MARCH 31

Contents

1. Projective toric varieties 1
2. Affine patches 2
3. Polytopes 2
4. The affine patches given by the Polytope 3
References 3

1. Projective toric varieties

The projective space \mathbb{P}^{n} is a an irreducible projective variety. The quotient map induces the following exact sequence:

$$
(1) \rightarrow \mathbb{C}^{*}=\mathbb{C}(1, \ldots, 1) \rightarrow\left(\mathbb{C}^{*}\right)^{n+1} \rightarrow T \rightarrow(1)
$$

Where $T \cong\left(\mathbb{C}^{*}\right)^{n} \subset \mathbb{P}^{n}$.
Moreover we have an induced exact sequence:
$0 \rightarrow \operatorname{Hom}_{A G}\left(T, \mathbb{C}^{*}\right) \rightarrow \operatorname{Hom}_{A G}\left(\left(\mathbb{C}^{*}\right)^{n+1}, \mathbb{C}^{*}\right) \cong \mathbb{Z}^{n+1} \rightarrow \operatorname{Hom}_{A G}\left(\mathbb{C}^{*}, \mathbb{C}^{*}\right)=\mathbb{Z}$
which gives $\operatorname{Hom}_{A G}\left(T, \mathbb{C}^{*}\right)=\left\{\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{Z}^{n+1}\right.$ s.t. $\left.\sum a_{i}=0\right\}$.
The torus T acts on \mathbb{P}^{n}. The action of the torus $\left(\mathbb{C}^{*}\right)^{n+1}$ on \mathbb{C}^{n+1} is a well defined action on \mathbb{P}^{n}, because: $\left(t_{0}, \ldots, t_{n}\right)\left(\lambda\left(x_{0}, . ., x_{n}\right)\right)=\lambda\left(t_{0} x_{0}, \ldots, t_{n} x_{n}\right)$. Moreover The diagonal sutorus acts trivially: $(t, \ldots, t)\left(x_{0}, . ., x_{n}\right)=\left(x_{0}, . ., x_{n}\right)$.

One can use a similar construction with lattice points.
Let $\mathcal{A}=\left\{m_{0}, \ldots, m_{s}\right\} \subset \mathbb{Z}^{n}$ be a finite subset with $|\mathcal{A}|=s+1$. Then:

$$
\left(\mathbb{C}^{*}\right)^{n} \rightarrow \mathbb{C}^{s+1} \rightarrow \mathbb{P}^{s}
$$

Observe that the image is in fact a torus $T_{\mathcal{A}} \subset \mathbb{P}^{s}$ and thus

$$
X_{\mathcal{A}}=\overline{T_{\mathcal{A}}} \subset \mathbb{P}^{s}
$$

is a projective toric variety, containing a torus, which acts on it. One sees exactly as in the previous example, considering the torus and the action induced by the first map on \mathbb{C}^{s+1} and then observing that it defines an action of the image in \mathbb{P}^{s}.

Also:

$$
\operatorname{Hom}\left(T_{\mathcal{A}}, \mathbb{C}^{*}\right)_{A G}=\left\{\sum_{0}^{s} a_{i} m_{i} \text { s.t. } \sum a_{i}=0\right\} .
$$

2. Affine patches

Consider $X_{\mathcal{A}} \cap U_{i}=X_{i} \subset \mathbb{C}^{n}$. Because $\mathbb{P}^{s}=\cup U_{i}$ we have

$$
X_{\mathcal{A}}=\cup X_{i} .
$$

The restriction map is given by:

$$
\begin{gathered}
\left(\mathbb{C}^{*}\right)^{n} \rightarrow \mathbb{C}^{s+1} \rightarrow \mathbb{P}^{s} \rightarrow X_{i} \\
t=\left(t_{1}, \ldots, t_{n}\right) \rightarrow\left(t^{m_{0}}, \ldots, t^{m_{s}}\right) \rightarrow\left(t^{m_{0}}: \ldots: t^{m_{s}}\right)=\left(t^{m_{0}-m_{i}}, \ldots, t^{m_{s}-m_{i}}\right) .
\end{gathered}
$$

Then $X_{i}=Y_{\mathcal{A}_{i}}$, where $\mathcal{A}_{i}=\left\{m-m_{i}\right.$ s.t. $\left.m \in \mathcal{A}\right\}$.
In the construction of X_{i} we "invert" $\chi^{m_{i}}$. For this reason

$$
X_{i}=\operatorname{Spec}\left(\mathbb{C}[S]_{\chi^{m_{i}}}\right)=\operatorname{Spec}\left(\mathbb{C}\left[S_{i}\right]\right),
$$

where $S_{i}=\mathbb{N} \mathcal{A}_{i}$.
Similarly:

$$
X_{i} \cap X_{j}=\operatorname{Spec}\left(\mathbb{C}\left[S_{j}\right]_{\chi^{m_{i}-m_{j}}}\right)=\operatorname{Spec}\left(\mathbb{C}\left[S_{i}\right]_{\chi^{m_{j}-m_{i}}}\right) .
$$

3. Polytopes

A lattice polytope $P \subset \mathbb{R}^{n}$ is defined as the convex hull of a finite number of lattice points:

$$
P=\operatorname{Conv}\left(m_{1}, \ldots, m_{k}\right)=\left\{\sum r_{i} m_{i}, r_{i} \in \mathbb{Q}, \sum r_{i}=1\right\}, m_{i} \in \mathbb{Z}^{n}
$$

The dimension of a Polytope is given by the dimension of the smallest affine subspace containing it. Let $\mathbb{R}^{n}=M_{\mathbb{R}}$ and $N=M$.

The faces of the polytope are lower dimensional lattice polytopes cut out by affine hyperplanes. For $u \in N_{\mathbb{R}}, a \in \mathbb{R}$,

$$
H_{u, a}=\left\{m \in M_{\mathbb{R}} \text { s.t. }<m, u>=-a\right\} .
$$

defines an affine hyperplane. We will denote by

$$
H_{u, a}^{+}=\left\{m \in M_{\mathbb{R}} \text { s.t. }<m, u>\geq-a\right\}
$$

the closed half-space.
Definition 3.1. Let $P=\operatorname{Conv}(S)$ be a lattice polytope. A face $F \subset P$ is $P \cap H_{u, a}$ and $P \subset H_{u, a}^{+}$for some $u \in N_{\mathbb{R}}, a \in \mathbb{R}$. $H_{u, a}^{+}$is called a supporting hyperplane.

Notice that $F=P \cap H_{u, a}=\operatorname{Conv}\left(S \cap H_{u, a}\right)$. Faces of dimension $\operatorname{dim}(P)-$ $1,1,0$ are called facets, edges and verteces resp.

An important fact to remember is that, when $\operatorname{dim}(P)=n$ (maximal), then the facets, F, have a unique supporting hyperplane H_{F}, and

$$
P=\bigcap_{F \text { facet }} H_{F}^{+}=\left\{m \in M_{\mathbb{R}} \text { s.t. }<m, u_{F}>\geq-a_{F}, F \text { facet }\right\}
$$

This means that there are unique (up to multiplication with a positive real number) vector $u_{F} \in N_{\mathbb{R}}, a_{F} \in \mathbb{R}$ giving $H_{F}=H_{u_{F}, a_{F}}$. The vector u_{F} is called the inward-pointing facet normal.

Example 3.2. Let $e_{0}=0$ and e_{1}, \ldots, e_{n} be the standard basis of $\mathbb{R}^{n} . \Delta_{n}=$ $\operatorname{Conv}\left(e_{0}, \ldots, e_{n}\right)$ is called the n-dimensional standard simplex.

For $n=2, \Delta_{2}=H_{(1,0), 0} \cap H_{(0,1), 0} \cap H_{(-1,-1), 1}$.

4. The affine patches given by the Polytope

Lat $X_{\mathcal{A}}$ be the projective toric variety defined above, and let $P_{\mathcal{A}}=$ $\operatorname{Conv}(\mathcal{A})$. Notice that

$$
\operatorname{dim}\left(P_{\mathcal{A}}\right)=\operatorname{dim}\left(X_{\mathcal{A}}\right)
$$

Lemma 4.1. Let J be the subset of \mathcal{A} given by the verteces of $P_{\mathcal{A}}$, then

$$
X_{\mathcal{A}}=\cup_{i \in J} X_{i}
$$

Proof. We have that

$$
m_{i}=\sum_{j \in J} r_{i, j} m_{j}, r_{i, j} \in \mathbb{Q}, \sum_{j} r_{i, j}=1 .
$$

After clearing denominators we can write

$$
k m_{i}=\sum_{j \in J} k_{i, j} m_{j}, k_{i, j} \in \mathbb{Z}, \sum_{j} r_{i, j}=k .
$$

It follows that $\sum k_{i, j}\left(m_{i}-m_{j}\right)=0$. Then, for every $k_{i, j} \neq 0$ we have $m_{j}-m_{i} \in S_{i}$ and therefore

$$
X_{i}=\operatorname{Spec}\left(\mathbb{C}\left[S_{i}\right]\right)=\operatorname{Spec}\left(\mathbb{C}\left[S_{i}\right]_{\chi^{m_{j}-m_{i}}}=X_{i} \cap X_{j}\right.
$$

after choosing one $k_{i, j} \neq 0$. It follows that $X_{i} \subset X_{j}$ for some $i \in J$.
Example 4.2. $\mathcal{A}=\{(0,0),(1,0),(2,0),(0,1),(1,1),(1,2)\}$.
Recall that if S_{i} is saturated, then X_{i} is normal and $S_{i}=\check{\sigma}_{i} \cap M$ for an n-dimensional strongly convex cone σ_{i}.

Let $C_{i}=\operatorname{Cone}\left(P \cap M-m_{i}\right)$. If $\operatorname{dim}(P)=n$ the cone C_{i} is stongly convex. It follows that if the following is satisfied:

- the polytope is of maximal dimension, $\operatorname{dim}(P)=n$,
- For every vertex m, the semigroup $\mathbb{N}(\mathcal{A}-m)$ is saturated,

Then

$$
X_{\mathcal{A}}=\bigcup_{m \text { vertex }} \operatorname{Spec}\left(\mathbb{C}\left[\sigma_{m}^{\check{m}} \cup M\right]\right)
$$

where $\sigma \sigma_{m}=\operatorname{Cone}(P \cap M-m)$.

References

[AM] Atiyah, M. F.; Macdonald, I. G. Introduction to commutative algebra. Addison-
Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1969 ix+128 pp.
[CLS] D. Cox, J. Little, H. Scenck. Toric Varieties.
[F] W. Fulton.Introduction to toric varieties.Annals of Math. Princeton Univ. Press, 131.

