SF2708 KOMBINATORIK, 2008

PROBLEM SET $1 / 4$

Each exercise is worth five points. You may get partial credit for non-useless, non-perfect solutions. Hand in your solutions no later than March 14.

1. How many k-tuples $\left(S_{1}, \ldots, S_{k}\right)$ satisfy $S_{1} \subseteq S_{2} \subseteq \cdots \subseteq S_{k} \subseteq[n]$?
2. Recall that a polynomial is called homogeneous if all its monomials are of the same degree. For example, $2 x y z+3 x^{2} z-z^{3}$ is homogeneous of degree 3 whereas $2 x y z+3 x^{2} z-z$ is inhomogeneous. Together with 0 , the homogeneous polynomials of degree k in n variables (with coefficients in \mathbb{R}, say) form a vector space (over \mathbb{R}) which we call V_{k}^{n}. Find $\operatorname{dim}\left(V_{k}^{n}\right)$ and a simple expression for the Hilbert series $\sum_{k \geq 0} \operatorname{dim}\left(V_{k}^{n}\right) x^{k}$.
3. Let p be a prime. The goal of this exercise is to show in a combinatorial way that p divides $(p-1)!+1 .{ }^{1}$ You get full credit if you do so, regardless of whether or not you follow the approach which is now sketched:

For notational convenience we shall consider \mathfrak{S}_{p} to be the set of permutations of $\{0,1, \ldots, p-1\}$ throughout this exercise.

Define a bijection $s: \mathfrak{S}_{p} \rightarrow \mathfrak{S}_{p}$ by declaring $s(\pi)(i+1)=\pi(i)+1$ for all $i \in\{0, \ldots, p-1\}$, where we sum modulo p.
(a) Let $X=\left\{\pi \in \mathfrak{S}_{p} \mid \pi^{p}=e\right\}$, where $e \in \mathfrak{S}_{p}$ is the identity permutation. Show that X is mapped to itself by s.
(b) Show that s^{p} is the identity map.
(c) Given $\pi \in \mathfrak{S}_{p}$, (b) shows that the set $\left\{\pi, s(\pi), s^{2}(\pi), \ldots\right\}$ either has cardinality 1 or p. Characterize the π that satisfy $s(\pi)=\pi$.
(d) Prove that p divides $(p-1)$! +1 .
4. Let $f(n)$ be the number of fixed point free involutions in $\mathfrak{S}_{2 n}$, i.e. permutations $\pi \in \mathfrak{S}_{2 n}$ such that $\pi^{2}(i)=i$ but $\pi(i) \neq i$ for all $i \in[2 n]$. Define $f(0)=1$. Find simple formulae for $f(n)$ and for the exponential generating function $\sum_{n \geq 0} f(n) \frac{x^{n}}{n!}$.
5. Given a prime p, let $f(n)$ be the number of permutations $\pi \in \mathfrak{S}_{n}$ such that $\pi^{p}=e$, where e denotes the identity permutation in \mathfrak{S}_{n}. Consider the exponential generating function $G(x)=\sum_{n \geq 0} f(n) \frac{x^{n}}{n!}$. Prove that $G(x)=\exp \left(x+\frac{x^{p}}{p}\right)$

[^0]6. Let $M_{n} \subseteq \mathfrak{S}_{n}$ be the set of permutations $\pi \in \mathfrak{S}_{n}$ such that for all $2 \leq i \leq n$ there exists $1 \leq j<i$ with $|\pi(i)-\pi(j)|=1$. For example, $M_{3}=\{123,213,231,321\}$. Furthermore, for $S \subseteq[n-1]$, let M_{n}^{S} be the set of permutations in M_{n} with descent set S. Find $\left|M_{n}^{S}\right|$ and $\left|M_{n}\right|$.
7. Prove combinatorially that $\sum_{i=0}^{k}\binom{n+i}{i}=\binom{n+k+1}{k}$ for all $k, n \in \mathbb{N}$.
8. In how many ways (as a function of n) can you first choose a composition α of n and then a composition of each part in α ? The proof should be combinatorial and elegant.
9. Let $a(n)$ be the number of compositions of n into parts of size 2 or 3 . For example, $9=3+3+3=3+2+2+2=2+3+2+2=2+2+3+2=2+2+2+3$, so that $a(9)=5$.
Find a simple expression for the generating function $F(x)=\sum_{n \geq 0} a(n) x^{n}$.

[^0]: ${ }^{1}$ In order to combinatorially prove that m divides n, one typically produces a partition of a set of cardinality n into blocks that each have size m.

