SF2716 TORIC GEOMETRY TAKE HOME ASSIGNMENT II DUE MAY 10 2008

- (1) Let V, W be two irreducible affine varieties, $p \in V$ and $q \in W$.
 - (a) Let U_0, V_0 be two Zariski open subspaces of V and W respectively, with $p \in U_0$. Let $\phi : U_0 \to W_0$ be an isomorphism, such that $\phi(p) = q$. Show that there is a natural isomorphism $T_p U_0 \to T_q V_0$ and hence $\dim(T_p U_0) = \dim(T_q V_0)$.
 - (b) Deduce that if two varieties are birationally equivalent, then they have the same dimension. (Two varieties are birationally equivalent if there is a rational map, whose inverse is a rational map.)
- (2) Let $P = \bigcap_{1}^{d} H_{n_{F_{i}},a_{i}}^{+} \subset \mathbb{R}^{n} \cong M_{\mathbb{R}}$ be a maximal dimensional lattice polytope, with facets $F_{1}, ..., F_{d}$. For any $k \geq 1$ we denote by kP the polytope:

$$kP = \bigcap_1^d H^+_{n_{F_i},ka_i}.$$

If $m \in M$, then P + m is the polytope translated by the translation $x \mapsto x + m$.

Show that for any $m \in M$ and any integer $k \ge 1$,

$$\Sigma_P = \Sigma_{P+m} = \Sigma_{kP},$$

and thus they define the same projective toric variety.

(3) Consider the Segre-embedding:

$$s_{1,1}: \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^3$$

defined as $s_{1,1}[(x_0, x_1), (y_0, y_1)] = (x_0y_0, x_0y_1, x_1y_0, x_1y_1).$

- (a) Show that it defines an isomorphism of $\mathbb{P}^1 \times \mathbb{P}^1$ with the quadric hypersurface $Q = V(x_0x_3 x_1x_2) \subset \mathbb{P}^3$, where x_0, x_1, x_2, x_3 are homogeneous coordinates on \mathbb{P}^3 .
- (b) Describe the image in Q of the two families of lines:

 $\{p \times \mathbb{P}^1 \text{ s.t. } p \in \mathbb{P}^1\}, \{\mathbb{P}^1 \times q \text{ s.t. } q \in \mathbb{P}^1\}.$

- (c) Use (2) to show that $\mathbb{P}^1 \times \mathbb{P}^1 \ncong \mathbb{P}^2$.
- (4) Explain as much as you can of exercise (3) using toric geometry.