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FREDAGEN DEN 15 DECEMBER 2000

SEMINARIER

Fr 12–15 kl. 9.00 –10.00. Kollokvium i fysik. Professor

emeritus Bengt Nagel, Teoretisk fysik, KTH:
The quantum theory 100 years. Sal F01, Fysiska
institutionen, KTH, Lindstedtsvägen 24, b.v. Se
Bråket nr 40 sidan 6.

Fr 12–15 kl. 11.00 –12.00. Optimization and Systems

Theory Seminar. Andreas Wächter, Depart--
ment of Chemical Engineering, Carnegie Mellon
University, Pittsburgh, USA: An interior point algo-

rithm for large-scale nonlinear programming. Semi--
narierum 3721, Institutionen för matematik,
KTH, Lindstedtsvägen 25, plan 7. Se Bråket nr 40
sidan 5.

Fr 12–15 kl. 13.15 –15.00. Matematikdagar 00/01. Lasse

Svensson och Ambjörn Naeve: Geometrisk alge-

bra och projektiv geometri. Sal D3, KTH, Lind--
stedtsvägen 5, b.v. Se Bråket nr 39 sidan 4.

Må̊ 12–18 kl. 13.00. Licentiatseminarium i statistik.

(Observera dagen och lokalen!) Jan Hagberg fram--
lägger sin licentiatavhandling: Centrality Testing

and Distribution of the Degree Variance in Bernoulli

Graphs. Opponent: Fil. dr Martin Karlberg,

AstraZeneca, Södertälje. Sal F420, Södra huset,
Frescati, Universitetsvägen 10F, 4 vån. Se Bråket
nr 40 sidan 7.

Må̊ 12–18 kl. 13.15 –14.00. Seminarium i numerisk

analys. Dimitry Sokoloff, Uppsala universitet:
Alignment is a shell model of MHD turbulence. Sal
4523, NADA, KTH, Lindstedtsvägen 3. Se Bråket
nr 40 sidan 7.

Fortsättning på̊ nästa sida.

Disputation i matematik

Anders Karlsson disputerar på avhandlingen Semicontractions,

nonpositive curvature, and multiplicative ergodic theory fredagen
den 15 december kl. 13.00 i sal E1, KTH, Lindstedtsvägen 3,
b.v. Se Bråket nr 39 sidan 7.
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Seminarier (fortsättning)

Må̊ 12–18 kl. 13.15 –15.00. Algebra and Geometry Seminar. Ralf Fröberg: Equi-

valences for plane curves. Rum 306, hus 6, Matematiska institutionen, SU, Kräft--
riket, Roslagsvägen 101. Se nedan.

Må̊ 12–18 kl. 14.00 –15.00. Presentation av examensarbete i matematik. Fredrik

Stenberg: Inverse scattering problems on graphs. Sal 16, hus 5, Matematiska insti--
tutionen, SU, Kräftriket, Roslagsvägen 101.

Må̊ 12–18 kl. 15.15. Seminarium i matematisk statistik. Professor Timo Koski, Mate--
matisk statistik, Linköpings tekniska högskola: EM-algoritmens egenskaper i beräk-

ningsbiologi och i tillämpningar på modellbaserad klustring. Seminarierum 3733,
Institutionen för matematik, KTH, Lindstedtsvägen 25, plan 7. Se Bråket nr 40
sidan 6.

Ti 12–19 kl. 12.15 –13.00. Presentation av examensarbete i matematik. Hillevi

Gavel: Permutationsordningar och relationsmatriser. Sal D31, KTH, Lindstedts--
vägen 17, b.v. Se Bråket nr 40 sidan 5.

On 12–20 kl. 13.15. Seminarium i analys och dynamiska system. Mattias Dahl,

Hamburg: Surgery and the spectrum of the Dirac operator. Seminarierum 3721,
Institutionen för matematik, KTH, Lindstedtsvägen 25, plan 7. Se sidan 3.

On 12–20 kl. 15.15. Presentation av examensarbete i matematisk statistik. Sotiris

Tserepis: Comparative study of expense loadings for the prospective and retrospective

reserves. Rum 306, Cramérrummet, hus 6, Matematiska institutionen, SU, Kräft--
riket, Roslagsvägen 101. Se sidan 3.

ALGEBRA AND GEOMETRY SEMINAR

Ralf Fröberg:
Equivalences for plane curves

Abstract: An analytic plane curve branch through the origin in C2 is a power series
f (X,Y ) ∈ C[[X, Y ]] such that:

1) It is convergent in some neighbourhood of the origin and f (0, 0) = 0 and
2) f (X, Y ) is irreducible in C[[X, Y ]].

Let C and D be two analytic plane curve branches with singularities in the origin. The
singularities are said to be analytically equivalent if there are open neighbourhoods U and
U ′ of the origin in C2 and an analytic isomorphism T : U −→ U ′ such that T (C ∩ U) =
D ∩ U ′. Let C ′, C ′′, . . . (D′, D′′, . . . , resp.) be the successive quadratic transforms of C

(D, resp.) when blowing up the singularity in the origin, and let ei (e′i, resp.) be the multi--
plicity of C (i) (D(i), resp.). Zariski showed that C and D are analytically equivalent if and
only if (e0, e1, . . .) = (e′0, e

′
1, . . .). (This is now called (a)--equivalence.) He also showed that

C and D are (a)--equivalent if and only if they have the same semigroup of values. Using a
lemma by Apery, we will give a very short proof of the fact that C and D are (a)--equivalent
if and only if they have the same semigroups of values. All concepts are elementary and will
be explained.

Tid och plats: Måndagen den 18 december kl. 13.15 –15.00 i rum 306, hus 6, Matematiska
institutionen, SU, Kräftriket, Roslagsvägen 101.
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SEMINARIUM I ANALYS OCH DYNAMISKA SYSTEM

Mattias Dahl:
Surgery and the spectrum of the Dirac operator

Abstract: The Dirac operator D on a Riemannian spin manifold is a natural first order
elliptic differential operator; on a compact manifold it has a discrete spectrum.

Doing surgery on a manifold is a way of changing its topology: Remove an embedded
copy of Sk×Dn−k and glue in a copy of Dk+1× Sn−k−1 — these pieces have the same
boundary Sk× Sn−k−1. This is surgery in codimension n− k.

I will show that surgery need not change the spectrum of D much. Given a Riemannian
metric g on a compact manifold and numbers N, ε > 0, one can carefully construct a metric
g on the manifold after surgery such that the first N eigenvalues of Dg and Dg pairwise
differ at most by ε. This if the codimension of the surgery is at least three. As an application
I will prove that under different assumptions on the topology of the manifold one has
dim ker D = |ind(D)| for a generic Riemannian metric. The point here is that one side of
this identity is a topological invariant while the other is not.

Tid och plats: Onsdagen den 20 december kl. 13.15 i seminarierum 3721, Institutionen för
matematik, KTH, Lindstedtsvägen 25, plan 7.

PRESENTATION AV EXAMENSARBETE
I MATEMATISK STATISTIK

Sotiris Tserepis:
Comparative study of expense loadings

for the prospective and retrospective reserves

Abstract: Insurance policyholders pay single or yearly premiums and in return the insurer
provides insurance cover. This paper studies the methods that insurance companies use to
cover the cost of its business. The methods for the loading of premium, mortality and interest
rate are described. Further analyses and a comparison of the expense loading for the pro--
spective and retrospective reserves in life insurance are carried out.

Tid och plats: Onsdagen den 20 december kl. 15.15 i rum 306, Cramérrummet, hus 6,
Matematiska institutionen, SU, Kräftriket, Roslagsvägen 101.

MONEY, JOBS

Columnist: Pär Holm, Department of Mathematics, SU. E--mail: pho@matematik.su.se.
Info = information. This will be given and repeated until obsolete. Rely on other sources as well.
BBKTH = Bulletin Board at the Department of Mathematics, KTH.
BBSU = Bulletin Board at the Department of Mathematics, SU.
Unless stated otherwise, a given date is the last date (e.g. for applications), and the year is 2000. A number

without an explanation is a telephone number.

Standard information channels

1. A channel to information from TFR: http://www.tfr.se.

2. A channel to information from NFR: http://www.nfr.se.

3. A channel to information from the European Mathematical Society: http://www.emis.de.

4. A channel to information from the American Mathematical Society: http://www.ams.org.

5. KTH site for information on funds, etc., weekly: http://www.kth.se/aktuellt/stipendier/.

6. Stockholm University site for information on funds: http://apple.datakom.su.se/stipendier/.

(Continued on the next page.)
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7. Umeå site for information on funds: http://www.umu.se/umu/aktuellt/stipendier fond anslag.html.

8. Job announcement site: http://www.maths.lth.se/nordic/Euro-Math-Job.html. This is run by the European
Mathematical Society.

9. KTH site for information on research: http://www.admin.kth.se/CA/extrel/index/forsk.html.

New information
Money, to apply for

10. Kungl. Vetenskapsakademien (KVA) kommer att, med ekonomiskt stöd från Knut och
Alice Wallenbergs stiftelse, inrätta sju eller åtta femåriga forskartjänster. Forskartjänster--
na är konstruerade så att akademien ansvarar för forskarnas anställning, medan de utför
själva forskningen vid sina lärosäten som tidigare. Sista ansökningsdag är 1 februari 2001.
Info: Astrid Auraldsson, 08 --673 9619, astrid@kva.se. Web--info: http://www.kva.se/sve/pg/

forskning/index.asp.

Jobs, to apply for

11. Institutionen för numerisk analys och datalogi (NADA), gemensam för SU och KTH,
söker för anställning vid SU en professor i datalogi med inriktning mot naturvetenskapliga
tillämpningar, 22 januari 2001. Info: Ingrid Melinder, 08 --7907798, melinder@nada.kth.se.
Web--info: http://www.insidan.su.se/ledigatjanster.php3?jobb=111.

Old information
Money, to apply for

12. Kungl. Vetenskapsakademien (KVA) utlyser medel från stiftelsen G. S. Magnusons fond; till doktorander
utdelas stipendier med ett engångsbelopp på normalt 7 000 kr, och till forskare som avlagt doktorsexamen
1995 eller senare utdelas forskningsanslag med i normalfallet 30 000 kr (0 – 3 år efter disputation), respek-
tive 50 000 kr (4 – 6 år efter disputation). Utöver detta f inns även medel avsedda speciellt för stöd till
svenska forskare för forskning hemma eller i utlandet samt för inbjudan av utländska gästforskare samt
bidrag för att kvarhålla forskare inom landet. Sista ansökningsdag är 31 mars 2001. Info: Sascha Edblad,
Monica Rosengren eller Sophia Westlund, 08 -673 95 00, stipendier@kva.se. Web-info: http://www.kva.se/sve/

pg/stipendier/var/matteans.asp.

13. Stiftelsen för internationalisering av högre utbildning och forskning (STINT) utlyser bidrag för kortare
utlandsvistelser för lärare eller forskare vid svenskt universitet, högskola eller forskningsinstitut, dock ej
doktorander. Ansökan kan inlämnas fortlöpande under året, dock senast 8 veckor före den dag då utlands-
vistelsen avses påbörjas. Web-info: http://www.stint.se/KPutlys.html.

14. Anslag ställs, från Knut och Alice Wallenbergs Stiftelse, till rektors för KTH förfogande för att ”i första
hand användas till bidrag för sådana resor, som bäst befordrar ett personligt vetenskapligt utbyte till gagn
för svensk forskning. Bidrag skall främst beviljas till yngre forskare.” Ansökan om resebidrag skall ställas
till rektors kansli. Bidrag kan sökas när som helst under året. Info: se punkt 5 ovan.

15. Nordisk Forskerutdanningsakademi (NorFA) f inansierar nordiskt samarbete inom forskning och forskarut-
bildning genom dels personliga stipendier (mobilitetsstipendier och för deltagande i nationella forskarut-
bildningskurser), dels anslag till institutioner (forskarutbildningskurser, nordiska nätverk, gästprofessurer
och workshops). Info: http://www.norfa.no.

16. Svenska Institutet (SI) utlyser kontinuerligt stipendier och bidrag för studier och forskning utomlands:
stipendier för Europastudier, internationella forskarstipendier, Östersjöstipendier, Visbyprogrammet, m.m.
Aktuell information om SI:s samtliga stipendiemöjligheter och ansökningshandlingar f inns på SI:s hem-
sida: http://www.si.se.

17. Stiftelsen för internationalisering av högre utbildning och forskning (STINT) utlyser medel för att främja
samarbete med universitet och högskolor i Republiken Korea (Sydkorea), Taiwan, Hongkong, Indonesien
och Egypten. Ansökningar skall inlämnas minst 6 – 8 veckor före verksamhetsstarten, och medlen kan
sökas löpande under året. Info: STINT, Skeppargatan 8, 114 52 Stockholm, 08 -662 76 90. Web-info: www.

stint.se.

18. Wenner-Gren Stiftelserna utlyser gästföreläsaranslag, avsedda att möjliggöra för svenska forskare eller
institutioner att inbjuda utländska gästföreläsare. Anslag sökes av den inbjudande forskaren eller institutio-
nen. Ansökan kan inlämnas när som helst under året. Web-info: http://www.swgc.org/.

(Continued on the next page.)
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19. NUTEK stipends for stay in research institutions (not universities) in Japan. Short or long periods. For
persons with or almost with doctoral degree. You can apply at any time. Info: Kurt Borgne, 08 -681 92 65,
kurt.borgne@nutek.se. Web-info: http://www.nutek.se/teknik2/intfou/bilateralt/stipendie.html.

Jobs, to apply for

20. Naturvetenskapliga forskningsrådet (NFR) utlyser en forskartjänst inom stokastiska processer, 15 decem-
ber. Info: Natalie Lunin, 08 -454 42 32. Web-info: se punkt 2 ovan.

21. Matematikcentrum vid Lunds tekniska högskola utlyser en doktorandtjänst i matematik med inriktning
mot matematisk modellering, 20 december. Info: Gunnar Sparr, 046 -222 85 28, Gunnar.Sparr@math.lth.se.
Web-info: http://www2.lth.se/ledjobb/dokt/index e.asp.

22. Matematikcentrum vid Lunds tekniska högskola utlyser en doktorandtjänst i matematik med inriktning
mot industrimatematik, 20 december. Info: Gunnar Sparr, 046 -222 85 28, Gunnar.Sparr@math.lth.se. Web-
info: http://www2.lth.se/ledjobb/dokt/index e.asp.

23. Matematikcentrum vid Lunds tekniska högskola utlyser en doktorandtjänst i numerisk analys, 20 december.
Info: Achim Schroll, 046 -222 05 94, Achim.Schroll@na.lu.se. Web-info: http://www2.lth.se/ledjobb/dokt/

index e.asp.

GRADUATE COURSE

Dževad Belkić:
The Principles and Methods of Quantum Scattering Theory / continued

(The Padé--Lanczos Algorithm)

Dževad Belkić is Guest Professor in “Mathematical Radiation Physics” at Karolinska
Institutet, Stockholm. E--mail: belkic@radfys.ks.se.

The credit of the course is 5 p. It is given on one day per week (Monday) from January
22, 2001, to March 19, 2001.

The course is given at the Department of Physics, KTH, in room F01, Lindstedtsvägen
24.

Literature: A textbook by Dževad Belkić, The Principles and Methods of Quantum

Scattering Theory, Institute of Physics Publishing Ltd. (Bristol, England), to appear in March
2001[ISNP0750304960](http://bookmark.iop.org/bookpge.htm?ID=617983879-6410-59741210-

D&book=493h).

Keywords: Collisions, spectroscopy, autocorrelation functions, signal processing.

Abstract: The Padé approximant (PA) to a power series is a quotient of two polynomials.
The PA provides a meaningful result even when the original expansion diverges. It can
significantly accelerate slowly converging sequences and series. As opposed to a (single)
polynomal approximation, the PA can analytically continue general functions outside their
definition domains. The PA is also an efficient solver of a generalized eigenvalue problem for
the quantum--mechanical evolution/relaxation matrix U comprised of autocorrelation func--
tions. This permits a unification of scattering and spectroscopy in the versatile setting of
signal processing. The autocorrelation functions are generic and, therefore, can be computed
theoretically and/or measured experimentally. Such a concept, born out as a computational
tool, surpasses its initial purpose. The autocorrelation functions represent a veritable alternative

formulation of quantum mechanics. This is not just because all the major observables, e.g.,
complete energy spectra, local density of states, quantal rate constants, etc., are expressible
through the autocorrelation functions. It is also because these and other observables could
be given completely in terms of some appropriate, relatively small informational parts that
can be singled out and analysed separately from the unwanted/redundant remainder of the
full data set of the autocorrelation functions. The needed dimensionality reduction of
original large problems has previously been achieved within e.g. the Lanczos recursion,

(Continued on the next page.)
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diagonalization methods or rational approximation techniques. Such methods are naturally
ingrained in the Schrödinger picture of quantum mechanics or, equivalently, in the total
time--independent Green’s function of the studied system. This circumstance enables a unified
treatment of spectroscopy and collision in the setting of signal processing. An example of
such a versatile non--parametric and parametric estimator, the new Padé--Lanczos algorithm,
is presently analysed for arbitrarily large signals without resorting to any kind of frequency
windowing or decimation.

Introduction

A unified theoretical treatment of collisions and spectroscopy is outlined using the auto--
correlation functions, C(t) = (Ψ(0)|Ψ(t)), with a natural link to signal processing. From
the onset, this concept is rooted in basic quantum mechanics, since the state vector Ψ(t) is
the solution of the time--dependent Schrödinger equation, ΩΨ(t) = i(∂/∂t)Ψ(t). In quantum
mechanics of genuine bound states and a pure continuum, the dynamics of a considered
physical system is described by a Hamiltonian H, which as a Hermitean operator, H† = H,
coincides with Ω in the above Schrödinger equation for Ψ(t). However, to include resonances
via complex energy eigenvalues, as the most interesting part of scattering, we shall hereafter
generalize the notion of a ‘Hamiltonian’ and extend it to encompass a non--Hermitean
dynamic operator, Ω, in the same Schrödinger formalism. The deterministic postulate of
quantum mechanics implies that if the wavepacket Ψ(0) of the studied system is well prepared
at the initial time, t = 0, the state Ψ(t) will be known at any later instant t. Otherwise the
state Ψ(t) is the element of an abstract Hilbert vector space. Since Ψ(t) is used to derive
C(t), it follows that this latter quantity also represents an abstract concept. This in itself
immediately implies that autocorrelation functions, C(t), are independent of the origin from
which they are generated and, therefore, could be computed theoretically and/or measured
experimentally as e.g. time signals, c(t). As a matter of fact, the mathematical equivalence
C(t) = c(t) exists if a given time signal c(t) is associated with a purely Lorentzian spectrum.
In either case, the autocorrelation functions, C(t), or the time signals, c(t), physically re--
present the instantaneous survival probability amplitude of the corresponding time--dependent
state Ψ(t) of the examined system. This is important for at least two reasons: (1) experi--
mental raw signals, c(t), can be used directly, without necessarily relying upon the theory,
to deduce by computations the basic observables for scattering and spectroscopy, such as
cross sections, rate coefficients, etc. (2) measured time signals, c(t), that are also identifiable
as counts per channels, can be directly and dynamically intertwined with the theory on a
deeper fundamental level.

The experimental resolution power of many instruments such as spectrometers is limited
by a particular theory, which is the Fast Fourier Transform (FFT). This method should
be complemented whenever necessary by other more powerful high--resolution parametric
estimators. The latter processors are able to extract, directly from the measurements without
any post--processing fits, the main spectral features, i.e., information about resonances. One
of such nonlinear methods is the present Padé--Lanczos algorithm (PLA), which invests a
relatively small computational effort to efficiently arrive at a high resolution and good
signal--to--noise ratio. The PLA plays a twofold role as (i) a spectral estimator which gives
only the shape of a spectrum and as (ii) a parametric estimator with the capacity of quanti--
fying a spectrum by yielding positions, heights, widths and phases of each resonance or peak
without rooting the characteristic polynomial or solving the generalized eigenvalue problem
of the evolution matrix.

The PLA might be conceived as an interface to new experiments in scattering and
spectroscopy with a possibility of reaching a substantially higher experimental resolving

(Continued on the next page.)
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power than the one currently available. This has been demonstrated in ion--cyclotron
resonance (ICR) mass spectroscopy and nuclear magnetic resonance (NMR) [1]. Such an
achievement could be exploited in the future by building new spectrometers that are based
on PLA which also provides en route the conventional FFT spectra (see also Ref. 2).

1. Green’s resolvent

Irrespective of whether one is concerned with spectroscopy or collisions, the whole physics
of any given system is ingrained in one single quantity, the full Green’s function (ζ |G|ξ) in
a given representation {(ζ | , |ξ)}. Here,

G(ω) = 1
ω − Ω + iη

, (1.1)

is a resolvent known as Green’s operator. Further, Ω ∈ H is a dynamical operator which
governs the development of the studied physical system, and H is the underlying Hilbert
space of operators and state vectors. In quantum mechanics, Ω is the standard Hamilton
operator H, in classical physics it could be a Lagrangean or Liouvillian and the like. The
operator Ω need not be Hermitean and, therefore, we shall consider Ω† 6= Ω thoughout, so
that generally the eigenvalues {ωk} (1 ≤ k ≤ K) are complex numbers. The total number K

of frequencies {ωk} could be a finite or an infinite integer which does not need to be fixed
or even known in advance. Even the usual Hamiltonians are often converted to complex
operators through the concept of the non--Hermitean optical--type absorbing potentials that
could mimic absorption of the incoming particle flux by the target. For the same purpose,
a simple device could be used which is based upon the so--called adiabatic theorem from
scattering theory. This amounts to a modification consisting of including the damping factor
iη from G(ω) directly into the total interaction potential V −→ V e−iη which is a part of
Ω. Alternatively, one could use the well--known complex coordinate method to produce the
non--Hermitean ‘Hamiltonian’ Ω. The crucial practical advantage of these circumstances that
render the operator Ω complex is that its spectrum does not need to explicitly include con--
tinuum states. Such states could be approximately represented by the pseudo--continuum,
which is a collection of pure discrete states at complex energies encompassing both bound
states and resonances. The full widths at half maxima of all the frequency peaks, that are
imbedded in continuum to represent localized positive energy wave packets, determine the
inverse lifetimes of each of the resonances in the spectrum of Ω. The infinitesimal number
η > 0 secures regularity of G(ω) for the ω’s that belong to the set of the eigenfrequencies
{ωk} of Ω. Once the calculation has been completed, the limit η → 0+ or η → 0− should
be taken depending whether the outgoing or incoming boundary conditions are used. The
superscripts ± indicate that η should tend to zero through positive/negative numbers,
respectively. Non--Hermiticity of Ω implies that the scalar product in the Hilbert space H is
defined as the symmetric inner product (ζ |ξ) = (ξ |ζ). Here, no conjugation is placed onto
either of the two state vectors or ‘orbitals’ (ζ | or |ξ) that both belong to H. For convenience,
we shall set the Planck constant h̄ equal to unity, which will allow us to interchangeably use
the frequency (ω) and energy (E) as synonyms, E = h̄ω = ω. A method which can provide
an adequate spectral representation of the total Green’s resolvent G(ω) would represent the
key input to a valid theory for scattering (E > 0) and spectroscopy (E < 0).

If G(ω) is available, then all the observables for a collisional and a spectroscopic
phenomenon can be obtained from the general Green’s function, Gαβ (ω) = (Φ0β |G(ω)|Φ0α).
The diagonal elements are obtained for Φ0α = Φ0β ≡ Φ0 as:

G00(ω) = (Φ0 |G(ω)|Φ0), (1.2)

where Φ0 is an initial or a reference state. For example, the local density of states n00(ω)

(Continued on the next page.)
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can be computed from the residues of G00(ω) at its singularities,

n00(ω) = − 1
π

lim
η→0+

Im{G00(ω)}. (1.3)

An arbitrary physical system is presently subjected to an analysis by the general stationary
and time--dependent methods of quantum mechanics. In the former type of methods, the
complete set of scattering states {Ψk} of the Schrödinger operator ω − Ω will be available by
solving the stationary eigenvalue problem,

Ω|Ψk) = ωk |Ψk) ; 1 ≤ k ≤ K. (1.4)

As is well--known, the main postulate of quantum mechanics is that the whole information
of a given physical system is contained in the wave function Ψk . This is coherent with Eq.
(1.4) since Ω is assumed to carry the entire information of the investigated object. Such a
statement of completeness of information is expressed through the closure relation,∑K

k=1 |Ψk)(Ψk | = 1̂, where K need not be finite, as we mentioned previously. In principle,
the sum over k should include integration of the continuum part of the spectrum of Ω.
This can be omitted as the non--Hermitean dynamic operator Ω includes all the resonances.
Inserting this latter representation of the unity operator 1̂ into G(ω) = G(ω)1̂ immediately
leads to the following spectral representation of the Green’s operator:

G(ω) =
K∑

k=1

Pk

ω − ωk + iη
, Pk = |Ψk)(Ψk |. (1.5)

where Pk is the projection operator. Obviously the Green’s operator (1.5) can provide in--
formation of the studied physical system at any frequency ω and not just ωk that belong to
Ψk as opposed to the Schrödinger equation (1.4). Assume that we are given the eigensolutions
{ωk, Ψk}, but not the ‘pseudo--Hamiltonian’ Ω itself. Then Ω could be retrieved from its
implicit definition,

Ω =
K∑

k=1

ωkPk , f(Ω) =
K∑

k=1

f(ωk)Pk , (1.6)

for any scalar and/or operator function f . In a particular case with f = 1/(ω − Ω + iη) =
G(ω), the result (1.4) follows again from Eq. (1.6). According to the Cauchy theorem, the
operator G(ω) is fully determined by the complete set {ωk, Pk} of its singularities ωk (poles,
branch points, cuts) and the operator residues Pk .

2. Padé--Lanczos algorithm (PLA)

The ‘solution’ (1.5) to the scattering problem is purely of a formal nature, since the
input Ψk to Pk is the unknown result of the full stationary eigenvalue problem (1.4), which
is just as difficult as the method of the Green’s operator. This is only apparent since, in
fact, the Green’s function has many marvelous features that can reveal all the virtues of the
studied physical system without ever knowing {Ψk}. One of the methods which avoids the
need for {Ψk} is a broad concept of the rational functions, the most prominent examples
of which are the continued fraction (CF) or the closely related Padé approximant (PA).
These methods can obtain the residues and poles of the Green’s function, i.e., the entire
information needed, without explicit construction of any of the eigenvectors. For example,
the CF representation of the diagonal Green’s function is G00(ω) = G0(ω), where Gn(ω) =
1/[ω − iη − an − b2

n+1Gn+1(ω)], which can also be written in the following explicitly expanded
form:

(Continued on the next page.)
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G00(ω) = 1

ω − iη − a0 − b21

ω−iη−a1−
b2
2

ω−iη−a2−···−
b2
M−1

ω−iη−aM ···

. (1.7)

Here, an and bn are precisely the same coupling parameters as in the Lanczos algorithm of
wavepacket propagation with the underlying tridiagonalization of the ‘Hamiltonian’ matrix
Ω. The tridiagonal matrix JΩK

= tridK [b, a, b], which originates from Ω, is a Jacobi K ×K

matrix, which is zero everywhere except on the diagonal and the two paradiagonals with the
elements immediately to either side of the diagonal, (φn |Ωφn) = bn, (φn−1 |Ωφn) = bn and
(φm |Ωφn) = 0 for |m− n| > 1 with (φm |φm) for any m. No matrix inversion is encountered
in the CF. Moreover, all that is required to construct the Green’s spectrum in the Eq. (1.7)
is the set of the coefficients {an, bn} that can be computed recursively,

bn+1 |φn+1) = {Ω− iη − an}|φn)− bn |φn−1) (1.8)

with the initialization |φ0) = |Φ0). This Lanczos algorithm is such that |φn−1) is automatic--
ally normalized to unity and orthogonalized to |φn) and |φn−1). However, by construction
of the chain, it readily follows that |φn+1) is also orthogonal to all the remaining previous
elements |φn−2), . . . , |φ0). This Lanczos orthogonalization is a low--storage method as opposed
to the corresponding Gram--Schmidt (GS) orthogonalization which uses all states at each
stage of the computation. Physically, the state |φn) is essentially the nth environment of
|φ0). But the coupling of |φn) with its surroundings is only significant with the two nearest
neighbours or ‘orbitals’ |φn+1) and |φn−1). This means that the (n + 1)th iteration in Eq.
(1.8) needs to store only two preceeding states |φn−1) and |φn) since all other vectors can
safely be overwritten. This extreme storage economy is the key to the success of the scheme
(1.8) relative to the GS orthogonalization which requires a copy of the surrounding orbitals
for each new state vector generated. Hence, the recursion (1.8) is one of the ways to create
a local representation of the ‘Hamiltonian’ Ω which can be either a Hermitean or a complex
symmetric operator.

The quest for this locality is natural in view of the fact that in practice one never needs
the whole of the Green’s resolvent, G(ω), but rather only a preassigned matrix element.
An important example of such local information needed is G00(ω) encountered in the local
density of states, n00(ω), which represents the intensity of each eigenvector. Physically,
n00(ω) describes the effect of the rest of the system onto its one selected part. Therefore,
it is plausible that the examined local orbital itself should play the major role and that
the successively more distant neighbours are expected to exhibit lesser effects. The Lanczos
algorithm of nearest neighbours achieves this hierarchy of environments whose relative
influence to the local density of states is explicitly weighted and displayed. This algorithm,
in fact, describes the evolution of the system from a given initial state |φ0). Each element
of the set {|φn)} has the symmetry of |φ0) as a result of the repeated action of Ω onto
the initial state. If the set {|φn)} is required to contain functions of different symmetry, it
will be necessary to consider different initial orbitals. The chain (1.8) does not contain those
orbitals |φn) that are uncoupled to |φ0) indicating the zero survival probability, (φn |φ0) = 0,
of the state vector |φn). Note that any matrix can be conveniently transformed into a Jacobi
matrix. It is then clear that the chain model is equivalent to expressing the matrix Ω as the
corresponding Jacobi matrix or tridiagonalization matrix, JΩK

. An original problem under
study might be of a high dimension N , i.e., of a large number of degrees of freedom that
could be strongly coupled to each other leading to a serious storage problem. In such a
case, the standard diagonalization of the associated dynamic matrix Ω would require N2

(Continued on the next page.)
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registers. This constraint can be dramatically relaxed to the amount of stores of only 2N

if Ω possesses a local representation stored in a compact form subjected to Eq. (1.8). The
self--created orthonormal functions {φn} form a basis set which coincides with the ortho--
gonalized Krylov states, {Ωn |φ0)} (0 ≤ n ≤ M ). Here, the Lancsoz algorithm of tridiagonali--
zation is the key step for converting the fully filled large matrix Ω into its corresponding
sparse J--matrix, JΩK

. A subsequent diagonalization of JΩK
via e.g. a complex version of the

modified QL algorithm leads to the sought set of the eigenvalues {ωk} and the corresponding
residues {dk}. Here, dk = (Φ0 |ψk) and |ψk) =

∑K
m=1 Amk |φm), where the expansion co--

efficients {Amk} are generated recursively during the construction of the Lanczos states,
{|φk)}. The matrices Ω and JΩK

have the common set of the eigenvalues {ωk}.
Construction of the Lanczos states, {|φn)}, at large times, t, needed to resolve closely

spaced frequency resonances, is a computer extensive procedure due to a direct and suc--
cessive action of the operator Ω on each state |φn) leading to matrix--vector multiplications.
However, the CF or the related PA is a powerful convergence accelerator, yielding the
frequency spectrum (1.7) with a reduced number of terms {an, bn}, and without the need for
an explicit generation of C(t). The meaning of the nearest neighbour setting within the CF
is that the coefficients {an, bn} become increasingly less significant for determination of the
local density of states, n00(ω), as one progresses further down the continued fraction in Eq.
(1.7). A truncation of the above continued fraction for G00(ω) after K iterations permits an
algebraic simplification of Eq. (1.7) to a sum of the rational fractions

∑K
k=1 dk/(ω − ωk − iη),

where ωk and dk are the poles and residues of G00(ω), respectively. This is precisely the
partial fraction expansion of the PA, PK(ω)/QK(ω) in the case of the first--order poles,
where PK(ω) and QK(ω) are the polynomials of the order K − 1 and K, respectively. Hence,
the CF from Eq. (1.7) should also give the PA to G00. In such a case the eigenvalues {ωk}
are the roots of the denominator polynomial, QK(ωk) = 0, whereas dk are the residues of
PK(ω)/QK(ω). To obtain a link between the Lanczos method and the PA, we use the fact
that the eigenvalues of the K ×K matrix JΩK

are identical to the solutions of the cor--
responding secular equation, det(ω1− JΩK

) = 0 or, equivalently, to the zeros of the Kth

order characteristic polynomial, QK(ω) ≡ det(ω1− JΩK
). Given the tridiagonal structure,

JΩK
= tridK [b, a, b], it is immediately apparent that both Pn(ω), and Qn(ω) satisfy the same

three--term recursion relation,

bn+1Tn+1(ω) = (ω − an)Tn(ω)− bnTn−1(ω) ; Tn = Pn, Qn . (1.9)

To this recursion, two sets of different initial conditions such as P0(ω) = 0, P1(ω) = 1 and
Q−1(ω) = 0, Q0(ω) = 1 are imposed so that the generated functions Pn and Qn are the poly--
nomials of the order n− 1 and n, respectively. In other words, selecting the appropriate
initialization, the same Lanczos recursion with the same definition of the coefficients an,
bn, applies to {|φn)} and {Pn, Qn}. This means that the Padé ansatz PK(ω), QK(ω) can
be generated in the course of producing the Lancsoz states {|φn)} in K iterations with no
additional effort yielding directly the PA to G00(ω) as the polynomial quotient,

b1G00(ω) =
PK(ω)
QK(ω)

. (1.10)

Such a PA to G00 is a meromorphic function, since the only singularities of this diagonal
Green’s function are assumed to be its poles. The zeros of PK and QK are the zeros and
poles of G00, respectively. There are K poles of G00 since QK is a polynomial of the Kth

order. When all the zeros of QK are distinct, the partial fraction expansion of the r.h.s. of
Eq. (1.10) is given by

(Continued on the next page.)
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b1G00(ω) =
PK(ω)
QK(ω)

=
K∑

k=1

dk

ω − ωk − iη
, dk =

PK(ωk)
Q′

K(ωk)
, (1.11)

where Q′
K(ω) = (d/dω)QK(ω). In here the residue dk is given by an explicit analytical ex--

pression. If JΩK
were a real symmetric tridiagonal matrix, all its eigenvalues {ωk} would

be real and distinct so that the resulting spectrum is nondegenerate. However, the complex
symmetric matrix JΩK

may have a degenerate spectrum and this occurs when some of the
zeros of QK are mutually equal. In this case e.g. the kth complex root ωk could have the
multiplicity L, so that the partial fraction expansion of PK/QK becomes:

PK(ω)
QK(ω)

=
K∑

k=1

L∑

`k=0

dk,`k

(ω − ωk − iη)1+`k
, dk,`k

=
PK(ωk)

Q
(1+`k)
K (ωk)

, (1.12)

with Q
(`k)
K (ω) = (d/dω)`kQK(ω). The Green’s function, G00(ω), and a time--dependent auto--

correlation function, C(t) are related by the standard Fourier integral which can be calculated
analytically with the result:

C(t) =
K∑

k=1

dke−iωkt (1.13)

for the nondegenerate case containing the distinct poles {ωk} and

C(t) =
K∑

k=1

dk(t)e
−iωkt ; dk(t) =

L∑

`k=0

dk,`k
t`k (1.14)

for a degenerate spectrum where the kth zero has multiplicity L. In this latter case, the
non--stationary amplitudes {dk(t)} emerge in the form (1.14) of a polynomial of order L

in the time variable, t ≥ 0. Interestingly, a special case of the real--valued auto--correlation
functions, C(t), from Eq. (1.14), containing exponentials with ωk = −iλk (λk > 0) appear in
the analysis of words.

3. Auto--correlation functions

An equivalent formalism is provided by the time--dependent Schrödinger equation,

i ∂
∂t

Φ(t) = ΩΦ(t). (1.15)

In the Schrödinger picture of quantum mechanics, operators are stationary and wave func--
tions are time--dependent. For a stationary ansatz Ω, Eq. (1.4) possesses a solution of the
type Φ(t) = U(t)Φ0, where Φ0 ≡ Φ(0) is the initial state of the system at the time t = 0 and
U(t) is the evolution operator,

U(t) = e−iΩt. (1.16)

In other words, if Ω and Φ0 are known, then the determinism of quantum mechanics ex--
plicitly prescribes the exact knowledge of the state Φ(t) of the system at any later instant
t > 0. As it stands, U is a non--linear operator due to the appearance of Ω in the exponential.
We can ‘linearize’ U by using (1.6) which for f = e−iΩt = U(t) becomes:

U(t) =
K∑

k=1

e−iωktPk . (1.17)

The state Φ(t) at the instant t is obtained by propagating the initial well--prepared wave

(Continued on the next page.)
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packet Φ0 from t = 0 to t via U(t). Given Φ0 at t = 0, there will be a non--zero probability
amplitude to find the system in the state Φ(t) at the later time t > 0, if the two wave--packets
have a non--vanishing overlap. This overlap is found quantum--mechanically by projecting
Φ(t) onto Φ0 by means of the their scalar product:

C(t) = (Φ0 |Φ(t)) = (Φ0 |U(t)Φ0). (1.18)

The quantitity C(t) is called the autocorrelation function, since it measures the degree of
correlations between Φ(t = 0) and Φ(t 6= 0) under the influence of the operator Ω. It is the
presence of the dynamical operator Ω which makes Φ(t) differ from Φ0 as is obvious from
Φ(t) = exp(−iΩt)Φ0. By switching the dynamics off, the system would be allowed to remain
indefinitely in the initial state, so that C(t) = (Φ0 |Φ0) = 1 for Ω = 0 at any time t. For
unequal initial and final states, one introduces the so--called cross--correlation function,
Cαβ(t) = (Φ0β |U(t)Φ0α). At large times t, the autocorrelation function C(t) is unreliable due
to instabilities that stem from severe oscillations of (Φ0 |Φ(t)) as t increases. This could
cause a heavy corruption of C(t)’s with a computational ‘noise’ e.g. round--off, ill--condition--
ing, etc. It is often stated in the literature that (1.2) exhibits singularities (poles, cuts, etc.)
because of the presence of the resolvent (1.5) in G(ω). Also a claim that C(t) is free from
such singularities has frequently been put forward. The latter is, however, untrue. The reason
being that the severe oscillations of C(t) for large t, in fact, act as disguised singularities
entirely similar to those encountered more transparantly in G(ω). This is obvious from the
fact that both correlation functions C(t) and G(ω) are built from the same ‘Hamiltonian’
Ω, which is an infinitesimal generator of the evolution operator U(t). Moreover, the limits
t −→ ±∞ in C(t) are strictly equivalent to η −→ 0∓ in G(ω) in accordance with the so--called
Abel limit. As a matter of fact, if one does not encounter instabilities in C(t) in producing a
spectrum, this could only mean that the indispensable asymptotic region t −→ ±∞, has not
been reached and, therefore, the obtained result should be considered inadequate.

The above two representations, the stationary and the time--dependent one, are inter--
related by means of e.g. the one--sided Fourier integral:

F(ω) =
∫ ∞

0
dteiωtC(t). (1.19)

With the help of the Dirac δ--function, the inverse Fourier transform of F(ω) in the ω--space
exactly retrieves C(t) according to:

C(t) = 1
2π

∫ ∞

0
dωe−iωtF(ω). (1.20)

Both Eqs. (1.2) and (1.13) contain the same operator Ω which is the source of the complete
information about the system. This feature together with unitarity of the standard Fourier
operator guarantees that the information is preserved when passing from the time domain
(t) to the frequency (ω) region. The quantities t and ω represent a pair of conjugate variables.
Inserting (1.17) into Eq. (1.18) yields the result:

C(t) =
K∑

k=1

dke−iωkt , dk = (Φ0 |Ψk)
2. (1.21)

The quantities {dk} are the complex amplitudes that represent the residues associated with
eigenfrequencies {ωk} at pole ωk . These residues measure the extent of the projection of the
state Φk onto Ψ0. In other words, the amplitudes {dk} are the weights carrying information
on the strength of the contributions of individual normal mode frequencies {ωk} to the

(Continued on the next page.)
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signal’s total power. More specifically, the magnitudes {|dk |} are the intensities of the
harmonics {e−iωkt}, featuring as the principal components that constitute the signal C(t).
Moreover, φk = Arg(dk) is the phase of C(t). Substituting C(t) from (1.21) into Eq. (1.19)
and carrying out the time integral exactly gives the complex spectrum, F(ω) =
−i

∑K
k=1 dk/(ω − ωk + iη) ≡ −iF (ω), where:

F (ω) =
K∑

k=1

dk
ω − ωk

, (1.22)

provided Im(ωk) < 0. The magnitude, power, absorption and dispersion spectra are obtained
from: |F (ω)|, |F (ω)|2, A(ω) = Re{F (ω)} and D(ω) = Im{F (ω)}, respectively. The most
important for experiments are absorption spectra, A(ω), which should be positive definite.
In principle, the damping factor iη need not necessarily be kept in Eqs. (1.21) and (1.22) as
ωk itself is complex for a non--Hermitean Ω. The overall result (1.22) is then a Lorentzian
spectrum. This is expected as Eq. (1.22) corresponds to the autocorrelation function C(t)
which is given by a linear combination of attenuated exponentials (1.21). The resonance
parameters from Eq. (1.22) are the position, width and height of the kth peak given by:
Re(ωk), Im(ωk), |dk |, respectively. The autocorrelation function C(t) from Eq. (1.18) is
identified with an instantaneous transition amplitude for a passage of the system from Φ(t)
to Φ(0). Then the survival probability amplitude for the state Φ(t) is obtained in the limit of
C(t) for large times |t| −→ ∞. This time limit is crucial for any collision problem in order
to secure that the full scattering states are reduced to the appropriate free wave packets.
In spectroscopy, the epoch (T ) of time--dependent observables must be sufficiently long to
facilitate decays of all transient states so that the physically relevant transitions could be
unambiguously detected.

In practice, one equidistantly discretizes (digitizes) the continuous (analogue) time vari--
able t as t = tn ≡ n∆t (n = 0, 1, 2, . . . , 2M + 1), where now the integer n counts the time.
The quantity ∆t ≡ τ is the time increment (the time lag) or sampling time which is also
called the ‘dwell’ time. The Schrödinger state at the time t = tn = nτ will be denoted as
Φn ≡ Φ(nτ). Due to the exponential nature of the evolution operator (1.16), construction of
its discrete counterpart U(nτ) at the time t = nτ is done simply through raising the ansatz
U(τ) = e−iΩτ to the nth power:

U(nτ) = U n(τ) ⇒ Φn = U n(τ)Φ0 . (1.23)

Using this property, the discrete version of the autocorrelation function, denoted by C(nτ) ≡
Cn is given by:

Cn = (Φ0 |Φn) = (Φ0 |U n(τ)Φ0). (1.24)

Similarly, Eq. (1.21) can also be discretized according to the expression:

Cn =
K∑

k=1

dkun
k , uk = e−iωkτ . (1.25)

It follows from here that the resonance parameters {ωk, dk}, that are necessary for building
each digital autocorrelation function cn as a power series expansion in terms of the attenu--
ated exponentials uk , can be obtained by diagonalizing the evolution operator U(τ):

U(τ)|Ψk) = uk |Ψk). (1.26)

This eigenvalue problem follows from Eqs. (1.4) and f(Ω)|Ψk) = f(uk)|Ψk) for any function
f . For diagonalization, one does need the explicit knowledge of the operator U(τ) itself,

(Continued on the next page.)
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but only its matrix elements (χm |U(τ)χn) on a suitably selected complete set {χn} of the
expansion functions χn that form a basis. The first such basis which naturally comes to
mind is the set {Φn} of the Schrödinger functions Φn = U n(τ)Φ0 from Eq. (1.23). In general,
the two different ‘orbitals’ Φn and Φm are not mutually orthogonal, so that their overlap is
Snm = (Φm |Φn) 6= δnm, where δnm is the usual Kronecker δ--symbol. However, the normaliza--
tion is assumed to hold true, i.e., Snn = 1. Completeness of the basis {Φn} permits a
development of the eigenfunction Ψk of Ω from Eq. (1.26) as follows:

|Ψk) =
M∑

n=0

Bnk |Φn), (1.27)

where the expansion coefficients are the elements of the column matrix Bk = {Bnk}. Then
we insert this state vector into Eq. (1.26), which is afterwards multipled by (Φm |, to arrive
at:

M∑

n=0

UnmBnk = uk

M∑

n=0

SnmBnk . (1.28)

Here, U = {Unm} and S = {Snm} are the evolution and overlap matrices, with the elements:

U p
nm = (Φm |U p(τ)Φn) ; U 0

nm ≡ Snm = (Φm |Φn), (1.29)

where p is any positive or negative integer including zero. The system of linear equations in
(1.28) can be succinctly rewritten in its corresponding matrix representation as:

UBk = ukSBk , (1.30)

where the expansion column matrix Bk from (1.27) is now the eigenvector. The obtained Eq.
(1.30) is not an ordinary, but rather a generalized eigenvalue problem involving the overlap
matrix S, due to the mentioned lack of orthogonality of the Schrödinger basis functions Φm

and Φn for n 6= m. With the basis set {Φn}, the matrix element U p
nm takes a particularly

simple form which is obtained at once by inserting (1.23) into Eq. (1.29) and employing the
symmetry property of the scalar product:

U p
nm(τ) ≡ (Φm |U p(τ)Φn) = (Φ0 |Um+p+n(τ)Φ0) = cn+m+p , (1.31)

Hence, the matrix element of the pth power of the evolution operator U(τ) taken over two
general Schrödinger states Φn and Φm is reduced to one single value of the autocorrelation
function, cn+m+p. Obviously, this result also includes the overlap matrix S for p = 0 as a
special case of Up :

Snm = (Φm |Φn) = cn+m . (1.32)

In general, cn+m 6= δn,m, which is compatible with the mentioned non--orthogonality of Φn

and Φm for n 6= m. Once the whole set {uk, Bnk} is obtained by solving the generalized
eigenvalue problem Eq. (1.28), the eigenfrequencies are deduced from ωk = −i ln(uk). The
corresponding residues dk are calculated by inserting the expansion (1.27) for Ψk into Eq.
(1.21) and using Eq. (1.24) for cn with the result:

dk =

(
M∑

n=0

cnBnk

)2

(1.33)

It is important to realize that Eqs. (1.30) and (1.33) represent yet another alternative formu--
lation or picture of quantum mechanics with the central role played by the autocorrelation
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function cn. This is because the diagonalization (1.30) of the evolution matrix U in the
Schrödinger basis set {Φn} is all that one needs to obtain the entire spectral information
(eigenfrequencies, residues, eigenfunctions, etc.) about the studied physical system whose
time evolution is governed by the dynamical operator U(τ). All other physically measurable
quantities could be computed from the set {ωk, dk}. Note that the same Schrödinger basis
set {Φn} employed to solve Eq. (1.30) has also been extensively used in quantum chemistry
under the name Krylov functions. For practical purposes of solving Eq. (1.30), it is assumed
that the size M of the basis set {Φn} is relatively small, say M ≤ 200, implying that the
linear programming in Eq. (1.26) can be done without severe round--off errors by using, e.g.,
the singular value decomposition (SVD) and the like. For larger values of M , a dimension--
ality reduction of the original problem is required via e.g. frequency windowing or band--
limited decimation [3 –10] (for an alternative approach without windowing or decimation,
see Ref. 2). The amplitudes dk from Eqs. (1.11) and (1.12) necessitate the knowledge of the
eigenvectors {Bnk}. However, we have shown [1] that an explicit formula for dk as in Eqs.
(1.11) and (1.12) can be obtained without the need to compute any of the elements of the
set {Bnk}, and this will be demonstrated in the present course. In the same course we will
show how the auto--correlation function C(t) can be obtained without using the set {ωk, dk}
as opposed to the current practice which relies upon Eqs. (1.13) and (1.14). This very recent
result of ours [1] is extremely important in practical computations in quantum chemistry,
quantum physics, etc. The PLA can be applied to both experimentally measured signals cn

and theoretically computed auto--correlation functions Cn. In either case the PLA is shown
to be an eigenvalue solver which is capable of yielding the complete set of eigenenergies,
eigenfunctions and residues for both non--degenerate and degenerate spectra. The PLA
obtains the Padé numerator and denominator polynomials {PK , QK} without any additional
effort, since this is accomplished during the tridiagonalization of the dynamic ‘Hamiltonian’
Ω by using the same coupling parameters {an, bn} encountered in the Lanczos states {φn}
that are orthonormalized Krylov states. As opposed to Eq. (1.30) with the generalized eigen--
value problem of the operator Ω, the PLA solves an ordinary eigenvalue problem with the
J--matrix JΩK

which is derived from Ω by tridiagonalization. The two latter matrices are
of the same dimension, but it is only the former which is sparse so that the dimensionality
reduction is not necessary in the case when Ω is a large matrix. If the matrix Ω is unknown,
but the auto-correlation functions {Cn} or the signal points {cn} are given, the PLA tri--
diagonalizes the evolution matrix U = exp(−iΩτ). In such a case, we have shown [1] that
all the coupling parameters {an, bn} are defined solely in terms of {Cn} or {cn}. The auto--
correlation functions {Cn} and the time signals {cn} are equivalent to each other for purely
Lorentzian spectra.
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[8] Dž. Belkić, P. A. Dando, H. S. Taylor, and J. Main, J. Phys. Chem. A., In press
(December 2000).

[9] M. R. Wall and D. Neuhauser, J. Chem. Phys., 102: 8011 – 8022, 1995.
[10] V. A. Mandelshtam and H. S. Taylor, J. Chem. Phys., 107: 6756 – 6769, 1997.


