APRIL 14

Contents

1.	Toric variety associated to a fan	1
2.	Orbits and subvarieties	2
References		4

1. TORIC VARIETY ASSOCIATED TO A FAN

Let $\Sigma \subseteq N_{\mathbb{R}}$ be a complete fan. Let rank(N) = n, and let M be the dual lattice.

We have seen that each cone of maximal dimension, σ , defines an affine toric variety:

$$U_{\sigma} = Spec(\mathbb{C}[\check{\sigma} \cap M])$$

Recall that if σ is regular, then U_{σ} is non-singular and it is $U_{\sigma} \cong \mathbb{C}^n$.

Let $\tau \subset \sigma$ be a face of dimension k. Then there is an element $u \in \check{\sigma} \cap M$ such that $\tau = \sigma \cap u^{\perp}$ and $\check{\tau} = \check{\sigma} + \mathbb{R}_{\geq 0}(-u)$. It follows that $S_{\tau} = S_{\sigma} + \mathbb{Z}(-u)$. which gives

$$U_{\tau} = Spec(\mathbb{C}(S_{\sigma})_{\chi^{u}})$$

as an open subset of U_{σ} .

Similarly we see that $U_{\sigma} \cap U_{\sigma'} = U_{\sigma \cap \sigma'}$.

We then define the corresponding toric variety:

$$X(\Sigma) = \cup_{\sigma \in \Sigma} U_{\sigma}$$

as the disjoint union of the affine toric varieties corresponding to cones in Σ , glued together the open subsets $U_{\sigma\cap\sigma'}$ in U_{σ} and U'_{σ} . (This identifications are compatible, by construction). Moreover the action of T_N on the maximal affine patches is compatible with the intersection and thus defines an action of T_N over $X(\Sigma)$.

Recall that if σ , with dim $(\sigma) = k$ is regular if and only if it is generated by part of a basis of the lattice N. This implies that then $U_{\sigma} = \mathbb{C}^k \oplus (\mathbb{C}^*)^{n-k}$. Moreover if σ is regular then U_{σ} contains only one fixed point

 x_{σ} corresponding to $x_{\sigma}(m) = 1$ if $m \in \sigma^{\perp}$, and 0 otherwise.

APRIL 14

2. Orbits and subvarieties

Recall that a variety with a group action is always the disjoint union of its orbits.

Example 2.1. Consider the affine toric variety \mathbb{C}^n . The torus is the unique orbit of any point inside, let 1 = (1, ..., 1), then

$$O_1 = (\mathbb{C}^*)^n.$$

For any $I \subset \{1, ..., n\}$ let $x_I = \sum_{i \in I} e_i$, where $e_1, ..., e_n$ is an affine basis. Then

$$O_{x_I} = \{(z_1, ..., z_n) \text{ such that } z_i \neq 0 \text{ if and only if } i \in I\} \cong (\mathbb{C}^*)^{|I|}.$$

and

$$\overline{O_{x_I}} = V(x_i, i \notin I) \subset \mathbb{C}^n \setminus O_1.$$

Moreover they form a disjoint cover of \mathbb{C}^n .

One can describe the orbits of \mathbb{P}^n similarly by intersecting with the affine patches.

Toric varieties coming from a complete fan, $X(\Sigma)$ behave similarly. Assume that every cone is regular.

Let $\sigma \in \Sigma$ be a maximal dimensional cone. Then $U_{\sigma} \cong \mathbb{C}^n$ has a unique fixed point x_{σ} and a big dense open orbit $O_1 = T_N$, such that $(O_1) = U_{\sigma}$.

Let $\tau \subset \sigma$ be a face of dimension k. Then $U_{\tau} \cong \mathbb{C}^k \times (\mathbb{C}^*)^{n-k}$. let

$$O_{\tau} = T_{N(\tau)} = N(\tau) \otimes \mathbb{C}$$

be the following (n-k) dimensional torus. Recall that $N_{\tau} = (\tau \cap M) + (-\tau \cap M)$ is the sublattice giving the (n-k)-dimensional sublattice $N(\tau) = N/N_{\tau}$ whose dual is $M(\tau) = \tau^{\perp} \cap M$.

Let $\pi: N \to N(\sigma)$ be the projection map, then

$$\pi(\sigma) = \overline{\sigma} = (\sigma + N(\sigma)_{\mathbb{R}}) / N(\sigma)_{\mathbb{R}} \in N(\sigma).$$

We define the following fan (it is a complete fan):

$$Star(\tau) = \{ \overline{(\sigma)} \text{ such that } \tau \subset \sigma \} \subset N(\tau)$$

And the corresponding n-k dimensional toric variety is denoted by

$$V(\tau) = X(Star(\tau)).$$

Note that it is the closure of O_{τ} .

The affine patches are given by cones in the fan, i.e. cones σ containing τ . Because $\check{\sigma} = \check{\sigma} \cap \tau^{\perp}$ we have that:

$$U_{\sigma}(\tau) = Spec(\mathbb{C}[\check{\overline{\sigma}} \cap M(\tau)]) = Spec(\mathbb{C}[\check{\sigma} \cap \tau^{\perp} \cap M]).$$

and thus

$$V(\tau) = \bigcup_{\tau \subseteq \sigma} Spec(\mathbb{C}[\check{\sigma} \cap \tau^{\perp} \cap M])$$

and O_{τ} is the big dense open orbit in each affine patch.

APRIL 14

Observe that $O_{\{0\}} = T_N$ and thus $V(\{0\}) = X(\Sigma)$. Also because they are closure of orbits they are invariant under the action of T. (T acts on $V(\tau)$ via the projection $T \to T(\tau)$.) This defines a correspondence (order reversing, see below) between

k-dimensional cones in Σ and codimension (n-k) invariant subvarieties.

The closed embedding of $V(\tau)$ in $X(\Sigma)$ is defined as

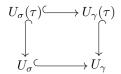
$$i: U_{\sigma}(\tau) = Hom_{sg}(\check{\sigma} \cap \tau^{\perp} \cap M, \mathbb{C}) \to U_{\sigma} = Hom_{sg}(\check{\sigma} \cap M, \mathbb{C})$$

where i(f) is the extension by zero:

$$i(f) = \begin{cases} f(m) & m \in \check{\sigma} \cap \tau^{\perp} \\ 0 & \text{otherwise} \end{cases}$$

Notice that this map is well defined because $\check{\sigma} \cap \tau^{\perp}$ is a face of $\check{\sigma}$. Let $\tau \subset \sigma \subset \gamma$, and thus $\check{\gamma} \subset \check{\sigma}$. The following diagram commutes:

where the horizontal maps are restrictions and the vertical are extensions. Then the induced diagram also commutes:



The maps glue to define the closed inclusion

$$V(\tau) {}^{{}_{\textstyle\smile}} {}^{{}_{\scriptstyle\frown}} X(\Sigma) = V(\{0\})$$

Similarly if τ is a face of τ' then $V(\tau') \hookrightarrow V(\tau)$.

References

[AM] Atiyah, M. F.; Macdonald, I. G. Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1969 ix+128 pp.

[CLS] D. Cox, J. Little, H. Scenck. Toric Varieties.

[F] W. Fulton.Introduction to toric varieties.Annals of Math. Princeton Univ. Press, 131.