Contents

1.	Smooth toric varieties	1
2.	Projective varieties	2
References		4

1. Smooth toric varieties

Example 1.1. $\sigma = Cone(de_1 - e_2, e_2).$

Proposition 1.2. Let $V \subset \mathbb{C}^n$ be an affine toric variety. It is non singular if and only if $V = Spec(\mathbb{C}[S_{\sigma}])$ for a regular strongly convex polytope $\sigma \in \mathbb{R}^n$.

Proof. If $V = Spec(\mathbb{C}[S_{\sigma}])$ for a regular strongly convex polytope $\sigma \in \mathbb{R}^n$, then the associated toric variety U_{σ} is non singular as observed.

Let now $V \subset \mathbb{C}^n$ be a smooth affine toric variety. It is normal and thus $V = Spec(\mathbb{C}[S_{\sigma}])$ for a strongly convex polytope $\sigma \in \mathbb{R}^n$. If dim $(\sigma) = n$ let 0 be the fixed point, which is smooth, and thus $|\mathcal{H}| = \dim(U_{\sigma}) = n$.

We have:

$$n \leq |\{ \text{ edges of } \check{\sigma}\}| = |\mathcal{H}| = n.$$

In particular $\mathbb{Z}S_{\sigma} = M$ is generated by *n* rays, which implies that they are a lattice basis for *M*, i.e. $\check{\sigma}$ is smooth and thus so is σ .

If $\dim(\sigma) = r < n$ we can embedd the cone in the appropriate lower dimensional lattice. Let N_1 be the smallest saturated sublattice containing all the generators of σ . In particular σ is a rationally convex polytope in N_1 and $\dim(U_{\sigma,N_1}) = r = rk(N_1)$. Moreover the abelian group N/N_1 is torsion free and finitely generated and thus $N/N_1 \cong \mathbb{Z}^{n-r}$ and $N = N_1 \oplus N_2$. It follows that $M = M_1 \oplus M_2$ and that

$$S_{\sigma} = S_{\sigma,N_1} \oplus M_2,$$

where $S_{\sigma,N_1} = \check{\sigma} \cap M_1$. In particular $U_{\sigma} \cong (U_{\sigma,N_1}) \times T_2$, where T_2 is a torus of dimension n - r. We conclude that U_{σ} is smooth at every point $(p,q) \in U_{\sigma,N_1} \times T_2$, which implies that U_{σ,N_1} is smooth hence that σ is smooth in N_1 , because it is maximal dimensional.

The Example 1.1 gives a normal toric variety, not smooth. It is simplicial.

2. Projective varieties

Recall the definition of projective space:

 $\mathbb{P}^n = (\mathbb{C}^{n+1} \setminus \{0\}) / \sim, (a_0, .., a_n) \sim \lambda(a_0, .., a_n), 0 \neq \lambda \in \mathbb{C}.$

A point, i.e. an equivalence class will be denoted by $(a : 0 : ... : a_n)$. It is covered by affine patches. In fact, consider:

$$U_i = \{ (a_0 : \ldots : a_n) \in \mathbb{P}^n \text{ s.t. } a_i \neq 0 \}.$$

is obviously a cover and:

$$phi_i: U_i \to \mathbb{C}^n, (a_0: \ldots: a_i: \ldots: a_n) \mapsto (a_0/a_i, \ldots, a_n/a_i)$$
 and

$$\phi_i: U_i \to \mathbb{C}^n, (a_1, \dots, :a_n) \mapsto (a_1: \dots: 1: \dots: a_n)$$

define an isomorphism $U_i \cong \mathbb{C}^n$, for i = 0, ..., n. Moreover

where $\phi_i(U_i \cap U_j) \cong \phi_j(U_i \cap U_j)$ are identified.

Example 2.1. \mathbb{P}^1

Definition 2.2. A polynomial $f \in \mathbb{C}[x_0, ..., x_n]$ is homogeneous of degree d if it is a sum of monomials all of degree d.

Every polynomial is a sum of homogeneous polynomials.

A polynomial can be thought as a function on \mathbb{P}^n only if it is homogeneous.

Definition 2.3. An ideal $I = (f_1, ..., f_k)$ is a homogeneous ideal is f_i are homogeneous for every i.

We can then define the correspondence V, I between homogeous ideals and what we will call projective varieties.

The only main difference is that: $\emptyset = V((1)) = V(x_0, ..., x_n)$. One proves (similarly as in the affine case) that there is a bijection :

{ homog. radical ideals $I \neq (1)$ } \Leftrightarrow { projective varieties }

and

{ homog. prime radical ideals $I \neq (1)$ } \Leftrightarrow { irreducible projective varieties } With the homogeneous coordinate ring:

$$\mathbb{C}[V] = \mathbb{C}[V]/I = \sum_{d} (\mathbb{C}[V]/I)_d = \sum_{d} (\mathbb{C}[V])_d/I_d.$$

The corresponding affine variety $V(I) \subset \mathbb{C}^{n+1}$ is called the *affine cone*.

Example 2.4.

$$V(xy - zy) \subset \mathbb{P}^3.$$

Definition 2.5. Let $V \subset \mathbb{P}^n$ be a projective variety. A rational function $h: V - - > \mathbb{C}$ is defined as h(P) = f(P)/g(P), where f, g are homogeneous polynomial of the same degree.

If $h(P) \neq 0$, then f(kP)/g(kP) = f(P)/g(P), and f/g = f'/g' if and only if fg' = f'g. We can then define the function field of V as:

$$\mathbb{C}(V) = \{ f/g \text{ s.t. } f, h \in \mathbb{C}[x_0, ..., x : n]_d, h \notin I(V) \} \sim$$

where $f/g \sim f'/g'$ if $fg' = f'g \in I(V)$.

A rational function h is regular at P if there is an expression h = f/g such that $h(P) \neq 0$. The domain, Dom(f), is the set of all regular points.

Example 2.6. Let $V \subset \mathbb{P}^n$ be an irreducible projective variety such that $V \not\subset (x_i = 0)$, for all *i*.

Let $V_i = V \cap U_i$, then $V_i \subset U_i \cong \mathbb{C}^n$ are affine algebraic varieties, because

$$(x_0/x_i, \dots, 1, \dots, x_n/x_i) \in V_i \Leftrightarrow f((x_0/x_i, \dots, 1, \dots, x_n/x_i) = 0 \text{ for all } f \in I(V).$$

The V_i are called the standard affine patches of V.

Definition 2.7. A rational map $f: V - - > \mathbb{C}^n$ is defined as an *n*-tuple of rational functions, $f = (f_1 : ... : f_n)$.

Similarly a rational map $f: V - - > \mathbb{P}^n$ is defined by:

 $f(P) \mapsto (f_0(P) : \ldots : f_n(P)), f_i \in \mathbb{C}(V).$

The map f is regular at P if each f_i is regular at P and $(f_0(P), ..., f_n(P)) \neq (0, ..., 0)$.

If f is regular at P, then take $U = \cap Dom(f_j/f_i)$ where $f_i(P) \neq 0$. We have a morphism:

$$U \to \mathbb{C}^n, P \mapsto (f_0/f_j, ..., f_n/f_j).$$

Example 2.8.

$$f: \mathbb{P}^1 \to \mathbb{P}^m, f(x:y) = (x^m, x^{m-1}y: x^{m-2}y^2: \dots : y^m)$$

It is a rational map and define the morphisms:

$$f_1(1, y/x) = (1, (y/x), (y/x)^2, ..., (y/x)^m, f_2(x/y, 1) = ((x/y)^m, ..., 1).$$

The Image V is given by the points $(a_0 : \ldots : a_m)$ such that $x_0/x_1 = x_1/x_2, \ldots, x_{m-1}/x_0$. It has an inverse: $(x_0 : \ldots : x_m) \mapsto (x_0 : x_1)$.

Example 2.9.

$$\pi: \mathbb{P}^3 \to \mathbb{P}^2, (x_0: \ldots: x_3) \mapsto (x_1: \ldots: x_3).$$

is a rational map, and a morphism outside (1:0:0:0).

Example 2.10. The Segre embedding:

$$s_{n,m}\mathbb{P}^n \times \mathbb{P}^m\mathbb{P}^{(n+1)(m+1)}, [(x_0:...:x_n), (y_o:..:y_m) = (x_iy_j).$$

defines a morphism, used to "define" the product of two projective varieties, V, W as $s_{n,m}(V \times W)$..

References

[AM] Atiyah, M. F.; Macdonald, I. G. Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1969 ix+128 pp.

[CLS] D. Cox, J. Little, H. Scenck. Toric Varieties.

[F] W. Fulton.Introduction to toric varieties.Annals of Math. Princeton Univ. Press, 131.