SF2708 KOMBINATORIK, 2008 PROBLEM SET 4/4

Each exercise is worth five points. You may get partial credit for non-useless, non-perfect solutions. Hand in your solutions no later than May 23.

1. Suppose *P* is a finite poset with $\hat{0}$ and $\hat{1}$. Show that *P* is a lattice if and only if the following property holds: $x \lor y$ exists whenever there is a *z* which is covered by both *x* and *y*.

2. Let P be a finite poset, and define $\hat{P} = P \cup \{\hat{0}, \hat{1}\}$ as usual. Suppose P has a fixed point free automorphism of order p, where p is a prime. Show that

$$\mu(\hat{0},\hat{1}) \equiv -1 \pmod{p},$$

where μ is the Möbius function of \hat{P} .

3. Find a new proof of the third problem of the first problem set by applying the result from Problem 2 to the partition lattice.

4. Let A_n denote an antichain with n elements. Consider the ordinal sum of posets $P = A_2 \oplus A_3 \oplus A_2$ and the corresponding $\hat{P} = P \cup \{\hat{0}, \hat{1}\}$. Determine $\mu(\hat{0}, \hat{1})$ in two different ways:

(a) By using the recurrence (14) in Stanley's Section 3.7.

(b) By using Philip Hall's theorem in conjunction with the Euler-Poincaré formula (Proposition 1.2.6 and Theorem 1.2.8 in Wachs' text).

5. Consider the set of acyclic directed graphs¹ on vertex set [n]. Ordering these graphs by containment of the edge sets gives us a poset. Note that the edgeless graph is the bottom element $\hat{0}$. Add an artificial top element $\hat{1}$ and call the resulting poset G_n .

Now construct another poset by ordering all partial orders on [n] by inclusion of relations. The antichain is the bottom element $\hat{0}$, and again we add an artificial top element $\hat{1}$. Denote this poset by P_n . Show that

$$\mu_{G_n}(\hat{0},\hat{1}) = \mu_{P_n}(\hat{0},\hat{1}).$$

 $^{^1\}mathrm{A}$ directed graph is acyclic if it contains no directed cycles.

6. Consider a poset P. A matching on P is an involution $M : P \to P$ (i.e. $M^2 = id$) such that either M(x) covers x or M(x) is covered by x for all $x \in P$.

Now suppose P is a finite poset with $\hat{0}$ in which every interval is Eulerian, and define $\hat{P} = P \cup \{\hat{1}\}$. Suppose $\mu_{\hat{P}}(\hat{0}, \hat{1}) \neq 0$. Prove that no matching on P exists.

7. Let d(n) denote the dimension of the incidence algebra of the partition lattice Π_n . Show that the exponential generating function satisfies

$$\sum_{n \ge 0} d(n) \frac{x^n}{n!} = e^{e^{e^x - 1} - 1}.$$

8. A binary word is called *primitive* if it cannot be obtained by concatenating two or more copies of a shorter word. Thus, 110101 is primitive whereas 110110 and 101010 are not. Let p(n) be the number of primitive binary words on n bits. Show that

$$p(n) = \sum_{d|n} \mu(d, n) 2^d,$$

where μ denotes the Möbius function of the divisibility lattice D_n .

- **9.** Let P be a finite poset. Show that the following properties are equivalent:
 - (i) For all x < y, [x, y] has an odd number of atoms.
 - (ii) For all x < y, [x, y] has an odd number of coatoms.
 - (iii) The Möbius function satisfies

$$\mu(x,y) \equiv \begin{cases} 1 & \text{if } x = y \text{ or } y \text{ covers } x, \\ 0 & \text{otherwise} \end{cases} \pmod{2}.$$