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1. Fan defined by a Polytope

Let P ⊂ MRn = MR be an n-dimensional polytope such that for every
vertex m, the semigroup N(P ∩M −m) is saturated. We have seen that it
defines a projective toric variety XP∩M = XA.

XP∩M =
⋃

m vertex

Spec(C[σ̌m ∪M ])

where σ̌m = Cone(P ∩M −m).
Because dim(P ) = n we can write:

P =
⋂

F⊂P facet

HnF ,aF .

Let m ∈ P be a vertex. By duality one sees that

σm = Cone(nF s.t. m ∈ F ).

Recalling that every proper face, Q ⊂ P, is the intersection of supporting hy-
perplanes and that the intersection of a suporting hyperplane with polytope
determines a face, we see that:

Q =
⋂

Q⊆F

F.

Therefore every face defines a cone

σQ = Cone(nF s.t. Q ⊂ F ), σQ ⊂ σm for every vertex m ∈ Q

Observe also that dim(Q) = dim(σ̌Q) because σ̌Q = ˇ< nF1 , ..., nFs >
where Q = F1 ∩ ... ∩ Fs.

Then every face Q ⊆ P defines a cone σQ = ˇCone(Q ∩M −m) ⊂
ˇCone(Q ∩M −m) = σm form m ∈ σ such that

dim(Q) + dim(σQ) = n.
1
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For every facet F the cone σF is one dimensional, and it is one of the
edged of σm for every m ∈ F. The Polytope defines σP = Cone() = {0}.

Lemma 1.1. Let Q ⊆ P be a face and let Hu,b be a supporting hyperplane.
Then

u ∈ σQ ⇔ Q ⊆ Hu,b ∩ P

Proof. Let Q = F1 ∩ ... ∩ Fs so that σ = Cone(uF1 , ..., uFs . Notice that a
supporting hyperplane is of the form Hu,b, is such that Q ⊂ Hu,b ∩ P if
< m,u >= b for every m ∈ Q = F1 ∩ ... ∩ Fs (and < m,nFi >= −ai.)

If u ∈ σQ, then u =
∑s

1 λFiuFi . Then b =
∑s

1 λiai is such that Q ⊂
Hu,b ∩ P.

If Q ⊂ Hu,b ∩ P consider a vertex m ∈ Q. Then m ∈ Hu,b and P ⊂ H+
u,b.

It follows that P ∩M −m ⊂ H+
u,0. Let now u ∈ σm and write u = λF uF as

before. If Q is a facet, then HuF ,aF ∩ P = F and Cone(uF ) = σF . We may
assume that Q is not a facet. Let m ∈ F1 and let p ∈ Q and p ∈ (Q \ F1).
Then

< p, uFi >≥ −aFi , < p, uF1 >> −aF1

Moreover

< p, u >=
∑

−λFi < p, uFi >= b, < m, u >=
∑

−λFiaFi = b

gives
∑
−λFi < p, uFi >=

∑
−λFiaFi , which implies λF1 = 0. This for every

face such that Q 6⊂ F. �

As a corollary we have that

uF ∈ σQ ⇔ Q ⊆ F.

Lemma 1.2. Lat Q,Q′ be faces of P, then

(1) Q ⊆ Q′ ⇔ σQ′ ⊆ σQ.
(2) σQ ∩ σQ′ = σQ′′ , where Q′′ is the smallest face containing Q and Q′.

Proof. (1) If Q ⊂ Q′ if and only if Q ⊆ F for every Q′ ⊂ F, which
(2) Let Q′′ is the smallest face containing Q and Q′. One sees that

Q′′ =
⋂

Q⊆F,Q′⊆F

F,

Because then σQ′′ = Cone(nF , Q ⊆ F,Q′ ⊆ F ) it follows that σQ′′

is a face of both σQ and σQ′ and thus σQ′′ ⊂ σQ ∩ σQ′ .
If σQ′ ⊂ σQ′′ = σP = {0}, then Q′′ = P. Otherwise for u ∈ σQ′ ⊂

σQ′′ we have Q ⊆ Hu,b ∩ P,Q′ ⊆ Hu,b ∩ P for some b ∈ R. Because
Hu,b∩P is a face it is Q′′ ⊆ Hu,b∩P for the minimality of Q′′. Then
again Lemma implies that u ∈ σQ′′ and thus σQ′′ ⊂ σQ ∩ σQ′ .

�
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2. The inner-normal fan

We have seen that, if we collect all cones defined by faces:

ΣP = {σQ s.t. Q is a face of P},

this collection has the following properties:

• For every σQ ∈ ΣP faces of σQ belong to ΣP .
• Intersection of cone in ΣP belong to ΣP .

A collection of lattice cones with the above properties id called a fan. Be-
cause the cones in ΣP are generated by the inner-normal vectors of facets,
the fan ΣP is called The inner-normal fan.

Moreover it is: ⋃
m vertex of P

σm = NR.

In fact if 0 6= u ∈ NR, let b = min{< u,m >, m vertex of P}. Then
P ⊂ H+

u,b and m ∈ Hu,b for at least one vertex m. Lemma 2 implies that
u ∈ σm.

A fan whose maximal dimensional cones cover the whole space is called
complete.

Example 2.1. P = pentagon in R2. See [CLS, Example 3.10] for a nice
example in R3.

3. Correspondence faces-affne open subspaces

Consider τ ⊆ σ, i.e. τ = σ ∩Hm for m ∈ σ̌ ∩M.
Then Sσ ⊆ Sτ and ±m ∈ τ⊥, since < m, u >= 0 for every u ∈ τ. It

follows that Sσ + Z(−m) ⊂ Sτ , and that

C[Sτ ] = C[Sσ]χm .

This implies that for each face τ ⊂ σ, Spec(C[Sτ ]) is a Zariski open subset
of Spec(C[Sσ])

In particular if m, m′ are verteces pf P, τσm ∩ σm′ is a face of both σm

and σm′ . Moreover one sees that τ = σm ∩Hm′−m, which implies:

Xm ∩Xm′ = Spec(C[Sm]χm′−m .)

As already observed.
Notice that even if the a polytope P is not saturated, i.e., there is some

Smi which is not saturated, there is a (possibly big) positive integer k such
that kP is saturated. Then for any maximal dimensional polytope P we can
define the associated projective toric variety as

XkP , where k is any positive integer such that kP is saturated .

It is well defined since:
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Exercise 3.1. HMW II Let P = ∩d
1H

+
nFi

,ai
⊂ Rn ∼= MR be a maximal

dimensional lattice polytope, with facets F1, ..., Fd. For any k ≥ 1 we denote
by kP the polytope:

kP = ∩d
1H

+
nFi

,kai
.

If m ∈ M , then P + m is the polytope translated by the translation x 7→
x + m. Then for any m ∈ M and any integer k ≥ 1,

ΣP = ΣP+m = ΣkP ,

and thus they define the same projective toric variety. Polytopes defining
the same projective toric variety are said to be combinatorially equivalent,
or to have the same combinatorial type.

Example 3.2. Pa,b = Conv((0, 0, (a, 0), (0, 1), (b, 1)) where 1 ≤ a ≤ b. The
fan only depend on b− a.

XPa,b∩M = Fb−a.

is called the Hirzebruch surface of degree r = b− a.
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