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ABSTRACT
We consider the model on phylogenetic trees in which every
node of the tree is an observed binary random variable and
the transition probabilities are given by the same matrix
on each edge. The ideal of algebraic invarients is a toric
ideal, we show the results of many calculations of minimal
generating sets for these ideals. Further, we prove that the
normal fan of the toric variety has a finite number of types
for several families of trees and give data for this normal fan
for all trees.

1. PHYLOGENETIC TREES
Throughout, let T be a rooted tree with n − 1 edges (and
therefore n nodes). To each node vi of T we associate a
κ-ary random variable Xi. We write ρ(v) for the parent of
the node v.

The transition probabilities between ρ(v) and v are given by

a κ by κ matrix A(v). These transition matrices are generally
picked from some specific families such as the Jukes- In this
paper we consider the model where all A(v) are equal and all

nodes are binary. We write A(v) = A =

„

a00 a01

a10 a11

«

. Notice

that by subdividing the edges of the tree we can approximate
the more general model with this homogeneous model.

The probability of observing i at a node v is computed from
the parent of v in the tree as follows

P (Xv = i) = ai0P (Xρ(v) = 0) + ai1P (Xρ(v) = 1).

We assume that the root of the tree has uniform distribution.
We are interested in the algebraic relations satisfied by the
joint distribution

pi1i2...in := P (X1 = i1, . . . , Xn = in).

Writing the joint distribution in terms of the model param-

eters a00, a01, a10, a11 we have

pi1i2...in :=
n

Y

j=2

aiρ(j)ij
(1)

where the nodes are labeled 1ton +1 starting with the root.
That is to say, the probability of observing a certain labeling
of the tree is the product of the aij corresponding to the
transitions down all edges of the tree.

The 4 parameters aij trace out a variety of dimension 4 in

R
2n−1

. This is a toric variety - it is parameterized by mono-
mials. The ideal of phylogenetic invariants of this model is
the ideal of this variety. We denote this toric ideal by IT .

To be explicit, the invariants vanish for a given distribu-
tion (pi1...in) exactly when that distribution comes from our
model. Thus the knowlegde of the generators of this ideal
is potentially very useful for the fitting of data to a phylo-
genetic tree.

1.1 Vitterbi Sequences
Let AT be the 4 by 2n matrix where each column is the
exponent vector of the aij in (1) for some (i1, . . . , in) ∈
{0, 1}n. Let PT be the convex hull of the columns of AT .
This is a polytope in R

4, however since all the monomials
in (1) have the same degree n− 1, we see that this polytope
is actually contained in n − 1 times the unit simplex in R

4.
Thus, PT is actually a 3 dimensional polytope. We call PT

the Vitterbi polytope.

This notation comes from a dual question. Given any ob-
servation (i1, . . . , in) of the tree, which matrices A = (aij)
make pi1...in maximal among the coordinates of the distri-
bution p?

To solve this problem, transform to logarithmic coordinates
bij = log(aij). Then the condition that pi1...in > pl1...ln

for all (l1, . . . ln) ∈ {0, 1}n is translated into the the linear
system of inequalities

bx1x2 + · · · + bxρ(n)xn > bl1l2 + · · · + blρ(n)ln

for all (l1, . . . ln) ∈ {0, 1}n

The set of solutions is a polyhedral cone. For most val-
ues of i1, . . . , in, this cone will be empty. Those sequences
i1, . . . , in for which the cone is maximal are called Vitterbi

sequences.



Figure 1: PT for T a path with 6 edges

It is easy to see that the collection of these cones, as (i1, . . . , in)
varies, is the normal fan of the polytope PT := Conv(AT ).

2. POLYTOPES
The polytopes PT show remarkable finiteness properties as
T varies. Since PT is defined as the convex hull of 2n vectors,
it would seem that it could have arbitrarily bad structure.
However, as it is contained in n − 1 times the unit simplex,
there are at most O(n3) integral points in PT .

Example. Eric Kuo showed that if T is a path with n
nodes, then PT has only two combinatorial types for n > 3.
The polytope for the path with 6 edges is shown in Figure 2.
Think of this picture as a tetrahedron with the two vertices
corresponding to all 0 → 1 and 1 → 0 transitions sliced off
(since if a path has a 0 → 1 transition it must have a 1 → x
transition).

For all tested natural families of trees, this finiteness prop-
erty seems to hold. In particular, if the tree is binary and
completly balanced (that is, every leaf is at the same depth),
a naive set of inequalities that hold for any binary tree actu-
ally characterize the polytope. Thus in some sense this tree
is universal among binary trees.

Theorem: Let T be a balanced binary tree with more
than 3 nodes. The associated polytope always has the same
combinatorial type with 8 vertices and 6 facets, see Figure 2
and Figure 2.

However, arbitrary trees seem to have polytopes with many
vertices. For example, Figure 2 and Figure 2 show a tree
with 17 nodes that has a polytope with 34 vertices.

Table 2 shows data for all trees on at most 15 nodes. It
appears that the maximum number of vertices grows ap-
proximately as 2n. Notice that the tree with all leaves at
depth 1 has PT a tetrahedron, giving the unique minimum
number, 4, of vertices for all trees.

Table 2 shows data for all binary tree on at most 21 nodes.
It appears that the polytopes are much nicer, with the max-

Figure 2: PT for the complete binary tree with 15?

nodes

Figure 4: The tree associated to Figure 2

Figure 5: A polytope with 34 vertices



11

NO
10

0NO  0

1111111
*
0

11111111

NO 

NO 01

0000

111111
0

0
1

0

000000
*
1

1

11
0

1111
00000000

00
1

000000
1

1
0

Figure 3: A Schlegel diagram for the polytope of the complete binary tree with facets labeled.

#nodes #trees min max ave
4 4 4 8 7
5 9 4 11 8
6 20 4 14 9.7
7 48 4 15 10.75
8 115 4 20 12.59
9 286 4 21 13.67
10 719 4 22 15.42
11 1842 4 25 16.60
12 4766 4 28 18.3
13 12486 4 31 19.5
14 32973 4 32 19.75
15 87811 4 34 22.6

Table 1: Minimum, maximum and average number

of vertices of PT over all trees with at most 15 nodes

imum number of vertices of PT appearing to grow at most
linearly. Thus we ask

Question: Is there a bound for the number of vertices of
PT as T ranges over all binary trees?

The obvious algorithm for computing PT involves a 2n loop
followed by an elimination of duplicates and a convex hull
computation. This algorithm can certainly be improved, but
it is not know whether there is a polynomial time algorithm
for constructing the polytope given a tree.

3. TORIC IDEALS
A toric ideal is an ideal parameterized by monomials or
equivalently generated by binomials. A toric ideal has an
(essentially) unique minimal generating set, called a Markov
Basis. This can be calculated using 4ti2, by Raymond Hem-
mecke. Amazingly enough, 4ti2 was able to calculate Markov
bases for ideals in 2048 variables.

The markov bases for binary trees are shown in Table 3.

Conjecture: The toric ideal corresponding to a binary
tree is generated in degree 2.

It is conjectured that the quadratic generators correspond
to moving subtrees betwee two trees in a compatible way.
For an example, see Figure 3

#nodes #trees min max ave
3 1 4 4 4
5 1 7 7 7
7 2 8 10 9
9 3 8 13 11.33
11 6 10 14 11.66
13 11 11 13 11.91
15 23 8 16 14.35
17 46 12 17 13.82
19 98 10 20 14.65
21 207 8 19 14.8

Table 2: Minimum, maximum and average number

of vertices of PT over all binary trees with at most

21 nodes

tree degree #MinGens max deg

4 4 2

28 79 2

92 441 2

96 561 2

210 2141 2

220 2068 2

210 2266 2

Table 3: Degree of IT , munber of minimal genera-

tors, and maximum degree of the generators
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Figure 6: A quadratic generator

# nodes degree #MinGens max deg # of deg 3
3 6 6 3 2
4 19 32 3 4
5 36 102 3 6
6 61 259 3 8
7 90 540 3 10
8 127 1041 3 12
9 168 1842 3 14
10 217 3170 3 16

Table 4: Markov bases of paths

From examining the table of markov bases for paths (Ta-
ble 3), we believe the following:

Conjecture: The toric ideal corresponding to a path is
generated in degree 3.

Finally from examining Table 3 and the data we conjecture

that the trees with highest degree generators are

. . .
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nodes trees MinGens Max deg
3 2 4-6 2-3
4 4 14-45 2-4
5 9 24-160 2-5
6 20 72-498 2-6
7 48 144-1342 2-7
8 115 282-3059 2-8

Table 5: Markov bases for all trees

Hemmecke [1] was used to compute the minimal generating
set for the pylogenetic ideals.
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