APRIL 14

Contents

1. Toric variety associated to a fan 1
2. Orbits and subvarieties 2
References 4

1. Toric variety associated to a fan

Let $\Sigma \subseteq N_{\mathbb{R}}$ be a complete fan. Let $\operatorname{rank}(N)=n$, and let M be the dual lattice.

We have seen that each cone of maximal dimension, σ, defines an affine toric variety:

$$
U_{\sigma}=\operatorname{Spec}(\mathbb{C}[\check{\sigma} \cap M])
$$

Recall that if σ is regular, then U_{σ} is non singular and it is $U_{\sigma} \cong \mathbb{C}^{n}$.
Let $\tau \subset \sigma$ be a face of dimension k. Then there is an element $u \in \check{\sigma} \cap M$ such that $\tau=\sigma \cap u^{\perp}$ and $\check{\tau}=\check{\sigma}+\mathbb{R}_{\geq 0}(-u)$. It follows that $S_{\tau}=S_{\sigma}+\mathbb{Z}(-u)$. which gives

$$
U_{\tau}=\operatorname{Spec}\left(\mathbb{C}\left(S_{\sigma}\right)_{\chi^{u}}\right)
$$

as an open subset of U_{σ}.
Similarly we see that $U_{\sigma} \cap U_{\sigma^{\prime}}=U_{\sigma \cap \sigma^{\prime}}$.
We then define the corresponding toric variety:

$$
X(\Sigma)=\cup_{\sigma \in \Sigma} U_{\sigma}
$$

as the disjoint union of the affine toric varieties corresponding to cones in Σ, glued together the open subsets $U_{\sigma \cap \sigma^{\prime}}$ in U_{σ} and U_{σ}^{\prime}. (This identifications are compatible, by construction). Moreover the action of T_{N} on the maximal affine patches is compatible with the intersection and thus defines an action of T_{N} over $X(\Sigma)$.

Recall that if σ, with $\operatorname{dim}(\sigma)=k$ is regular if and only if it is generated by part of a basis of the lattice N. This implies that then $U_{\sigma}=\mathbb{C}^{k} \oplus\left(\mathbb{C}^{*}\right)^{n-k}$.

Moreover if σ is regular then U_{σ} contains only one fixed point

$$
x_{\sigma} \text { corresponding to } x_{\sigma}(m)=1 \text { if } m \in \sigma^{\perp} \text {, and } 0 \text { otherwise. }
$$

2. Orbits and subvarieties

Recall that a variety with a group action is always the disjoint union of its orbits.

Example 2.1. Consider the affine toric variety \mathbb{C}^{n}. The torus is the unique orbit of any point inside, let $1=(1, \ldots, 1)$, then

$$
O_{1}=\left(\mathbb{C}^{*}\right)^{n}
$$

For any $I \subset\{1, \ldots, n\}$ let $x_{I}=\sum_{i \in I} e_{i}$, where $e_{1}, . ., e_{n}$ is an affine basis. Then

$$
O_{x_{I}}=\left\{\left(z_{1}, \ldots, z_{n}\right) \text { such that } z_{i} \neq 0 \text { if and only if } i \in I\right\} \cong\left(\mathbb{C}^{*}\right)^{|I|}
$$

and

$$
\overline{O_{x_{I}}}=V\left(x_{i}, i \notin I\right) \subset \mathbb{C}^{n} \backslash O_{1} .
$$

Moreover they form a disjoint cover of \mathbb{C}^{n}.
One can describe the orbits of \mathbb{P}^{n} similarly by intersecting with the affine patches.

Toric varieties coming from a complete fan, $X(\Sigma)$ behave similarly. Assume that every cone is regular.

Let $\sigma \in \Sigma$ be a maximal dimensional cone. Then $U_{\sigma} \cong \mathbb{C}^{n}$ ha a unique fixed point x_{σ} and a big dense open orbit $O_{1}=T_{N}$, such that $\left.\overline{(} O_{1}\right)=U_{\sigma}$.

Let $\tau \subset \sigma$ be a face of dimension k. Then $U_{\tau} \cong \mathbb{C}^{k} \times\left(\mathbb{C}^{*}\right)^{n-k}$. let

$$
O_{\tau}=T_{N(\tau)}=N(\tau) \otimes \mathbb{C}
$$

be the following $(n-k)$ dimensional torus. Recall that $N_{\tau}=(\tau \cap M)+(-\tau \cap$ $M)$ is the sublattice giving the $(n-k)$-dimensional sublattice $N(\tau)=N / N_{\tau}$ whose dual is $M(\tau)=\tau^{\perp} \cap M$.

Let $\pi: N \rightarrow N(\sigma)$ be the projection map, then

$$
\pi(\sigma)=\bar{\sigma}=\left(\sigma+N(\sigma)_{\mathbb{R}}\right) / N(\sigma)_{\mathbb{R}} \in N(\sigma)
$$

We define the following fan (it is a complete fan):

$$
\operatorname{Star}(\tau)=\{\overline{(\sigma)} \text { such that } \tau \subset \sigma\} \subset N(\tau) .
$$

And the corresponding $n-k$ dimensional toric variety is denoted by

$$
V(\tau)=X(\operatorname{Star}(\tau))
$$

Note that it is the closure of O_{τ}.
The affine patches are given by cones in the fan, i.e. cones σ containing τ. Because $\check{\bar{\sigma}}=\check{\sigma} \cap \tau^{\perp}$ we have that:

$$
U_{\sigma}(\tau)=\operatorname{Spec}(\mathbb{C}[\check{\bar{\sigma}} \cap M(\tau)])=\operatorname{Spec}\left(\mathbb{C}\left[\check{\sigma} \cap \tau^{\perp} \cap M\right]\right) .
$$

and thus

$$
V(\tau)=\bigcup_{\tau \subseteq \sigma} \operatorname{Spec}\left(\mathbb{C}\left[\check{\sigma} \cap \tau^{\perp} \cap M\right]\right)
$$

and O_{τ} is the big dense open orbit in each affine patch.

Observe that $O_{\{0\}}=T_{N}$ and thus $V(\{0\})=X(\Sigma)$. Also because they are closure of orbits they are invariant under the action of T. (T acts on $V(\tau)$ via the projection $T \rightarrow T(\tau)$.) This defines a correspondence (order reversing, see below) between
k-dimensional cones in Σ and codimension $(n-k)$ invariant subvarieties.
The closed embedding of $V(\tau)$ in $X(\Sigma)$ is defined as

$$
i: U_{\sigma}(\tau)=\operatorname{Hom}_{s g}\left(\check{\sigma} \cap \tau^{\perp} \cap M, \mathbb{C}\right) \rightarrow U_{\sigma}=\operatorname{Hom}_{s g}(\check{\sigma} \cap M, \mathbb{C})
$$

where $i(f)$ is the extension by zero:

$$
i(f)=\left\{\begin{array}{cc}
f(m) & m \in \check{\sigma} \cap \tau^{\perp} \\
0 & \text { otherwise }
\end{array}\right.
$$

Notice that this map is well defined because $\check{\sigma} \cap \tau^{\perp}$ is a face of $\check{\sigma}$.
Let $\tau \subset \sigma \subset \gamma$, and thus $\check{\gamma} \subset \check{\sigma}$. The following diagram commutes:

where the horizontal maps are restrictions and the vertical are extensions. Then the induced diagram also commutes:

The maps glue to define the closed inclusion

$$
V(\tau) \longleftrightarrow X(\Sigma)=V(\{0\})
$$

Similarly if τ is a face of τ^{\prime} then $V\left(\tau^{\prime}\right) \hookrightarrow V(\tau)$.

References

[AM] Atiyah, M. F.; Macdonald, I. G. Introduction to commutative algebra. Addison-
Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1969 ix+128 pp.
[CLS] D. Cox, J. Little, H. Scenck. Toric Varieties.
[F] W. Fulton.Introduction to toric varieties.Annals of Math. Princeton Univ. Press, 131.

