JANUARY 21

CONTENTS

1.	Some notation	1
2.	Some algebra	1
3.	Affine varieties	2
References		3

The aim of the next few lectures is to make precise the following definition:

Definition 0.1. An affine toric variety is an IRREDUCIBLE AFFINE VARIETY, containing a TORUS as Zariski-open space and such that the multiplicative action of the torus on itself extends to the whole variety.

1. Some notation

Let \mathbb{C} be the field of complex numbers.

Definition 1.1. $\mathbb{C}^n = \{\underline{a} = (a_1, ..., a_n) || a_i \in \mathbb{C}\}$ is called the *n*-dimensional affine space.

Recall that $\mathbb{C}[x_1, ..., x_n]$ is a U.F.D., i.e. every polynomial can be uniquely written as product of irreducible polynomials. Given a polynomial $f \in \mathbb{C}[x_1, ..., x_n], f = 0$ could mean:

(1) f is the zero polynomial, i.e. $f = \sum h_{\alpha} \underline{x}^{\alpha}$, where $h_{\alpha} = 0$.

(2) f is the zero-function, i.e. $f(\underline{a}) = 0, \forall \underline{a} \in \mathbb{C}^n$.

Note also that:

Lemma 1.2. • (1) and (2), because \mathbb{C} is infinite.

• We can then say that for $f, g \in \mathbb{C}[x_1, ..., x_n]$, f = g as polynomials iff f = g as functions.

2. Some Algebra

For more details see [AM].

Recall that a field \mathbb{C} is algebraically closed, i.e. every non-constant $g \in \mathbb{C}[x_1, ..., x_n]$ has at least one root in \mathbb{C} .

Definition 2.1. Let R be a ring (like $\mathbb{C}[x_1, ..., x_n]$)

(1) A set $I \subseteq R$ is an *ideal* if: (a) $0 \in I$, (b) $f, g \in \Rightarrow f + g \in I$,

JANUARY 21

(c) $f \in I, h \in R \Rightarrow hf \in I$.

(2) The ideal generated by $f_1, ..., f_k \in R$ is the smallest ideal containing $f_1, ..., f_k$ and it is defined by:

$$(f_1, ..., f_k) = \{\sum_{1}^{s} h_i f_i, h_i \in R\}.$$

- (3) An ideal I is finitely generated if there are $f_1, ..., f_k \in R$ so that $I = (f_1, ..., f_k).$
- (4) An ideal I is prime if $I \neq 1$ and $xy \in I \Rightarrow x \in I$ or $y \in I$. An ideal I is prime iff the quotient ring R/I is an integral domain (this means that no element $r \neq 0$ is a zero divisor. ex. $\mathbb{Z}, \mathbb{C}[x_1, ..., x_n]$).
- (5) An ideal I is maximal if $I \neq 1$ and there is no ideal $M \in R$ such that $m \subset M \subset (1) = R$. An ideal I is maximal iff the quotient ring R/I is a field.

Exercise 2.2. • The only ideals of a field are (1) and (0).

• Let $R = \mathbb{C}[x_1, ..., x_n]$ and let f be an irreducible polynomial, then (f) is prime.

Definition 2.3. A ring R is said to be *Noetherian* if equivalently:

- Every non empty set of ideals has a maximal element.
- Every ideal is finitely generated.

The ring $\mathbb{C}[x_1, ..., x_n]$ is Noetherian (Hilbert basis theorem).

Definition 2.4. Let I be an ideal in R, the radical of I is defined as:

$$\sqrt{I} = \{ f \in R | f^n \in R, \text{ for some } n \}.$$

For example $\sqrt{(x^2)} = (x)$

3. Affine varieties

Let $I \in \mathbb{C}[x_1, ..., x_n]$ be an ideal, the solution set

$$V(I) = \{\underline{a} \in \mathbb{C}^n || f(\underline{a}) = 0 \text{ for all } f \in I\}$$

is called an *affine variety*. From the Hilbert basis theorem $I = (f_1, ..., f_k)$ for $f_i \in \mathbb{C}[x_1, ..., x_n]$ and thus every affine variety

$$V(I) = V((f_1, ..., f_k))$$

is the solution set of a system $f_1 = 0, ..., f_k = 0$.

• $V((0)) = \mathbb{C}^n$. Example 3.1.

• $V((1)) = \emptyset$.

- V((1)) = y.
 V((y x², z x³)) ⊂ C³ is called the *twested cubit*.
 V((x² + y² + z²)) ⊂ C³ is the smooth quadric surface.
 V(xy 1) ⊂ C² can be ideantified with C* = {0 ≠ x ∈ C}.

Lemma 3.2. Let $V = V(f_1, ..., f_k), W = V(g_1, ..., g_s)$ be two non-empty affine varieties, then:

 $\mathbf{2}$

JANUARY 21

- (1) $V \cap W = V(f_1, ..., f_k, g_1, ..., g_s) \subset \mathbb{C}^n$, where $V \subset \mathbb{C}^n, W \subset \mathbb{C}^n$.
- (2) $V \cup W = V(f_ig_j, 1 \le i \le k, 1 \le j \le s), \text{ where } V \subset \mathbb{C}^n, W \subset \mathbb{C}^n.$ (3) If $V \subset \mathbb{C}^n, W \subset \mathbb{C}^m, V \times W = V(f_1, ..., f_k, g_1, ..., g_s) \subset \mathbb{C}^{n+m}, \text{ where } V \in \mathbb{C}^n.$

the f_i and g_j are considered as polynomials in $\mathbb{C}[x_1, ..., x_n, y_1, ..., y_n]$.

An important fact, which is a consequence of the fact that $\mathbb C$ is algebraically closed is that:

$$V(I) = \emptyset \Leftrightarrow I = \mathbb{C}[x_1, ..., x_n].$$

Definition 3.3. An affine variety V is *irredubible* if it cannot be written as the union of two non-empty proper affine subvarieties.

Given an affine variety $V \subseteq \mathbb{C}^n$, the set:

$$I(V) = \{ f \in \mathbb{C}[x_1, ..., x_n] \| f(x) = 0 \forall x \in V \}$$

is an ideal of $\mathbb{C}[x_1, ..., x_n]$, with following proprties:

Lemma 3.4. Let V, W be non empty affine varieties

- (1) $V \subseteq W \Leftrightarrow I(W) \subseteq I(V)$.
- (2) $V = W \Leftrightarrow I(W) = I(V).$
- (3) I(V) is prime $\Leftrightarrow V$ is irreducible;
- (4) (Weak Nullstellensatz) For $(a_1, ..., a_n) = x \in V$, then $I(\{x\}) := m_x$ is a maximal ideal. Moreover all the maximal ideal of $\mathbb{C}[x_1,...,x_n]$ are of the form $m_x = ((x_1 - a_1, ..., x_n - a_n))$. This means that there is a one to one correspondence:

{ maximal ideals of $\mathbb{C}[x_1, ..., x_n]$ } \leftrightarrow { points of \mathbb{C}^n }.

References

[AM] Atiyah, M. F.; Macdonald, I. G. Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1969 ix+128 pp.