SF2716 TORIC GEOMETRY TAKE HOME ASSIGNMENT II DUE MAY 102008

(1) Let V, W be two irreducible affine varieties, $p \in V$ and $q \in W$.
(a) Let U_{0}, V_{0} be two Zariski open subspaces of V and W respectively, with $p \in U_{0}$. Let $\phi: U_{0} \rightarrow W_{0}$ be an isomorphism, such that $\phi(p)=q$. Show that there is a natural isomorphism $T_{p} U_{0} \rightarrow T_{q} V_{0}$ and hence $\operatorname{dim}\left(T_{p} U_{0}\right)=\operatorname{dim}\left(T_{q} V_{0}\right)$.
(b) Deduce that if two varieties are birationally equivalent, then they have the same dimension. (Two varieties are birationally equivalent if there is a rational map, whose inverse is a rational map.)
(2) Let $P=\cap_{1}^{d} H_{n_{F_{i}}, a_{i}}^{+} \subset \mathbb{R}^{n} \cong M_{\mathbb{R}}$ be a maximal dimensional lattice polytope, with facets F_{1}, \ldots, F_{d}. For any $k \geq 1$ we denote by $k P$ the polytope:

$$
k P=\cap_{1}^{d} H_{n_{F_{i}}, k a_{i}}^{+} .
$$

If $m \in M$, then $P+m$ is the polytope translated by the translation $x \mapsto x+m$.

Show that for any $m \in M$ and any integer $k \geq 1$,

$$
\Sigma_{P}=\Sigma_{P+m}=\Sigma_{k P},
$$

and thus they define the same projective toric variety.
(3) Consider the Segre-embedding:

$$
s_{1,1}: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}
$$

defined as $s_{1,1}\left[\left(x_{0}, x_{1}\right),\left(y_{0}, y_{1}\right)\right]=\left(x_{0} y_{0}, x_{0} y_{1}, x_{1} y_{0}, x_{1} y_{1}\right)$.
(a) Show that it defines an isomorphism of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ with the quadric hypersurface $Q=V\left(x_{0} x_{3}-x_{1} x_{2}\right) \subset \mathbb{P}^{3}$, where $x_{0}, x_{1}, x_{2}, x_{3}$ are homogeneous coordinates on \mathbb{P}^{3}.
(b) Describe the image in Q of the two families of lines:

$$
\left\{p \times \mathbb{P}^{1} \text { s.t. } p \in \mathbb{P}^{1}\right\},\left\{\mathbb{P}^{1} \times q \text { s.t. } q \in \mathbb{P}^{1}\right\} .
$$

(c) Use (2) to show that $\mathbb{P}^{1} \times \mathbb{P}^{1} \not \not \not \mathbb{P}^{2}$.
(4) Explain as much as you can of exercise (3) using toric geometry.

