SF2708 KOMBINATORIK, 2008

Each exercise is worth five points. You may get partial credit for non-useless, non-perfect solutions. Hand in your solutions no later than April 28.

1. Let n be an even integer. Given $X \subseteq[n]$, define $\sigma(X)=\sum_{x \in X} x$. Show that

$$
\sum_{X \in\binom{[n]}{k}}(-1)^{\sigma(X)}= \begin{cases}0 & \text { if } k \text { is odd } \\ (-1)^{k / 2}\binom{n / 2}{k / 2} & \text { if } k \text { is even }\end{cases}
$$

2. Let k and n be positive integers. Define a matrix M of size $n \times n$ with $\binom{k+i}{k+j-i}$ being the entry on row i, column j. Prove that all minors ${ }^{1}$ of M are nonnegative.
3. This exercise gives a proof that a largest possible antichain in the Boolean lattice B_{n} is given by the subsets of cardinality $\lfloor n / 2\rfloor$.

Let P be a finite poset in which the maximum size of an antichain is w. Let $\varphi: P \rightarrow P$ be a poset automorphism. Say that a subset $S \subseteq P$ is invariant under φ if $\varphi(S)=\{\varphi(s) \mid s \in S\}=S$.
(a) Prove that P contains an antichain of size w which is invariant under every automorphism $P \rightarrow P$.
(b) Given two subsets $S, T \subseteq[n]$ with $|S|>|T|$, show that there exists a permutation $\pi \in \mathfrak{S}_{n}$ such that $\pi(S) \supset T$.
(c) Deduce from (b) that no antichain in B_{n} which contains subsets of different cardinalities is invariant under every automorphism of B_{n}.
Hint. In (a), use the following fact which is implied by Exercise 3.25 in Stanley: In a finite distributive lattice L, the subposet of L induced by those elements that cover the maximum possible number of elements is a distributive lattice, too.
4. Let L be a finite geometric lattice. A set $A \subset L$ of atoms is called independent if $|A|$ is the rank of $\vee A$. Now suppose $A, B \subset L$ are two independent atom sets such that $|A|>|B|$. Show that there exists some $a \in A \backslash B$ such that $B \cup\{a\}$ is independent.
5. Let L be a lattice. Recall that L is called complete if every subset $S \subseteq L$ has a join and a meet. ${ }^{2}$ Suppose there exists an integer $\alpha \in \mathbb{N}$ such that $|C|<\alpha$ whenever $C \subseteq L$ is a chain. Prove that L is complete.

[^0]6. Suppose H_{1}, \ldots, H_{k} are linear hyperplanes in \mathbb{R}^{n} (i.e. linear subspaces of dimension $n-1$). Given $S \subseteq[k]$, define $H_{S}=\cap_{i \in S} H_{i} .{ }^{3}$ We observe/define that $H_{\emptyset}=\mathbb{R}^{n}$.

Define a poset L on $\left\{H_{S} \mid S \subseteq[k]\right\}$ by declaring $H_{S} \leq H_{S^{\prime}} \Leftrightarrow H_{S} \supseteq H_{S^{\prime}}$. Prove that L is a geometric lattice.
7. We are given a finite poset P and want to partition it into antichains. Show that the minimum number of antichains required is the same as the maximum cardinality of any chain in P.
8. A poset P is a forest if $I_{x} \cap I_{y}=\emptyset$ whenever $x, y \in P$ are incomparable elements. (Here, we use the notation $I_{p}=\{q \in P \mid q \leq p\}$ for $p \in P$.)

Suppose P is a forest with n elements. Prove that

$$
e(P)=\frac{n!}{\prod_{x \in P}\left|I_{x}\right|},
$$

where $e(P)$ denotes the number of linear extensions of P.
9. Define a partial order on $2^{[n]}$ by $S \leq T$ if the elements of S are $s_{1}>s_{2}>\cdots>s_{j}$ and the elements of T are $t_{1}>t_{2}>\cdots>t_{k}$, where $j \leq k$ and $s_{i} \leq t_{i}$ for all $i \in[j]$. (Observe/define that the empty set is smaller than all other subsets in this order.) Prove that this poset is graded and describe the rank function.

[^1]
[^0]: ${ }^{1}$ Recall that a minor of M is the determinant of some square matrix obtained by removing rows and columns from M.
 ${ }^{2}$ Clearly, finite lattices are always complete; cf. page 103 in Stanley.

[^1]: ${ }^{3}$ Notice that $H_{S}=H_{S^{\prime}}$ does not necessarily imply $S=S^{\prime}$.

