SF2708 KOMBINATORIK, 2008

PROBLEM SET 2/4

Each exercise is worth five points. You may get partial credit for non-useless, non-perfect solutions. Hand in your solutions no later than April 11.

1. Let k and n be positive integers. Prove that the following are all equal:

- The number of partitions of n where each part occurs at most $2 k-1$ times.
- The number of partitions of n with no part divisible by $2 k$.
- The number of partitions of n where parts that are divisible by k occur at most once each.

2. Give a combinatorial proof of the recursion $D(n)=(n-1)(D(n-1)+D(n-2))$ for the derangement numbers (Stanley's $\S 2$, equation 14).
3. In this exercise you shall reprove the principle of inclusion-exclusion using generating functions.

Let $f, g: 2^{[n]} \rightarrow \mathbb{R}$ be functions that satisfy $g(S)=\sum_{T \supseteq S} f(T)$ for all $S \subseteq[n]$. Define

$$
G\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{S \subseteq[n]} f(S)\left(1+x_{1}\right)^{\chi_{S}(1)}\left(1+x_{2}\right)^{\chi_{S}(2)} \ldots\left(1+x_{n}\right)^{\chi_{S}(n)}
$$

where $\chi_{S}:[n] \rightarrow\{0,1\}$ is the characteristic function which is one on elements of S and zero elsewhere.
a) Show that $G\left(x_{1}, \ldots, x_{n}\right)=\sum_{S \subseteq[n]} g(S) x_{1}^{\chi_{S}(1)} \ldots x_{n}^{\chi_{S}(n)}$.
b) Consider $G\left(x_{1}-1, \ldots, x_{n}-1\right)$ and deduce a formula for $f(S)$ in terms of g.
4. Let $M_{m, n}$ be the set of 0,1 -matrices of size $m \times n$ such that every row and every column contains at least one 0 . Show that

$$
\left|M_{m, n}\right|=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\left(2^{n-k}-1\right)^{m}
$$

5. Find the number of ways to choose k points from a collection of m distinguishable points arranged in a circle if each pair of chosen points must be separated by at least d points.
6. Let $f(n)$ be the number of permutations $\pi \in \mathfrak{S}_{2 n}$ such that $\pi(i)>n-i$ for all $i \in[2 n]$. Show that

$$
f(n)=\sum_{k=0}^{n}(-1)^{n+k} S(n, k)(n+k)!.
$$

7. Given any function $f:[m] \rightarrow[n]$ and $i \in[n]$, let $f^{-1}(i)$ denote the set $\{j \in[m] \mid$ $f(j)=i\}$. Let $k \in \mathbb{N}$. Show that the number of functions $f:[m] \rightarrow[n]$ such that $\left|f^{-1}(i)\right| \neq k$ for all $i \in[n]$ is

$$
\sum_{j=0}^{n}(-1)^{j}\binom{n}{j}\binom{m}{k, \ldots, k, m-k j}(n-j)^{m-k j}
$$

where " k, \ldots, k " in the multinomial coefficient means that k appears j times.
8. Let $p=p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial of degree n. Given $k \in\{0,1, \ldots, n\}$, define $\sigma^{k}(p) \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ to be the sum of the $\binom{n}{k}$ polynomials obtained by letting k variables in p vanish in all possible ways. That is,

$$
\sigma^{k}(p)=\left.\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} p\right|_{x_{i_{1}}=\cdots=x_{i_{k}}=0 .} .
$$

Prove that

$$
\sum_{k=0}^{n}(-1)^{k} \sigma^{k}(p)=c x_{1} \ldots x_{n}
$$

where c is the coefficient in front of $x_{1} \ldots x_{n}$ in p.
9. Consider the complete bipartite graph $K_{n, n}, n \geq 2$. Remove from it the edges that belong to some fixed Hamiltonian cycle. How many complete matchings does the resulting graph have? ${ }^{1}$

[^0]
[^0]: ${ }^{1}$ Let us recall some graph-theoretic terminology. The graph $K_{n, n}$ has vertex set $\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\}$ and edges $\left\{x_{i}, y_{j}\right\}$ for all $(i, j) \in[n]^{2}$. A Hamiltonian cycle is a connected subgraph containing all the vertices in which each vertex is contained in precisely two edges. A complete matching is a subgraph containing all the vertices in which each vertex is contained in precisely one edge.

