6.27.

Sätt:

$$
\left\{\begin{array}{l}
\frac{x}{2}=r \cos \theta \\
\frac{y}{3}=r \sin \theta
\end{array} D_{r \theta}:\left\{\begin{array}{l}
r: 0 \rightarrow 1 \\
\theta: 0 \rightarrow 2 \pi
\end{array} d x d y=2 \cdot 3 \cdot r d r d \theta\right.\right.
$$

$$
I=\iint_{D}\left(x^{2}+y^{2}\right) d x d y=\iint_{D r \theta} r^{2}\left(4 \cos ^{2} \theta+9 \sin ^{2} \theta\right) 6 r d r d \theta
$$

$$
I=6 \int_{r=0}^{1}\left(4 \cdot \frac{1}{2} 2 \pi+9 \cdot \frac{1}{2} 2 \pi\right) r^{3} d r=6 \cdot 13 \pi \cdot \frac{1}{4}=\frac{39 \pi}{2}
$$

SVAR: $\iint_{D}\left(x^{2}+y^{2}\right) d x d y=\frac{39 \pi}{2}$

