HOMEWORK II

To be handed in on Monday, December 15^{1}. Collaboration is encouraged, but you may NOT copy another students solutions. It is important that you show all your work and write complete proofs. There are 3 problems for a total of 20 points. If you are stuck on a problem you may ask me for hints.
(1) Let $f(x)=1+x+2 x^{2}+4 x^{3}+3 x^{4}+x^{5} \in \mathbb{Z}_{5}[x]$.
a) Write $f(x)$ as a product of irreducible polynomials,
b) Determine which of the following polynomials are invertible in $\mathbb{Z}_{5}[x] /(f(x))$:

$$
1+3 x+2 x^{2}, \quad 2+4 x+x^{2}+3 x^{3}, \quad x^{3}+2 x^{2}+4 x+3
$$

(2) a) Let p be a prime number and let a_{n} be the number of permutations π in \mathcal{S}_{n} of order p. Prove that

$$
\sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n}=e^{x+\frac{x^{p}}{p}}-e^{x}
$$

Hint: Note that $\pi^{p}=e$ if and only if the cycles in π are of lengths 1 or p. You may use the formula on the bottom of page 134 in Biggs.
b) Let p be a prime number and let b_{n} be the number of permutations π in \mathcal{S}_{n} of order p that have no fixed points. Determine

$$
\sum_{n=0}^{\infty} \frac{b_{n}}{n!} x^{n}
$$

(3) Let X be a multi-set of size n whose elements are integers such that $\sum_{x \in X} x=1$. Let

$$
O(X)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}:\left\{x_{1}, \ldots, x_{n}\right\}=X\right\}
$$

be all vectors obtained by re-ordering X.
a) Define a relation \sim on $O(X)$ by $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \sim\left(y_{1}, \ldots, y_{n}\right)=\mathbf{y}$ if \mathbf{y} can be obtained from \mathbf{x} by a cyclic shift, that is, if there is an integer $0 \leq k \leq n$ such that $y_{i}=x_{k+i}$ for all $1 \leq i \leq n-k$ and $y_{i}=x_{i-n+k}$ if $n-k<i \leq n$ (i.e., if the sequences are the same when the numbers are arranged on a circle). Prove that \sim is an equivalence relation on $O(X)$ for which every equivalence class has exactly n elements.
b) Let S is an equivalence class of \sim. Prove that there is a unique element $\left(x_{1}, \ldots, x_{n}\right) \in$ S for which

$$
x_{1}+\cdots+x_{k} \geq 1 \quad \text { for all } k \in\{1, \ldots, n\} .
$$

c) Let X consist of $n+11 \mathrm{~s}$ and $n(-1)$ s. Prove that the number of equivalence classes of \sim is the nth Catalan number by using (a) and (b) above. How is this related to Dyck paths?

Example. If $X=\{-1,1,1,0\}$ then $O(X)=\{(-1,1,1,0),(-1,1,0,1),(-1,0,1,1)$, $(0,-1,1,1),(0,1,-1,1),(0,1,1,-1),(1,-1,0,1),(1,-1,1,0),(1,0,-1,1),(1,0,1,-1)$, $(1,1,-1,0),(1,1,0,-1)\}$. The unique elements as in (b) in each equivalence class are $(1,1,0,-1),(1,0,1,-1),(1,1,-1,0)$.

[^0]
[^0]: ${ }^{1}$ May be extended if special circumstances, but the very latest date is January 6

