SF2708 KOMBINATORIK, 2008

Each exercise is worth five points. You may get partial credit for non-useless, non-perfect solutions. Hand in your solutions no later than May 23.

1. Suppose P is a finite poset with $\hat{0}$ and $\hat{1}$. Show that P is a lattice if and only if the following property holds: $x \vee y$ exists whenever there is a z which is covered by both x and y.
2. Let P be a finite poset, and define $\hat{P}=P \cup\{\hat{0}, \hat{1}\}$ as usual. Suppose P has a fixed point free automorphism of order p, where p is a prime. Show that

$$
\mu(\hat{0}, \hat{1}) \equiv-1 \quad(\bmod p)
$$

where μ is the Möbius function of \hat{P}.
3. Find a new proof of the third problem of the first problem set by applying the result from Problem 2 to the partition lattice.
4. Let A_{n} denote an antichain with n elements. Consider the ordinal sum of posets $P=A_{2} \oplus A_{3} \oplus A_{2}$ and the corresponding $\hat{P}=P \cup\{\hat{0}, \hat{1}\}$. Determine $\mu(\hat{0}, \hat{1})$ in two different ways:
(a) By using the recurrence (14) in Stanley's Section 3.7.
(b) By using Philip Hall's theorem in conjunction with the Euler-Poincaré formula (Proposition 1.2.6 and Theorem 1.2.8 in Wachs' text).
5. Consider the set of acyclic directed graphs ${ }^{1}$ on vertex set $[n]$. Ordering these graphs by containment of the edge sets gives us a poset. Note that the edgeless graph is the bottom element $\hat{0}$. Add an artificial top element $\hat{1}$ and call the resulting poset G_{n}.

Now construct another poset by ordering all partial orders on $[n]$ by inclusion of relations. The antichain is the bottom element $\hat{0}$, and again we add an artificial top element $\hat{1}$. Denote this poset by P_{n}. Show that

$$
\mu_{G_{n}}(\hat{0}, \hat{1})=\mu_{P_{n}}(\hat{0}, \hat{1})
$$

[^0]6. Consider a poset P. A matching on P is an involution $M: P \rightarrow P$ (i.e. $M^{2}=\mathrm{id}$) such that either $M(x)$ covers x or $M(x)$ is covered by x for all $x \in P$.

Now suppose P is a finite poset with $\hat{0}$ in which every interval is Eulerian, and define $\hat{P}=P \cup\{\hat{1}\}$. Suppose $\mu_{\hat{P}}(\hat{0}, \hat{1}) \neq 0$. Prove that no matching on P exists.
7. Let $d(n)$ denote the dimension of the incidence algebra of the partition lattice Π_{n}. Show that the exponential generating function satisfies

$$
\sum_{n \geq 0} d(n) \frac{x^{n}}{n!}=e^{e^{e^{x}-1}-1}
$$

8. A binary word is called primitive if it cannot be obtained by concatenating two or more copies of a shorter word. Thus, 110101 is primitive whereas 110110 and 101010 are not. Let $p(n)$ be the number of primitive binary words on n bits. Show that

$$
p(n)=\sum_{d \mid n} \mu(d, n) 2^{d}
$$

where μ denotes the Möbius function of the divisibility lattice D_{n}.
9. Let P be a finite poset. Show that the following properties are equivalent:
(i) For all $x<y,[x, y]$ has an odd number of atoms.
(ii) For all $x<y,[x, y]$ has an odd number of coatoms.
(iii) The Möbius function satisfies

$$
\mu(x, y) \equiv \begin{cases}1 & \text { if } x=y \text { or } y \text { covers } x, \quad(\bmod 2) \\ 0 & \text { otherwise }\end{cases}
$$

[^0]: ${ }^{1}$ A directed graph is acyclic if it contains no directed cycles.

