
Matematiska Institutionen, KTH Saturday, December 20, 08:00 – 13:00 in L21–22

Final Exam in Diskret Matematik och Algebra (SF2714)

With Solutions

Examiner: Petter Brändén
No calculator, textbooks or notes are allowed
For full credit you should show all your work
There are 5 problems for a total of 60 points

Problem 1. (12p).

(a) State the Chinese remainder theorem (you don’t have to prove it),
(b) Find all integer solutions to the Diophantine equation

36x+ 15y = −9.

Solution. A particular solution to the equation is (x0, y0) = (6,−15). All integers solutions
are then given by

x = x0 + (15/3)n = 6 + 5n

y = y0 − (36/3)n = −15− 12n

where n ∈ Z.

Problem 2. (12p).

(a) Write p(x) = x5 + 2x2 + x+ 2 ∈ Z3[x] as a product of irreducible polynomials,
(b) Determine if x4 + 1 is invertible in Z3[x]/(p). If so, find the inverse.

Solution. (a). We see that p(1) = 0 and dividing by x− 1 yields

p(x) = (x− 1)(x4 + x3 + x2 + 1).

Let us prove that q(x) = x4 + x3 + x2 + 1 is irreducible. Assume otherwise. One checks
that q(x) = 0 has no root in Z3 so by the Factor Theorem q has no factors of degree 1.
The only way q(x) can factor into polynomials of lower degree is then (pull out leading
coefficients) as:

q(x) = (x2 + ax+ b)(x2 + cx+ d) = x4 + (a+ c)x3 + (b+ d+ ac)x2 + (bc+ ad)x+ bd

By identifying coefficients we see that bd = 1, so either b = d = 1 or b = d = −1. By
comparing the coefficients infront of x and x3 in the two expansions we see that

1 = a+ c, 0 = b(a+ c)
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which is a contradiction since b = ±1. This proves that q is irreducible and that p(x) =
(x+2)(x4+x3+x2+1) is the factorization of p(x) into a product of irreducible polynomials.

(b). By performing Euclid’s algorithm with p(x) and x4 + 1 we get a final remainder 1 and
”solving backwards” in the algorithm we get

(2x2 + 1)p(x) + (x3 + 2x+ 2)(x4 + 1) = 1.

Hence x4 + 1 is invertible in Z3[x]/(p) and its inverse is x3 + 2x+ 2.

Problem 3. (12p). Let Gk be the graph obtained by gluing together k copies of the
4-cycle in a row as indicated below.

G4 =

G1 = G2 = G3 =

Gk = · · ·

1

(a) Let fk(n) be the chromatic polynomial of Gk. Find a formula for fk(n),
(b) Determine how many Eulerian walks there are in Gk.

Solution. (a). Let G0 = • be the graph with just one vertex and no edges. Let k ≥ 1.
The ”deletion/contraction”-recursion for chromatic polynomials applied to Gk yields in
symbols:

so
(n− 1)3fk−1(n) = (n− 1)(n− 2)fk−1(n) + fk(n)

that is fk(n) = (n− 1)(n2 − 3n+ 3)fk−1(n). Since f0(n) = n we get

fk(n) = n(n− 1)k(n2 − 3n+ 3)k.

(b). Associate to each Eulerian walk w in Gk = (Vk, Ek) a function Fw : Ek → {→,←}
by letting Fw(e) = → if in the walk the left endpoint of e is visited first and Fw(e) = ←
otherwise. The functions that arise in this way are precisely those for which in each square

(1) the top edges have the same direction,
(2) the bottom edges have the same direction, and
(3) the bottom edges have opposite direction from the top edges (see figure below).
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Hence there are 2k different such functions. Given such a function we may start our
Eulerian walk in any vertex. However,

(1) if the starting vertex has degree two there is just one direction to go, and there are
2k + 2 such vertices,

(2) if the starting vertex has degree four we have a choice to go either left or right.
There are k − 1 such vertices.

Hence the number of Eulerian walks is

2k(2k + 2 + 2(k − 1)) = k2k+2.

Problem 4. (12p). Prove the following theorem.

Theorem. Suppose that a(x) and b(x) are polynomials in K[x] (with b(x) 6= 0),
where K is a field. Then there are unique polynomials q(x), r(x) ∈ K[x] such that

a(x) = b(x)q(x) + r(x),

where r(x) = 0 or deg(r(x)) < deg(b(x)).

Problem 5. (12p).

(a) Let k be a positive integer and let ak
n be the number of permutations in Sn whose

disjoint cycle form only contains cycles of length k (we define ak
0 := 1). Prove that

∞∑
n=0

ak
n

n!
xn = e

xk

k .

(b) Prove that a permutation π ∈ Sn has order 6 if and only if (I) or (II) below are
satisfied
(I) There are only cycles of length 1, 2, 3 and 6 in the disjoint cycle form of π and

there is at least one cycle of length 6;
(II) There are only cycles of length 1, 2 and 3 in the disjoint cycle form of π and

there is at least one cycle of length 2 and at least one of length 3.
(c) Let bn be the number of permutations in Sn of order 6. Determine

∞∑
n=0

bn
n!
xn.

(See the hint below.)
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Hint on Problem 5 (c). Use (a) and (b) above and the combinatorial interpretation of
products of exponential generating functions (several times): If

F (x) =
∞∑

n=0

fn

n!
xn, G(x) =

∞∑
n=0

gn

n!
xn

then

F (x)G(x) =
∞∑

n=0

hn

n!
xn where hn =

n∑
k=0

(
n

k

)
fkgn−k.

Solution. (a). If the disjoint cycle form of π ∈ Sn only has cycles of length k then n = mk
for some m ∈ N and there are

1

k!

(
mk

k, . . . , k

)
(k − 1)! · · · (k − 1)! =

(mk)!

k!km

such permutations in Sn since there are 1
k!

(
mk

k,...,k

)
ways of choosing which integers should be

in the same cycle, and there are (k−1)! different cycles of k letters. Hence the exponential
generating function is

∞∑
m=0

(mk)!

k!km

xmk

(mk)!
= e

xk

k .

(b). Since disjoint cycles commute and the order of a cycle of length k is k, the cycles in
π are of lengths 1, 2, 3 or 6 if the order of π is 6. Also, if all cycles in π ∈ Sn are of lengths
1, 2, 3 or 6 then the order of π is either 1, 2, 3 or 6. If one of the cycles in π has length 6
then the order of π is 6, and if no cycle in π has length 6 then the order of π is 6 if and
only if there are cycles of lengths 2 and 3 in π.

(c). Let S = {s1, . . . , s`} be a set of positive integers and let an(S) be the number of
permutations π ∈ Sn for which all the cycles in π have lengths in S. Let

ES(x) =
∞∑

n=0

an(S)

n!
xn.

Now, if ` ≥ 2, then

an(S) =
n∑

k=0

(
n

k

)
an({s1, . . . , s`−1})an−k({s`}),

since we get a permutation with cycle lengths in S by specifying which integers should
be in cycles of length s`, and then the remaining integers are in cycles of cycle lengths in
{s1, . . . , s`−1}. Using the hint we see that

(1) ES(x) = E{s1,...,s`−1}E{s`}.
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Iterating (1) using E{k}(x) = e
xk

k we have

ES(x) = e
xs1
s1 · · · e

xs`
s` .

The number of permutations satisfying (I) is precisely an({1, 2, 3, 6})− an({1, 2, 3}) so the
corresponding generating function is

ex+x2

2
+x3

3
+x6

6 − ex+x2

2
+x3

3 .

Similarly the number of permutations satisfying (II) is

an({1, 2, 3})− an({1, 2})− an({1, 3}) + an({1}),
which has generating function

ex+x2

2
+x3

3 − ex+x2

2 − ex+x3

3 + ex.

Hence
∞∑

n=0

bn
n!
xn = ex+x2

2
+x3

3
+x6

6 − ex+x2

2 − ex+x3

3 + ex.


