is an orthonormal basis of Cpxy, it suffices to show that
< Ap —c(A),Q" >p=0 for j =0,...,n — 1. However, by (14) and Lemma 1(i), we have:
. 1 .
<Ap—c(4,), Q) >p= - tr ([An — c(4,)]Q77) =
L (4,077 — L b (c(4n)Q
= — T _ =
" n n r (c(A4n)Q77)
= [e(An)]jo — le(e(An))]jo =

= [C(An)]jo - [C(An)]jo =0.

Now (ii) follows directly from (i). For (iii), we have, by parts (i) and (ii) above,

|An — c(An)||% =n < Ap — ¢(Ay), Ap — c(A4y) >=

=n< Ap —c(An),An >p=n < Ay, Ap >p —n < c(An), Ap >p= || An||% — llc(4,)]|%.0

4 Spectral Properties of CFSW Operators

In this section, we discuss some spectral properties of the CFSW operators and so, we
prove the stability of using preconditioners. The following theorem was first proved for the

real scalar field in Tryshnikov [22]. His proof uses (12), and this proof here uses (14).

Theorem 2. If A, € S« is Hermitian, then ¢(4,,) is Hermitian. Moreover, we have:
)\mm(An) < Amin (C(An)) < Anaz (C(An)) < Amaz (An)a

where A\pqz(.) and Apin(.) denote the largest and the smallest eigenvalues respectively. In

particular, if A, is positive definite, then c(A;) is also positive definite.
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Proof. By Lemma 1(iii), it is clear that ¢(Ay) is Hermitian. By (9), we know that the
eigenvalues of ¢(A,,) are given by §(F A, F*). Suppose that 6(FA,F*) = diag(Ag,..-; Ap_1)
with A\j = Apin(c(A4r)) and Ay = Apaz(c(An)). Let e; and ey denote the jth and the kth unit

vectors respectively. Since A,, is Hermitian, we have:

e FA,F*e
)\mam(C(An)) =X = ko s Tk <

€5k
o*FA, F*x ¥ Apx
< B — = Ap).
- Iil;zz’(})( T*T Iilii})( T*T mm( n)
Similarly,
Nomin (Ar) = ¥ Apx . T*FA,F*x
; = min = min
nATn z#0 x*x z#0 x*x

< e;’fFAnF €j

*o .
eje]

= Xj = Amin(c(4p)).
From the inequality above, we can easily see that ¢(Ay,) is positive definite when A, is posi-
tive definite.O

Lemma 3. For all A, € Syxn, c(4,A4}) — c¢(Ay)c(4}) is a positive semi-definite matrix.

Proof. Let A, = (ajx) and [F|;;, = (ﬁ)ff, where ¢; = e =27/, Let
Dy = c(An A7) — c(An)c(47) =
=F*[0(FA,AF*) — §(FALF*)6(F A, F")],
then for all £ =0, ...,n — 1 we have:
[6(FARALF) ke = [6((F An)(FAn)" )ik =
1 n—1 [fn—1 n—1
~ Z Z apgé}, Z apgl, |
¢=0 \p=0 p=0

and

n—1n—1 n—1n—1
[6(F A F*)3(F AL F*)] kk—< PP )( ZZapqﬁk“’)-

p=0 ¢=0 p=0 ¢=0
Hence, the kth eigenvalue of D, is given by

nlnl 2 nlnl 2
Ak ( Z Z“qup ZZaa,,qu a
q0p0 poqo
Since
nlnl 1n1n1 nlnl
Zzaapqu e —_Z > apeéy ‘ékq|__z > apeth) s
p0q0 q¢=0 |p=0 g=0 |p=0
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we have:
n—1|n—1 n—1|n—1 2
Ak (Dn Z Zapqgk - Z Zaquk .
q 0 [p=0 q 0 |p=0

Let dgy, = %| P &dgkaquﬂ; then by the Cauchy-Schwartz inequality, we have:

2
n—1 n—1
Dp)>n) doy — (quk> >0, k=0,..,n—1.
q=0

Thus D, is positive semi-definite. O

Theorem 3. For all n > 1, we have:
(@) llells = sup |4, =1lle(An)llL =1
(i) lelloo

(iil) [lellr = sup a,)p=1llc(An)llr =1,

SUP |4, fleo=11€(An)[lo0 = 1,

(iv) llellz = sup a,,=1llc(4n)ll2 = 1.

Proof. To prove (i), we first note that if A, = I, then ||c(4,)|l1 = ||I|1 = 1. For general
Ay in Sy «qn, we have by (11)

n—1 -
1 1
le(An)lli = |= > < - Z > |apg| =
—0 n . n —0 .
J p—g=7( mod n) 7=0 p—g=j( mod n)
n—1ln-—1
:—ZZ\asz—n [Anll1-
1=0 k=0

Hence, ||c||; = 1 for all n. By a similar argument, we can prove (ii). To prove (ii), we notice
that if A, = (£)[|7||F = 1.
For general A, in Sy, x, by Lemma 2(iii), we have:

le(An)lE = [ AnlE — 14n — c(4n)E < 40l

Thus ||c(An)||lF < ||An||F. Therefore, ||A,||r =1 for all n.

To prove (iv), by Lemma 1(iii), Lemma 3, and Theorem 2, we have:
le(An) |13 = Amax(c(An)*c(45)) = Amax(c(4y,)c(4n)) <

< Amax(¢(47,4n)) < Amax (47, 4n) = || Anll3,

for all A, in Spxp. Since |[c(I)|l2 = ||I|l2 =1, |cllo=1. O
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We can repeat the above statements for the SCFW preconditioner. But some important

questions have remained. Does a SCFW exist? and how can we make it?
Instead minimizing ||I — C;;'Ay||F, An € Spxn, we consider the problem of minimizing
|T — CpAp||p over all nonsingular C, in Cpyp. Letting C,, = F*A,F, we have:
T — CrApnllr = I — F*AuFAn||lr = |I — ApFAF*||p =

= tr (I — AyFAF* — FALF*A* + A F A, AZF*\*)
tr (I — Ap6(FALF*) — §(FALF*)AY 4+ ApS(F A, AL F*)AY) .

Let A, 6(FA,F*) and 6(F A, A} F*) be given by diag (Ao, ..., A\p—1), diag (ug, ..., up—1) and

diag (wy, ..., w, 1) respectively. Therefore,we have:
min || — CpAy,||p = min{ tr (I — Ayd(FA,F*) — §(FA,F*)A%) 4+ Apd(FA F*)AX} =

n—1

Z (I — AU — ’(7,]65\]9 + Akwkﬂk) .

= min

)\0:---:)\n—1 n=0

Notice that by (14) and Lemma 3, wy, > uyty for all k = 0, ...,n—1. Hence, for all complex
scalars A\, k = 0,..,n—1, the terms 1 — A\pup — U\, + A\pwy A are nonnegative. Differentiating

them with respect to the real and imaginary parts of A\; and setting the derivative to zero,

we get
Since A, and ¢(A;,) are nonsingular, both wy, and uy, are nonzero. Hence, A also nonzero

Thus the minimizer of ||I — Cp, A,||r is nonsingular and gives by
Cn = F*ApF = F*§(FA F*)[§(FA,ALF*)|7IF

= [F*§(FALF*)F*|[F*6(FA, AL F*)F)~!
= (A7) e(An4)
Therefore, the SCFSW preconditioner is given by
Gt = c(AnAs)e(A7) 7

Let us S; be an operator so that (6) is transferred to
SiT; = Sig.

Therefore, for stability, we can state the following theorem
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Theorem 4. Let {A,} be a sequence of n x n matrices for o > _71 and suppose there is
an operator S;T; such that C; !4, — S;T; and (C,;'A,)* — (S;T;)* strongly. If {C, 1A, } is

stable, then S;T; is necessarily invertible and
1(S:T3) M| > Tim infp ool Ay Cll
Proof. Suppose ||A;1C,|| > M for infinitely many n and P, be the following projection:
P,: 1?2 12, (o, 21,22, ...) = (0, %1, T2, .-, Tn—1,0,0,...).
For z € I? and these n,
1Pazll = 147" CuCr' AnProz|| < M| Cy AnPrc]

1Pzl = [((Cr An) ")~ (CF T A)* Paz|| < M|(CF " An)* Poz|

and passing to the limit n — oo, we get

]l < M| SiTiz], ]l < MI|(SiT)" =],

which implies that S;T; is invertible and ||(S;T;) !|| < M. Here S; can be as a continues
CFSW operator. O

5 Numerical Results

This section is dedicated to numerical examples in order to confirm our theory. We have
implemented our computing using programs written in the symbolic language of Matlab Ver-
sion 6.0 on the Connection Machine 200. This computer was configured with 16,384 bit serial

processor, 512 floating point processors, and a Vax 6320 front end.

The PCG was used to solve (8) with different « > = as a non-stationary method. As
the stopping criterion a relative residual reduction of ey = 1078 is used. To solve the linear
systems involved, we used a preconditioned CG method. These preconditioners denote with
OCFSW and SCFSW described in definitions 1 and 2 respectively. Also, in the following
tables Iter. denotes the number of iterations, Sec. is the computing time needed for solution
process, R.:||ffv — fllz2(r) is residual of solution f, also, f;v is approximated by one of the
algorithms and R. W denotes the residual without precondition. On the other hand, the
R. WW denotes the a residual for an algorithm that is provided without preconditioner on

wavelet functions and Galerkin method [7].
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Now we consider (6) in the L-shaped domain described by the nodes (0,0), (0.25, 0),
(0.25, 0.25), (-0.25, 0.25), (-0.25,-0.25), (0,-0.25) as T with k(z,y) = log ||z — y|| and the

exact solution be f(y) = y? — y2. Therefore, we carry out four examples base on the defined

operators (1), (2), (3) and (4). So, the following Tables for @ = % are obtained:

Table 1. Results for the operator of T
N | R. W | Iter. | Sec. R. OCFSW | Iter. | Sec. R. SCFSW | Iter. | Sec. R. WW | Iter. | Sec.
16 | 0.9e-1 11 0.021 1.2e-3 6 0.024 1.9e-2 6 0.025 7.3e-1 17 0.019
32 | 0.7e-2 19 0.100 2.3e-4 11 0.131 4.6e-2 12 0.141 5.6e-1 25 0.085
64 | 74e-3 | 31 | 0.325 1.7e-4 15 | 0.490 8.3e-3 17 | 0.545 3.9e-2 37 | 0.225
128 | 3.0e-3 | 53 | 0.749 3.9e-5 21 | 0.970 7.8e-4 23 | 1.292 4.7e-2 79 | 0.493
256 | 9.2e-4 72 1.220 1.3e-5 29 1.921 4.3e-5 32 2.351 6.3e-3 110 | 0.935
512 | 3.9e-4 | 129 | 3.211 9.1e-6 45 | 4.573 5.6e-5 51 | 5.393 8.9e-4 172 | 1.579
Table 2. Reslts for operator of T>
N | R.W | Iter. | Sec. R. OCFSW | Tter. | Sec. R. SCFSW | Iter. | Sec. R. WW | Iter. | Sec.
16 | 2.7e-1 18 | 0.033 3.5e-2 10 | 0.036 5.3e-2 11 | 0.038 9.2e-1 28 | 0.028
32 1.9e-1 30 0.151 8.7e-3 18 0.197 1.3e-2 20 0.224 7.7e-1 42 0.128
64 | 2.1e-2 | 49 | 0.489 4.9e-3 25 | 0.735 2.1e-3 29 | 0.817 0.1le-1 63 | 0.337
128 | 4.3e-2 84 1.124 0.0e-3 34 1.455 4.5e-3 39 1.935 7.5e-2 134 | 0.741
256 | 2.7e-3 | 115 | 1.832 7.3e-4 49 2.881 0.1e-3 54 3.525 2.1e-2 181 | 1.402
512 | 1.2e-3 | 204 | 4.817 1.6e-4 77 | 6.856 9.6e-4 87 | 5.893 5.3e-3 182 | 2.369
Table 3. Results for the operator of T3
N | R.W | Iter. | Sec. R. OCFSW | TIter. Sec. R. SCFSW | Iter. | Sec. R. WW | Tter. | Sec.
16 | 0.6e-1 | 21 | 0.042 0.5e-2 13 0.054 1.7e-2 15 | 0.060 5.1e-1 33 | 6.037
32 | 7.3e-2 | 36 | 0.211 0.6e-3 23 0.295 2.9e-3 28 | 0.358 0.1le-1 54 | 3.157
64 | 4.6e-2 55 0.686 0.1e-3 32 1.103 1.6e-3 40 1.307 7.9e-2 82 0.444
128 | 2.3e-2 | 100 | 1.573 0.8¢-4 44 2.183 0.2e-3 55 | 3.095 9.1e-2 174 | 0.904
256 | 0.0e-2 | 138 | 2.564 0.0e-4 63 4.325 0.9¢4 74 | 4.532 2.1e-2 235 | 1.570
512 | 5.4e-3 | 245 | 6.741 0.1e-5 100 | 10.284 0.7e-5 120 | 7.823 9.2e-3 312 | 2.605
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Table 4. Results for the operator of Ty

N | R.W | Iter. | Sec. R. OCFSW | Iter. Sec. R. SCFSW | Iter. | Sec. R. WW | Tter. | Sec.
16 | 4.1e-1 23 0.040 1.1e-2 14 0.062 1.9e-2 17 0.068 J.1e-1 31 0.034
32 | 9.2e-1 39 | 0.171 0.7e-3 26 0.342 7.3e-3 31 | 0.392 7.1e-2 56 | 0.172
64 | 87e-2 | 57 | 0.596 0.1e-3 35 1.378 0.4e-3 43 1.457 9.2¢-2 90 | 0.456
128 | 9.9¢-3 | 92 1.293 0.4e-4 53 2.399 5.9e-4 62 | 3.806 4.1e-2 168 | 1.138
256 | 4.1e-3 | 128 | 2.143 0.2e-4 70 4.844 1.6e-4 91 4.721 9.3e-3 210 | 2.038
512 | 0.1e-3 | 238 | 5.293 0.1e-5 107 | 11.806 0.0e-4 126 | 8.096 0.4e-3 378 | 3.186

Also, in the following Figs 1, 2, 3 and 4 will be observed variations of residual in terms
of « for the above examples with N = 512. Therefore, the results show that SCFSW and
OCFSW are stable algorithms so that OCFSW can be strongest algorithms.
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