Final Exam in Diskret Matematik och algebra (SF2714) WITH SOLUTIONS

Examiner: Petter Brändén.
No calculator, textbooks or notes are allowed.
For full credit you should show all work.
There are 5 problems for a total of 58 points.
Problem 1. (10p).
(a) State the fundamental homomorphism theorem for ringss (you don't have to prove it).
(b) Find all integer solutions to the Diophantine equation

$$
21 x+9 y=45
$$

Solution. Note that $\operatorname{gcd}(21,9)=3 \mid 45$ so the equation is solvable. Divide by 3 and solve the equation $7 x+3 y=15$. By performing Euclid's algorithm backwards we get a particular solution $\left(x_{0}, y_{0}\right)=(15,-30)$. The general solution is then given by the theorem on Diophantine equations as

$$
x=15+3 n, \quad y=-30-7 n, \quad n \in \mathbb{Z} .
$$

Problem 2. (12p).
(a) Determine if the polynomial $p(x)=x^{4}+x+1$ is irreducible in $\mathbb{Z}_{2}[x]$.
(b) Find the inverse (if possible) of $x^{2}+1$ in $\mathbb{Z}_{2}[x] /(p)$.

Solution. (a). If $p(x)$ is reducible then it has a linear factor or it is the product of two factors of degree 2. In the first case $p(x)=0$ would have a root, but $p(0)=p(1)=1$ so this is ruled out. In the second case we would get a factorization (since $p(x)$ is monic, has constant term 1)
$x^{4}+x+1=\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right)=x^{4}+(a+c) x^{3}+(a c+b+d) x^{2}+(a d+b c) x+b d$, for some $a, b, c, d \in \mathbb{Z}_{2}$. Now, $b d=1$ so $b=d=1$ which gives $a+c=0$ and $a+c=1$. Hence $p(x)$ has no factors of degree two either and is therefore irreducible.
(b). Since $p(x)$ is irreducible $\operatorname{gcd}\left(p(x), x^{2}+1\right)=1$ so the inverse of $x^{2}+1$ exists. Performing Euclid's algorithm backwards we find

$$
\left(x^{2}+1\right)\left(x^{3}+x+1\right)+x\left(x^{4}+x+1\right)=1
$$

so the inverse of $x^{2}+1$ is $x^{3}+x+1$.

Problem 3. (12p). Prove the following theorem.
Theorem. Suppose that $a(x), b(x)$ are two polynomial in $K[x]$ (with $b(x) \neq 0$), where K is a field. Then there are unique polynomials $q(x), r(x) \in K[x]$ such that

$$
a(x)=b(x) q(x)+r(x)
$$

with either $r(x)=0$ or $\operatorname{deg}(r(x))<\operatorname{deg}(b(x))$.

Problem 4. (10p). Determine how many words of length n one can form using the letters a, b, c so that the number of a 's and the number of b 's are odd. (For $n=4$ we have $a b c c, a a b a, \ldots)$. Let A_{n} be this number and find the generating function

$$
A(x)=\sum_{n=0}^{\infty} A_{n} x^{n} .
$$

$\left(\right.$ Note that $\left.A_{0}=A_{1}=0\right)$.
Solution. Let

$$
F(x, y, z)=\sum_{k, \ell, m=0}^{\infty} a(k, \ell, m) x^{k} y^{\ell} z^{m}
$$

where $a(k, \ell, m)$ is the number of words with letters a, b, c and with $k a$'s, ℓb 's and $m c$'s (and no other restrictions). Since a word is either empty, starts with an a, starts with a b, or starts with a c we have $F=1+x F+y F+z F$, that is,

$$
F=\frac{1}{1-x-y-z} .
$$

The words with an odd number of a 's are generated by

$$
G(x, y, z)=(F(x, y, z)-F(-x, y, z)) / 2,
$$

since all coefficients with an even k will cancel and the remaining have odd k. Similarly, the words with an odd number of a 's and an odd number of b 's are generated by

$$
H(x, y, z)=(G(x, y, z)-G(x,-y, z)) / 2 .
$$

Hence

$$
A(x)=H(x, x, x)=\frac{1}{4}\left(\frac{1}{1-3 x}-\frac{2}{1-x}+\frac{1}{1+x}\right) .
$$

Problem 5. (14p). For $k \geq 3$ let C_{k} be the cycle with k vertices, i.e., $C_{k}=\left(V_{k}, E_{k}\right)$ where $V_{k}=\{1,2, \ldots, k\}$ and $E_{k}=\{\{1,2\},\{2,3\}, \ldots,\{k-1, k\},\{k, 1\}\}$.
(a) Find the chromatic number of C_{k}, for $k \geq 3$,
(b) Prove that the chromatic polynomial of C_{k} is

$$
\chi_{C_{k}}(n)=(n-1)^{k}+(-1)^{k}(n-1), \quad k \geq 3,
$$

(c) Find the the number of acyclic orientations of C_{k}, for $k \geq 3$.

Solution. (b). Applying the general recursion for chromatic polynomials gives

$$
\chi_{C_{k}}(n)=n(n-1)^{k-1}-\chi_{C_{k-1}}(n) .
$$

The formula then follows by induction over k.
(c). Set $n=-1$.

