MARCH 17

Contents

1. Smooth toric varieties 1
2. Projective varieties 2

References 4

1. Smooth toric varieties

Example 1.1. $\sigma=\operatorname{Cone}\left(d e_{1}-e_{2}, e_{2}\right)$.
Proposition 1.2. Let $V \subset \mathbb{C}^{n}$ be an affine toric variety. It is non singular if and only if $V=\operatorname{Spec}\left(\mathbb{C}\left[S_{\sigma}\right]\right)$ for a regular strongly convex polytope $\sigma \in \mathbb{R}^{n}$.

Proof. If $V=\operatorname{Spec}\left(\mathbb{C}\left[S_{\sigma}\right]\right)$ for a regular strongly convex polytope $\sigma \in \mathbb{R}^{n}$, then the associated toric variety U_{σ} is non singular as observed.

Let now $V \subset \mathbb{C}^{n}$ be a smooth affine toric variety. It is normal and thus $V=\operatorname{Spec}\left(\mathbb{C}\left[S_{\sigma}\right]\right)$ for a strongly convex polytope $\sigma \in \mathbb{R}^{n}$. If $\operatorname{dim}(\sigma)=n$ let 0 be the fixed point, which is smooth, and thus $|\mathcal{H}|=\operatorname{dim}\left(U_{\sigma}\right)=n$.

We have:

$$
n \leq \mid\{\text { edges of } \check{\sigma}\}|=|\mathcal{H}|=n \text {. }
$$

In particular $\mathbb{Z} S_{\sigma}=M$ is generated by n rays, which implies that they are a lattice basis for M, i.e. $\check{\sigma}$ is smooth and thus so is σ.

If $\operatorname{dim}(\sigma)=r<n$ we can embedd the cone in the appropriate lower dimensional lattice. Let N_{1} be the smallest saturated sublattice containing all the generators of σ. In particular σ is a rationally convex polytope in N_{1} and $\operatorname{dim}\left(U_{\sigma, N_{1}}\right)=r=r k\left(N_{1}\right)$. Moreover the abelian group N / N_{1} is torsion free and finitely generated and thus $N / N_{1} \cong \mathbb{Z}^{n-r}$ and $N=N_{1} \oplus N_{2}$. It follows that $M=M_{1} \oplus M_{2}$ and that

$$
S_{\sigma}=S_{\sigma, N_{1}} \oplus M_{2}
$$

where $S_{\sigma, N_{1}}=\check{\sigma} \cap M_{1}$. In particular $U_{\sigma} \cong\left(U_{\sigma, N_{1}}\right) \times T_{2}$, where T_{2} is a torus of dimension $n-r$. We conclude that U_{σ} is smooth at every point $(p, q) \in U_{\sigma, N_{1}} \times T_{2}$, which implies that $U_{\sigma, N_{1}}$ is smooth hence that σ is smooth in N_{1}, because it is maximal dimensional.

The Example 1.1 gives a normal toric variety, not smooth. It is simplicial.

2. Projective varieties

Recall the definition of projective space:

$$
\mathbb{P}^{n}=\left(\mathbb{C}^{n+1} \backslash\{0\}\right) / \sim,\left(a_{0}, . ., a_{n}\right) \sim \lambda\left(a_{0}, . ., a_{n}\right), 0 \neq \lambda \in \mathbb{C} .
$$

A point, i.e. an equivalence class wil be denoted by $\left(a: 0: \ldots: a_{n}\right)$.
It is covered by affine patches. In fact, consider:

$$
U_{i}=\left\{\left(a_{0}: . .: a_{n}\right) \in \mathbb{P}^{n} \text { s.t. } a_{i} \neq 0\right\} .
$$

is obviously a cover and:

$$
\begin{gathered}
p h i_{i}: U_{i} \rightarrow \mathbb{C}^{n},\left(a_{0}: \ldots: a_{i}: \ldots: a_{n}\right) \mapsto\left(a_{0} / a_{i}, . ., a_{n} / a_{i}\right) \text { and } \\
\phi_{i}: U_{i} \rightarrow \mathbb{C}^{n},\left(a_{1}, \ldots,: a_{n}\right) \mapsto\left(a_{1}: . .: 1: \ldots: a_{n}\right)
\end{gathered}
$$

define an isomorphism $U_{i} \cong \mathbb{C}^{n}$, for $i=0, \ldots, n$. Moreover

where $\phi_{i}\left(U_{i} \cap U_{j}\right) \cong \phi_{j}\left(U_{i} \cap U_{j}\right)$ are identified.
Example 2.1. \mathbb{P}^{1}
Definition 2.2. A polynomial $f \in \mathbb{C}\left[x_{o}, \ldots, x_{n}\right]$ is homogeneous of degree d if it is a sum of monomials all of degree d.

Every polynomial is a sum of homogeneous polynomials.
A polynomial can be thought as a function on \mathbb{P}^{n} only if it is homogeneous.
Definition 2.3. An ideal $I=\left(f_{1}, \ldots, f_{k}\right)$ is a homogeneous ideal is f_{i} are homogeneous for every i.

We can then define the correspondence V, I between homogeous ideals and what we will call projective varieties.

The only main difference is that: $\emptyset=V((1))=V\left(x_{0}, \ldots, x_{n}\right)$. One proves (similarly as in the affine case) that there is a bijection :
$\{$ homog. radical ideals $I \neq(1)\} \Leftrightarrow\{$ projective varieties $\}$
and
$\{$ homog. prime radical ideals $I \neq(1)\} \Leftrightarrow\{$ irreducible projective varieties $\}$ With the homogeneus coordinate ring:

$$
\mathbb{C}[V]=\mathbb{C}[V] / I=\sum_{d}(\mathbb{C}[V] / I)_{d}=\sum_{d}(\mathbb{C}[V])_{d} / I_{d} .
$$

The corresponding affine variety $V(I) \subset \mathbb{C}^{n+1}$ is called the affine cone .

Example 2.4.

$$
V(x y-z y) \subset \mathbb{P}^{3}
$$

Definition 2.5. Let $V \subset \mathbb{P}^{n}$ be a projective variety. A rational function $h: V-->\mathbb{C}$ is defined as $h(P)=f(P) / g(P)$, where f, g are homogeneous polynomial of the same degree.

If $h(P) \neq 0$, then $f(k P) / g(k P)=f(P) / g(P)$, and $f / g=f^{\prime} / g^{\prime}$ if and only if $f g^{\prime}=f^{\prime} g$. We can then define the function field of V as:

$$
\mathbb{C}(V)=\left\{f / g \text { s.t. } f, h \in \mathbb{C}\left[x_{0}, \ldots, x: n\right]_{d}, h \notin I(V)\right\} \sim
$$

where $f / g \sim f^{\prime} / g^{\prime}$ if $f g^{\prime}=f^{\prime} g \in I(V)$.
A rational function h is regular at P if there is an expression $h=f / g$ such that $h(P) \neq 0$. The domain, $\operatorname{Dom}(f)$, is the set of all regular points.

Example 2.6. Let $V \subset \mathbb{P}^{n}$ be an irreducible projective variety such that

$$
V \not \subset\left(x_{i}=0\right), \text { for all } i
$$

Let $V_{i}=V \cap U_{i}$. then $V_{i} \subset U_{i} \cong \mathbb{C}^{n}$ are affine algebraic varieties, because

$$
\left(x_{0} / x_{i}, \ldots, 1, \ldots x_{n} / x_{i}\right) \in V_{i} \Leftrightarrow f\left(\left(x_{0} / x_{i}, \ldots, 1, \ldots x_{n} / x_{i}\right)=0 \text { for all } f \in I(V)\right.
$$

The V_{i} are called the standard affine patches of V.
Definition 2.7. A rational map $f: V-->\mathbb{C}^{n}$ is defined as an n-tuple of rational functions, $f=\left(f_{1}: \ldots: f_{n}\right)$.

Similarly a rational map $f: V-->\mathbb{P}^{n}$ is defined by:

$$
f(P) \mapsto\left(f_{0}(P): \ldots: f_{n}(P)\right), f_{i} \in \mathbb{C}(V)
$$

The map f is regular at P if each f_{i} is regular at P and $\left(f_{0}(P), \ldots, f_{n}(P)\right) \neq$ $(0, \ldots, 0)$.

If f is regular at P, then take $U=\cap \operatorname{Dom}\left(f_{j} / f_{i}\right)$ where $f_{i}(P) \neq 0$. We have a morphism:

$$
U \rightarrow \mathbb{C}^{n}, P \mapsto\left(f_{0} / f_{j}, \ldots, f_{n} / f_{j}\right)
$$

Example 2.8.

$$
f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{m}, f(x: y)=\left(x^{m}, x^{m-1} y: x^{m-2} y^{2}: \ldots: y^{m}\right.
$$

It is a rational map and define the morphisms:

$$
f_{1}(1, y / x)=\left(1,(y / x),(y / x)^{2}, \ldots,(y / x)^{m}, f_{2}(x / y, 1)=\left((x / y)^{m}, \ldots, 1\right)\right.
$$

The Image V is given by the points $\left(a_{0}: \ldots: a_{m}\right)$ such that $x_{0} / x_{1}=$ $x_{1} / x_{2}, \ldots, x_{m-1} / x_{0}$. It has an inverse: $\left(x_{0}: \ldots: x_{m}\right) \mapsto\left(x_{0}: x_{1}\right)$.

Example 2.9.

$$
\pi: \mathbb{P}^{3} \rightarrow \mathbb{P}^{2},\left(x_{0}: \ldots: x_{3}\right) \mapsto\left(x_{1}: \ldots: x_{3}\right)
$$

is a rational map, and a morphism outside ($1: 0: 0: 0$).
Example 2.10. The Segre embedding:

$$
s_{n, m} \mathbb{P}^{n} \times \mathbb{P}^{m} \mathbb{P}^{(n+1)(m+1)},\left[\left(x_{0}: \ldots: x_{n}\right),\left(y_{o}: . .: y_{m}\right)=\left(x_{i} y_{j}\right)\right.
$$

defines a morphism, used to "define" the product of two projevtive varieties, V, W as $s_{n, m}(V \times W)$..

References

[AM] Atiyah, M. F.; Macdonald, I. G. Introduction to commutative algebra. AddisonWesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1969 ix+128 pp.
[CLS] D. Cox, J. Little, H. Scenck. Toric Varieties.
[F] W. Fulton.Introduction to toric varieties.Annals of Math. Princeton Univ. Press, 131.

