JANUARY 29

Contents

1. Affine varieties 1
2. Isomorphic affine varieties 2
3. Zariski-open subspaces 4

1. Affine varieties

Lemma 1.1. Let V, W be affine varieties
(1) $V \subseteq W \Leftrightarrow I(W) \subseteq I(V)$.
(2) $V=W \Leftrightarrow I(W)=I(V)$.
(3) $I(V)$ is prime $\Leftrightarrow V$ is irreducible;
(4) (Weak Nullstellensatz) For $x \in V$, then $I(\{x\}):=m_{x}$ is a maximal ideal. Moreover all the maximal ideal of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ are of the form $m_{x}=\left(\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)\right.$. This means that there is a one to one correspondence:
$\left\{\right.$ maximal ideals of $\left.\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\right\} \leftrightarrow\left\{\right.$ points of $\left.\mathbb{C}^{n}\right\}$.
Proof. (1) Easy.
(2) Easy.
(3) Assume $I(V)$ is prime and let $V=V_{1} \cup V_{2}$. Then $I(V) \subset I\left(V_{1}\right)$ and thus we can take $f \in I\left(V_{1}\right) \backslash I(V)$. For any $g \in I\left(V_{2}\right)$ the product $f g \in I(V)$ and thus because $I(V)$ is prime and $f \notin I(V)$ it is $g \in I(V)$. This imples that $I(V)=I\left(V_{2}\right)$ and thus $V_{2}=V$.

Assume now that V is irreducible and that $f g \in I(V)$. Let $V_{1}=$ $V(f) \cap V, V_{2}=V(g) \cap V$. It follows that $V=V_{1} \cup V_{2}$ and that $V=V_{1}$ (i.e. $f \in I(V))$ or $V=V_{2}$ (i.e. $g \in I(V)$).
(4) Let $x=\left(a_{1}, \ldots, a_{n}\right)$, and consider $I=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$. We first prove that every ideal of the form $I=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$ is maximal. Assume $I \subset M \subset R$. then there is $1 \neq f \in M \backslash I$ and by the division algorithm write:

$$
f=A_{1}\left(x_{1}-a_{1}\right)+\ldots+A_{n}\left(x_{n}-a_{n}\right)+b,
$$

where $0 \neq b \in \mathbb{C}$. Moreover, since $A_{1}\left(X_{1}-a_{1}\right)+\ldots+A_{n}\left(x_{n}-a_{n}\right) \in$ $I \subset M$ and $f \in M$, it follows that $b \in M$ and hence $1=b \cdot \frac{1}{b} \in M$, i.e. $M=R$. Now we prove that every maximal ideal in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is of the form $\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$. Moreover, since $\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right) \subset$ m_{x}, it has to be $\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)=m_{x}$. Let $I \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ be
maximal. Since I is proper it is $I \neq \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and thus $V(I) \neq \emptyset$. Let $x=\left(a_{1}, \ldots, a_{n}\right) \in V(I)$. It follows that for every $f \in I, f \in m_{x}$ and thus $I \subset m_{x}$. It follows that $I=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)=m_{x}$.

We have established a correspondence:

$$
\text { affine varieties } \rightarrow^{I} \text { ideals }
$$

ideals \rightarrow^{V} affine varieties
This maps are inclusion-reversing and $V(I(X))=X$.
THEOREM 1.2. (Hilbert Nullstellensatz) $I(V(J))=\sqrt{J}$.
Proof. (Outline) Let $J=V\left(f_{1}, \ldots, f_{k}\right)$ and $f \in I(V(J))$. We have to show that there is $m \geq 1$ and $A_{i} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ such that $f^{m}=\sum A_{i} f_{i}$. Consider $J^{\prime}=\left(f_{1}, \ldots, f_{k}, 1-y f\right) \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}, y\right]$ and let $\left(a_{1}, \ldots, a_{n}, a_{n+1}\right) \in \mathbb{C}^{n+1}$. If $\underline{a}=\left(a_{1}, \ldots, a_{n}\right) \in V(J)$, then $f(\underline{a})=0$ and $1-a_{n+1} f(\underline{a})=1 \neq 0$ which implies that $\left(a_{1}, \ldots, a_{n}, a_{n+1}\right) \notin V\left(J^{\prime}\right)$.

If $\underline{a}=\left(a_{1}, \ldots, a_{n}\right) \notin V(J)$ then $f_{i}(\underline{a}) \neq 0$ for some i. This means that $f_{i}\left(a_{1}, \ldots, a_{n}, a_{n+1}\right) \neq 0$ for some i and thus again $\left(a_{1}, \ldots, a_{n}, a_{n+1}\right) \notin V\left(J^{\prime}\right)$.

We can conclude that $V\left(J^{\prime}\right)=\emptyset$. (By induction on n) one proves that if $V\left(J^{\prime}\right)=\emptyset$, then $J^{\prime}=\mathbb{C}\left[x_{1}, \ldots, x_{n}, y\right]$, that is

$$
1=\sum p_{i}\left(x_{1}, \ldots, x_{n}, y\right) f_{i}+q\left(x_{1}, \ldots, x_{n}, y\right)(1-y f) .
$$

Substituting $y=f^{-1}$ we get $1=\sum p_{i}\left(x_{1}, \ldots, x_{n}, f^{-1}\right) f_{i}$ and for m sufficiently large to clear denominators:

$$
f^{m}=\sum A_{i} f_{i} .
$$

The other inclusion is obvious.
Example 1.3. $I\left(V_{\mathbb{R}}\left(y-x^{2}, z-x^{3}\right)\right)=\left(y-x^{2}, z-x^{3}\right)$.
There is then a bijection:
Radical ideals \rightarrow^{V} affine varieties
(an ideal I is radical if $I=\sqrt{I}$.)

2. Isomorphic affine varieties

A polynomial function on an affine variety $V \subset \mathbb{C}^{n}$ is the restriction of a polynomial on \mathbb{C}^{n}.

The ring $\mathbb{C}[V]:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / I(V)$ is called the coordinate ring of the variety V.

Because f, g restricts to the same function on V if and only if $f-g \in I(V)$ we have that:

$$
\mathbb{C}[V]=\{f: V \rightarrow \mathbb{C} \text { s.t. } f \text { is a polynomial function }\} .
$$

From what said above we see
$\mathbb{C}[V]$ is an integral domain $\Leftrightarrow I(V)$ is prime $\Leftrightarrow V$ is irreducible;

Moreover, because the maximal ideals in $\mathbb{C}[V]$ correspond to the maximal ideals m_{x} in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ such that $I(V) \subset m_{x}$, it follows that there is a one to one correspondence:

$$
\{\text { maximal ideals of } \mathbb{C}[V]\} \leftrightarrow\{\text { points of } V\} .
$$

Definition 2.1. Let $V \subset \mathbb{C}^{n}, W \subset \mathbb{C}^{m}$ be two affine varieties.
A map $f: V \rightarrow W$ is a polynomial map if there exist m polynomials $F_{1}, \ldots, F_{M} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ such that:

$$
f(x)=\left(F_{1}(x), \ldots, F_{m}(x)\right) .
$$

Equivalently f is a polynomial map iff $y_{j} \circ f \in \mathbb{C}[V]$ for $j=1, \ldots, m$, where y_{i} are the coordinate functions on W.

Definition 2.2. A polynomial map $f: V \rightarrow W$ is an isomorphism (of affine varieties) if there is a polynomial map $g: W \rightarrow V$ such that $f \circ g=$ $i d_{W}, g \circ f=i d_{V}$.
Example 2.3. Let $C=V\left(y-x^{2}, z-x^{3}\right) \subset \mathbb{C}^{3}$, the map:

$$
f: \mathbb{C} \rightarrow C, f(t)=\left(t, t^{2}, t^{3}\right)
$$

is a polynomial map and an isomorphism.
Every polynomial map $f: V \rightarrow W$ induces a ring homomorphism:

$$
f^{*}: \mathbb{C}[W] \rightarrow \mathbb{C}[V]
$$

define by $f^{*}(g)=g \circ f$. Conversely every algebra (hence ring) homomorphism $F: \mathbb{C}[W] \rightarrow \mathbb{C}[V]$ is of the form $F=f^{*}$ for some $f: V \rightarrow W$. In other words there is a bijection:
$\{$ polynomial maps $f: V \rightarrow W\} \leftarrow\{$ algebra homomorphism $F: \mathbb{C}[W] \rightarrow \mathbb{C}[V]\}$ such that $(g \circ f)^{*}=f^{*} \circ g^{*}$. We can conclude that: $f: V \rightarrow W$ is an isomorphism iff $f^{*}: \mathbb{C}[W] \rightarrow \mathbb{C}[V]$ is an isomorphism.

We see hence that:

Example 2.4.

$$
\mathbb{C}\left[\mathbb{C}^{*}\right]=\mathbb{C}\left[x, x^{-1}\right] \text { Laurent polynomials in one variable } .
$$

Similarly:

$$
\mathbb{C}\left(\left(\mathbb{C}^{*}\right)^{n}\right)=\mathbb{C}\left[x_{1}, x_{1}^{-1}, \ldots, x_{n}, x_{n}^{-1}\right] .
$$

Because $\left(\mathbb{C}^{*}\right)^{n}=\mathbb{C}^{*} \times \ldots \times \mathbb{C}^{*} \cong V\left(x_{1} y_{1}-1, \ldots, x_{n} y_{n}-1\right) \subset \mathbb{C}^{2 n}$. Observe that $\mathbb{C}\left(\left(\mathbb{C}^{*}\right)^{n}\right)$ is an Integral Domain (it a localization of an Integral domain!) and hence the affine variety $\left(\mathbb{C}^{*}\right)^{n}$ is irreducible.

In what follows we will assume that the affine variety V is irreducible. The field of fractions

$$
\mathbb{C}(V)=\left\{\frac{f}{g} \text { s.t. } f, g \in \mathbb{C}[V], g \neq 0\right\}
$$

is called the function field or the field of rational functions on V.

Definition 2.5. A function $f \in \mathbb{C}(V)$ is regular at $p \in V$ if f can be represented as as $f=\frac{h}{g}$, where $g(P) \neq 0$.

Notice that, since $\mathbb{C}(V)$ will not be in general a U.F.D. en element f can have more than one representation. Moreover Let $\operatorname{Dom}(f)=\{p \in$ $V \mid f$ is regular at $P\}$

Lemma 2.6.

a rational function f is regular on the whole $V \Leftrightarrow f \in \mathbb{C}[V]$.
Proof. Let $D_{f}=\{g \in \mathbb{C}[V]$ s.t. $f g \in \mathbb{C}[V]\}$. It is an ideal called theideal of the denominators. Moreover it is $V \backslash \operatorname{Dom}(f)=V\left(D_{f}\right)$. It follows that:

$$
\operatorname{Dom}(f)=V \Leftrightarrow V\left(D_{f}\right)=\emptyset \Leftrightarrow D_{f}=\mathbb{C}[V] \Leftrightarrow 1 \in D_{f} \Leftrightarrow f \in \mathbb{C}[V]
$$

Definition 2.7. Let V be an affine variety. A rational map:

$$
f: V-->\mathbb{C}^{m}
$$

is a partially defined map given by rational functions $f_{1}, \ldots, f_{m} \in \mathbb{C}(V)$, i.e.

$$
f(p)=\left(f_{i}(p), \ldots, f_{m}(p)\right), p \in \cap \operatorname{Dom}\left(f_{i}\right)
$$

Moreover f is regular at p if $p \in \cap \operatorname{Dom}\left(f_{i}\right)$.
Let $V \subset \mathbb{C}^{n}, W \subset \mathbb{C}^{m}$. A rational map $f: V-->W$ is a rational map $f: V-->\mathbb{C}^{m}$ such that $f(\operatorname{Dom}(f))=W$.

Example 2.8. Consider $f(x, y, z)=\left(x, y, z, \frac{x y}{z}\right)$ is a rational map over $\left(\mathbb{C}^{*}\right)^{3}$. Notice that the inverse of this map id the projection onto the first three factors which is regular. Moreover $\operatorname{Dom}(f) \subset V(x y-z w)$, in fact $\operatorname{Dom}(f)=V(x y-z w) \backslash V(z)$. This is an example of an affine variety that contains a Zariski open "isomorphic" to a product of \mathbb{C}^{*}.

3. ZARISKI-OPEN SUBSPACES

Definition 3.1. The complement of an affine variety $V\left(f_{1}, \ldots, f_{k}\right) \in \mathbb{C}^{n}$

$$
\mathbb{C}^{n} \backslash V\left(f_{1}, \ldots, f_{k}\right)=\left\{x \mid f_{i}(x) \neq 0 \text { for some } i=1, \ldots, k\right\}
$$

is called a Zariski open set.
Now we will make precise what do we mean by isomorphism of open subsets:

Definition 3.2. Let V, W be irreducible affine varieties and let $U \subset V$ be a Zariski open subset. A morphism $f: U \rightarrow W$ is a rational map if $f: V-->W$ such that $U \subset \operatorname{Dom}(f)$.

If $U_{1} \subset V$ and $U_{2} \subset W$ are open then a morphism $f: U_{1} \rightarrow U_{2}$ is a morphism $f: U_{1} \rightarrow W$ such that $f\left(U_{1}\right)=U_{2}$.

An isomorphism is a morphism which has an inverse which is a morphism.

Note that
$\mathbb{C}^{n} \backslash V\left(f_{1}, \ldots, f_{k}\right)=\mathbb{C}^{n} \backslash\left(V\left(f_{1}\right) \cap \ldots \cap V\left(f_{k}\right)\right)=\left(\mathbb{C}^{n} \backslash V\left(f_{1}\right)\right) \cap \ldots \cap\left(\mathbb{C}^{n} \backslash V\left(f_{1}\right)\right)$ We will denote these building blocks $\left(\mathbb{C}^{n} \backslash V\left(f_{i}\right)\right)=V_{f_{i}}$.

Let $I=I(V) \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right], f \in \mathbb{C}[V]$ and $V_{f}=V-V(f)$. Clearly we can interpret V_{f} as an affine variety. Let $J=(I, y f-1)$ and $V(J) \subset \mathbb{C}^{n+1}$. The map $f(x)=\left(x, \frac{1}{f(x)}\right)$ is a morphism from V_{f} to \mathbb{C}^{n+1} with inverse $f^{-1}(x, y)=x$ which is regular. it follows that

$$
V_{f} \cong V(J)
$$

Notice that

$$
\mathbb{C}\left[V_{f}\right]=\mathbb{C}[V]\left[f^{-1}\right]=\left\{\frac{g}{f^{l}} \in \mathbb{C}(V) \text { s.f. } g \in \mathbb{C}[V]\right\}
$$

