MARCH 3

Contents

1. The tangent space of an irreducible variety 1
2. Rational convex polyhedral cones 2

References 3

1. The tangent space of an irreducible variety

We will now see that "being singular" is a local property.
Let V be an irreducible affine variety and $\mathbb{C}(V)$ be the ring of rational functions. Let $P=\left(a_{1}, \ldots, a_{n}\right) \in V$. The following subring:

$$
\mathcal{O}_{V, P}=\{f \in \mathbb{C}(V) \text { s.t. } P \in \operatorname{Dom}(f)\}
$$

is called the local ring of V at P and the evaluation map

$$
e v_{p}: \mathcal{O}_{V, P} \rightarrow \mathbb{C}
$$

is a surjective ring homomorphism, whose kernel is the maximal ideal:

$$
\mathfrak{m}_{P}=\left\{f \in \mathcal{O}_{V, P} \text { s.t. } f(P)=0\right\}
$$

Notice that $m_{P}=\{f \in \mathbb{C}[V]$ s.t. $f(P)=0\}=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$, and that since for every $f \in \mathfrak{m}_{P}$ we have $f=g$. unit, where $g \in m_{P}$ it is $\mathfrak{m}_{P}=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$ in $\mathcal{O}_{V, P}$ and (check)

$$
\mathfrak{m}_{P} / \mathfrak{m}_{P}^{2} \cong m_{P} / m_{P}^{2}
$$

as \mathbb{C} vector spaces.
Example 1.1. Let $P \in \mathbb{C}^{n}$, after a change of coordinates we can assume that $P=0$ and thus $m_{P}=\left(x_{1}, \ldots, x_{n}\right)$. Consider the map (of abelian groups)

$$
\phi_{P}:\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(\mathbb{C}^{n}\right)^{*}, f \mapsto \sum_{i} f^{(1)}(P) x_{i}
$$

It is surjective since $x_{i}=\phi\left(x_{i}\right)$. Moreover

$$
\operatorname{Ker}(\phi)=\left\{f(x) \text { s.t. } \frac{\partial f}{\partial x_{i}}(P)=0 \text { for all } i\right\}=m_{P}^{2}
$$

It follows that for every $P \in \mathbb{C}^{n}$

$$
m_{P} / m_{P}^{2} \cong\left(\mathbb{C}^{n}\right)^{*}
$$

Proposition 1.2. Let V be an irreducible affine variety and $P \in V$. Then

$$
\left(T_{P} V\right)^{*} \cong m_{P} / m_{P}^{2}
$$

as \mathbb{C} vector spaces.
Proof. We wil follow the lines of the previous example. By definition it is $\left(T_{P} V\right)^{*} \subset\left(\mathbb{C}^{n}\right)^{*}$ and thus the restriction map induces a surjective map:

$$
\phi_{V, P}: M_{P}=\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(T_{P} V\right)^{*}
$$

where we use the different notation M_{P} to recall that the ideal is in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Notice that if $f \in \operatorname{Ker}\left(\phi_{V, P}\right)$ then it is $f^{(1)}=\sum a_{i} g_{i}^{(1)}$ for $g_{i} \in I(V)$. Then it would be $f-\sum_{i} g_{i} \in M_{P}^{2}$ and thus $f \in M_{P}^{2}+I(V)$. Since both $M_{P}^{2} \subset \operatorname{Ker}\left(\phi_{V, P}\right)$ and $I(V) \subset \operatorname{Ker}\left(\phi_{V, P}\right)$ it is:

$$
\operatorname{Ker}\left(\phi_{V, P}\right)=M_{P}^{2}+I(V)
$$

Because $M_{P} / M_{P}^{2}+I(V) \cong m_{p} / m_{p}^{2}$ the assertion is proved.
The vector space $\left(m_{P} / m_{P}^{2}\right)^{*}$ is called the Zariski tangent space.
Recalling that a Zariski-open is isomorphic to an affine variety, we can speak of $T_{P} U_{o}$, where U_{o} is a Zariski-open.
Exercise 1.3. (Assignment 2) Let V be an irreducible affine variety and $P \in V$. If U_{o}, V_{o} are two open neighborhoods (Zariski open)and $\phi: U_{o} \rightarrow W_{o}$ is an isomorphism, such that $\phi(P)=Q$, then there is a natural isomorphism $T_{P} U_{o} \rightarrow T_{P} V_{o}$ and hence $\operatorname{dim}\left(T_{P} U_{o}\right)=\operatorname{dim}\left(T_{Q} V_{o}\right)$.

Two varieties are birationally equivalent if there is a rational map, whose inverse is a rational map. Deduce that if two varieties are birationally equivalent, they they have the same dimension.
Example 1.4. (Blow up) Consider the map $p: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ defined by $p(x, y)=(x, x y)$. the rational inverse is $p^{-1}: \mathbb{C}^{2}-->\mathbb{C}^{2}$ defined by $(x, y) \mapsto(x, y / x)$. It defines an isomorphism $\mathbb{C}^{2} \backslash\{0\} \cong \mathbb{C}^{2} \backslash V(x)$.

Consider now the irreducible variety $C=V\left(y^{2}-x^{3}\right)$ which is an irreducible curve, singular at $0 . p^{-1}(C)=V\left(x^{2}\left(y^{2}-x\right)\right)$ which we can write as the union of two irreducible components:

$$
p^{-1}(C)=V\left(x^{2}\right) \cup V\left(y^{2}-x\right)=E \cup C^{\prime}
$$

where C^{\prime} is not singular at 0 and it is isomorphic to C outside 0 . This process is called resolution of singularities and the map p^{-1} is the blow-up of \mathbb{C}^{2} at the origin.

2. Rational convex polyhedral cones

The proofs of what follows can be found in [F] and [CLS].
Let M, N be dual lattices of dimension n. We will denote by $M_{\mathbb{R}}, N_{\mathbb{R}}$ the associated dual real vector spaces of dimension n. Let $S=\left\{u_{1}, \ldots, u_{s}\right\} \subset N_{\mathbb{R}}$ be a finite subset. The set

$$
\operatorname{Cone}(S)=\mathbb{R}^{+} u_{1}+\ldots+\mathbb{R}^{+} u_{s}=\left\{\sum_{s \in S} \lambda_{s} s \text { s.t. } \lambda \geq 0\right\}
$$

is called a rational polyhedral convex cone. We will use the term cone for simplicity.

Notice that such a cone is indeed a cone $(x \in \sigma \Rightarrow \lambda x \in \sigma$, for all $\lambda \geq 0)$ and it is indeed convex $(x, y \in \sigma \Rightarrow \lambda x+(1-\lambda) y \in \sigma$, for all $0 \leq \lambda \leq 1)$.

The dual cone of a cone σ is:

$$
\check{\sigma}=\left\{m \in M_{\mathbb{R}} \text { s.t }<m, u>\geq 0 \text { for all } u \in \sigma\right\}
$$

The dual cone is also a rational convex polyhedral cone: $\check{\sigma}=\operatorname{Cone}\left(S^{\prime}\right)$ for some finite $S^{\prime} \subset M_{\mathbb{R}}$.

Example 2.1. Let $\left\{e_{1}, e_{2}\right\}$ be the lattice base of a two-dimenasional lattice N and let $\left\{e_{1}^{*}, e_{2}^{*}\right\}$ be the lattice base of the dual two-dimenasional lattice M. Consider

$$
\sigma=\operatorname{Cone}\left(e_{2}, 2 e_{1}-e_{2}\right) \subset N_{\mathbb{R}} .
$$

The dual cone is:

$$
\check{\sigma}=\operatorname{Cone}\left(e_{1}^{*}, e_{1}^{*}+2 e_{2}^{*}\right) \subset M_{\mathbb{R}} .
$$

Definition 2.2. - The dimension of a cone σ is equal to the dimension of its linear span: $\operatorname{dim}(\sigma)=\operatorname{dim}(\mathbb{R} \sigma)=\operatorname{dim}(\sigma+(-\sigma))$.

- A face of σ is given by the intersection with a supporting hyperplane:

$$
\tau=\sigma \cap H_{v}=\{u \in \sigma \text { s.t. }\langle u, v>=0\} .
$$

- A face of codimesion 1 is called a facet and a face of dimension 1 is called an edge.

The following properties hold:
(1) A face is again a rational convex cone. An edge is than generated by one element:

$$
\rho=\mathbb{R}^{+} v_{i} .
$$

(2) The intersection of faces is again a face.
(3) If $\tau \subset \sigma$ is a face, then any face of τ is a face of σ.
(4) Any proper face is contained in a facet.
(5) Any proper face is the intersection of the facets containing it.

If $\tau \subset \sigma$ is a face, we define

$$
\tau^{\perp}=\left\{m \in M_{\mathbb{R}} \text { s.t. }<m, u>=0 \text { for all } u \in \tau\right\}
$$

Then $\tau^{*}=\tau^{\perp} \cap \check{\sigma}$ is called the dual face, because it is a face of the dual cone $\check{\sigma}$. The correspondence:

$$
\tau \mapsto \tau^{*}
$$

defines an inclusion reversing one-to-one corespondence between faces on σ and faces of $\check{\sigma}$, such that

$$
\operatorname{dim}(\tau)=\operatorname{codim}\left(\tau^{*}\right) \text { i.e. } \operatorname{dim}(\tau)+\operatorname{dim}\left(\tau^{*}\right)=\operatorname{dim}(\sigma) .
$$

References

[AM] Atiyah, M. F.; Macdonald, I. G. Introduction to commutative algebra. AddisonWesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1969 ix+128 pp.
[CLS] D. Cox, J. Little, H. Scenck. Toric Varieties.
[F] W. Fulton.Introduction to toric varieties.Annals of Math. Princeton Univ. Press, 131.

