- 1 (Exercise 2.5.9 in the book.) The map Φ : $Gl(n) \to Gl(n)$, defined by $\Phi(Y) = Y^T Y$, is smooth since its coordinate functions are quadratic polynomials. Prove the following.
 - (1) Relative to the standard identification $T_I(Gl(n)) = \mathfrak{M}(n)$, the differential $d\Phi_I : T_I(Gl(n)) \to T_I(Gl(n))$ has the formula

$$d\Phi_I(A) = A^T + A.$$

- (2) The map Φ has constant rank n(n+1)/2.
- (3) Using the above, conclude that the orthogonal group $O(n) \subset Gl(n)$ is a smooth, compact submanifold of dimension n(n-1)/2.
- (4) Show that the vector subspace $T_I(O(n)) \subset \mathfrak{M}(n)$ is the space of skew symmetric matrices.

2 Let 0 < b < a. Show that the set of points $(x, y, z) \in \mathbb{R}^3$ satisfying

$$(a - \sqrt{x^2 + y^2})^2 + z^2 = b^2$$

is a smooth submanifold. Show that it is parallelizable (Definition 2.5.12, page 62.)

- 3 Let $V_1 = y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}$ and $V_2 = x \frac{\partial}{\partial x} y \frac{\partial}{\partial y}$ be vector fields on \mathbb{R}^2 , show that they do not commute. Compute the flows Φ_t^1, Φ_t^2 of V_1, V_2 and verify that they also do not commute.
- 4 (Similar to Exercise 2.8.21 in the book.) Given $A \in \mathfrak{M}(n)$, explain how the right translation operation $R_A : \operatorname{Gl}(n) \to \mathfrak{M}(n)$ can be viewed as a vector field $R_A \in \mathfrak{X}(\operatorname{Gl}(n))$.
 - (1) Compute the Lie bracket $[R_A, R_B]$ for $A, B \in \mathfrak{M}(n)$.
 - (2) Compute $e^{tB} = \sum_{i=0}^{\infty} \frac{1}{i!} (tB)^i$ for the matrix $B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, and explain how to find the flow on Gl(2) generated by R_B .
- 5 (Similar to Exercise 3.1.2 in the book.) Show that the sphere S^n has a C^{∞} atlas consisting of two charts, the stereographic projections from the north resp. south poles (see Example 1.2.3).