JANUARY 21

Contents

1. Some notation 1
2. Some algebra 1
3. Affine varieties 2

References 3

The aim of the next few lectures is to make precise the following definition:
Definition 0.1. An affine toric variety is an IRREDUCIBLE AFFINE VARIETY, containing a TORUS as Zariski-open space and such that the multiplicative action of the torus on itself extends to the whole variety.

1. Some notation

Let \mathbb{C} be the field of complex numbers.
Definition 1.1. $\mathbb{C}^{n}=\left\{\underline{a}=\left(a_{1}, \ldots, a_{n}\right) \| a_{i} \in \mathbb{C}\right\}$ is called the n-dimensional affine space.

Recall that $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is a U.F.D., i.e. every polynomial can be uniquely written as product of irreducible polynomials. Given a polynomial $f \in$ $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right], f=0$ could mean:
(1) f is the zero polynomial, i.e. $f=\sum h_{\alpha} \underline{x}^{\alpha}$, where $h_{\alpha}=0$.
(2) f is the zero-function, i.e. $f(\underline{a})=0, \forall \underline{a} \in \mathbb{C}^{n}$.

Note also that:
Lemma 1.2. - (1) and (2), because \mathbb{C} is infinite.

- We can then say that for $f, g \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right], f=g$ as polynomials iff $f=g$ as functions.

2. Some algebra

For more details see [AM].
Recall that a field \mathbb{C} is algebraically closed, i.e. every non-constant $g \in$ $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ has at least one root in \mathbb{C}.
Definition 2.1. Let R be a ring (like $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$)
(1) A set $I \subseteq R$ is an ideal if:
(a) $0 \in I$,
(b) $f, g \in f+g \in I$,
(c) $f \in I, h \in R \Rightarrow h f \in I$.
(2) The ideal generated by $f_{1}, \ldots, f_{k} \in R$ is the smallest ideal containing f_{1}, \ldots, f_{k} and it is defined by:

$$
\left(f_{1}, \ldots, f_{k}\right)=\left\{\sum_{1}^{s} h_{i} f_{i}, h_{i} \in R\right\} .
$$

(3) An ideal I is finitely generated if there are $f_{1}, \ldots, f_{k} \in R$ so that $I=\left(f_{1}, \ldots, f_{k}\right)$.
(4) An ideal I is prime if $I \neq 1$ and $x y \in I \Rightarrow x \in I$ or $y \in I$. An ideal I is prime iff the quotient ring R / I is an integral domain(this means that no element $r \neq 0$ is a zero divisor. ex. $\left.\mathbb{Z}, \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\right)$.
(5) An ideal I is maximal if $I \neq 1$ and there is no ideal $M \in R$ such that $m \subset M \subset(1)=R$. An ideal I is maximal iff the quotient ring R / I is a field.

Exercise 2.2. - The only ideals of a field are (1) and (0).

- Let $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and let f be an irreducible polynomial, then (f) is prime.
Definition 2.3. A ring R is said to be Noetherian if equivalently:
- Every non empty set of ideals has a maximal element.
- Every ideal is finitely generated.

The ring $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is Noetherian (Hilbert basis theorem).
Definition 2.4. Let I be an ideal in R, the radical of I is defined as:

$$
\sqrt{I}=\left\{f \in R \mid f^{n} \in R, \text { for some } n\right\} .
$$

For example $\sqrt{\left(x^{2}\right)}=(x)$.

3. Affine varieties

Let $I \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ be an ideal, the solution set

$$
V(I)=\left\{\underline{a} \in \mathbb{C}^{n} \| f(\underline{a})=0 \text { for all } f \in I\right\}
$$

is called an affine variety. From the Hilbert basis theorem $I=\left(f_{1}, \ldots, f_{k}\right)$ for $f_{i} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and thus every affine variety

$$
V(I)=V\left(\left(f_{1}, \ldots, f_{k}\right)\right)
$$

is the solution set of a system $f_{1}=0, \ldots, f_{k}=0$.
Example 3.1.

$$
\text { - } V((0))=\mathbb{C}^{n}
$$

- $V((1))=\emptyset$.
- $V\left(\left(y-x^{2}, z-x^{3}\right)\right) \subset \mathbb{C}^{3}$ is called the twested cubit.
- $V\left(\left(x^{2}+y^{2}+z^{2}\right)\right) \subset \mathbb{C}^{3}$ is the smooth quadric surface.
- $V(x y-1) \subset \mathbb{C}^{2}$ can be ideantified with $\mathbb{C}^{*}=\{0 \neq x \in \mathbb{C}\}$.

Lemma 3.2. Let $V=V\left(f_{1}, \ldots, f_{k}\right), W=V\left(g_{1}, \ldots, g_{s}\right)$ be two non-empty affine varieties, then:
(1) $V \cap W=V\left(f_{1}, \ldots, f_{k}, g_{1}, \ldots, g_{s}\right) \subset \mathbb{C}^{n}$, where $V \subset \mathbb{C}^{n}, W \subset \mathbb{C}^{n}$.
(2) $V \cup W=V\left(f_{i} g_{j}, 1 \leq i \leq k, 1 \leq j \leq s\right)$, where $V \subset \mathbb{C}^{n}, W \subset \mathbb{C}^{n}$.
(3) If $V \subset \mathbb{C}^{n}, W \subset \mathbb{C}^{m}, V \times W=V\left(f_{1}, \ldots, f_{k}, g_{1}, \ldots, g_{s}\right) \subset \mathbb{C}^{n+m}$, where the f_{i} and g_{j} are considered as polynomials in $\mathbb{C}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$.

An important fact, which is a consequence of the fact that \mathbb{C} is algebraically closed is that:

$$
V(I)=\emptyset \Leftrightarrow I=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] .
$$

Definition 3.3. An affine variety V is irredubible if it cannot be written as the union of two non-empty proper affine subvarieties.

Given an affine variety $V \subseteq \mathbb{C}^{n}$, the set:

$$
I(V)=\left\{f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \| f(x)=0 \forall x \in V\right\}
$$

is an ideal of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, with following proprties:
Lemma 3.4. Let V, W be non empty affine varieties
(1) $V \subseteq W \Leftrightarrow I(W) \subseteq I(V)$.
(2) $V=W \Leftrightarrow I(W)=I(V)$.
(3) $I(V)$ is prime $\Leftrightarrow V$ is irreducible;
(4) (Weak Nullstellensatz) For $\left(a_{1}, \ldots, a_{n}\right)=x \in V$, then $I(\{x\}):=m_{x}$ is a maximal ideal. Moreover all the maximal ideal of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ are of the form $m_{x}=\left(\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)\right.$. This means that there is a one to one correspondence:

$$
\left\{\text { maximal ideals of } \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\right\} \leftrightarrow\left\{\text { points of } \mathbb{C}^{n}\right\}
$$

References

[AM] Atiyah, M. F.; Macdonald, I. G. Introduction to commutative algebra. AddisonWesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1969 ix+128 pp.

