HOMEWORK II

To be handed in on Monday, December 15¹. Collaboration is encouraged, but you may NOT copy another students solutions. It is important that you show all your work and write complete proofs. There are 3 problems for a total of 20 points. If you are stuck on a problem you may ask me for hints.

- (1) Let $f(x) = 1 + x + 2x^2 + 4x^3 + 3x^4 + x^5 \in \mathbb{Z}_5[x]$.
 - a) Write f(x) as a product of irreducible polynomials,
 - b) Determine which of the following polynomials are invertible in $\mathbb{Z}_5[x]/(f(x))$:

$$1 + 3x + 2x^2$$
, $2 + 4x + x^2 + 3x^3$, $x^3 + 2x^2 + 4x + 3x^3$

(2) a) Let p be a prime number and let a_n be the number of permutations π in S_n of order p. Prove that

$$\sum_{n=0}^{\infty} \frac{a_n}{n!} x^n = e^{x + \frac{x^p}{p}} - e^x$$

Hint: Note that $\pi^p = e$ if and only if the cycles in π are of lengths 1 or p. You may use the formula on the bottom of page 134 in Biggs.

b) Let p be a prime number and let b_n be the number of permutations π in S_n of order p that have no fixed points. Determine

$$\sum_{n=0}^{\infty} \frac{b_n}{n!} x^n$$

(3) Let X be a multi-set of size n whose elements are integers such that $\sum_{x \in X} x = 1$. Let

$$O(X) = \{(x_1, \dots, x_n) \in \mathbb{Z}^n : \{x_1, \dots, x_n\} = X\}$$

be all vectors obtained by re-ordering X.

- a) Define a relation \sim on O(X) by $\mathbf{x} = (x_1, \dots, x_n) \sim (y_1, \dots, y_n) = \mathbf{y}$ if \mathbf{y} can be obtained from \mathbf{x} by a cyclic shift, that is, if there is an integer $0 \leq k \leq n$ such that $y_i = x_{k+i}$ for all $1 \leq i \leq n-k$ and $y_i = x_{i-n+k}$ if $n-k < i \leq n$ (i.e., if the sequences are the same when the numbers are arranged on a circle). Prove that \sim is an equivalence relation on O(X) for which every equivalence class has exactly n elements.
- b) Let S is an equivalence class of \sim . Prove that there is a unique element $(x_1, \ldots, x_n) \in S$ for which

$$x_1 + \dots + x_k \ge 1 \quad \text{for all } k \in \{1, \dots, n\}.$$

c) Let X consist of n + 1 1s and n (-1)s. Prove that the number of equivalence classes of \sim is the *n*th Catalan number by using (a) and (b) above. How is this related to Dyck paths?

Example. If $X = \{-1, 1, 1, 0\}$ then $O(X) = \{(-1, 1, 1, 0), (-1, 1, 0, 1), (-1, 0, 1, 1), (0, -1, 1, 1), (0, 1, -1, -1), (1, -1, 0, 1), (1, -1, 1, 0), (1, 0, -1, 1), (1, 0, 1, -1), (1, 1, -1, 0), (1, 1, 0, -1)\}$. The unique elements as in (b) in each equivalence class are (1, 1, 0, -1), (1, 0, 1, -1), (1, 1, -1, 0).

¹May be extended if special circumstances, but the very latest date is January 6