1 (Exercise 2.5.9 in the book.) The map $\Phi: \mathrm{Gl}(n) \rightarrow \mathrm{Gl}(n)$, defined by $\Phi(Y)=Y^{T} Y$, is smooth since its coordinate functions are quadratic polynomials. Prove the following.
(1) Relative to the standard identification $T_{I}(\operatorname{Gl}(n))=\mathfrak{M}(n)$, the differential $d \Phi_{I}$: $T_{I}(\mathrm{Gl}(n)) \rightarrow T_{I}(\mathrm{Gl}(n))$ has the formula

$$
d \Phi_{I}(A)=A^{T}+A .
$$

(2) The map Φ has constant rank $n(n+1) / 2$.
(3) Using the above, conclude that the orthogonal group $\mathrm{O}(n) \subset \mathrm{Gl}(n)$ is a smooth, compact submanifold of dimension $n(n-1) / 2$.
(4) Show that the vector subspace $T_{I}(\mathrm{O}(n)) \subset \mathfrak{M}(n)$ is the space of skew symmetric matrices.

2 Let $0<b<a$. Show that the set of points $(x, y, z) \in \mathbb{R}^{3}$ satisfying

$$
\left(a-\sqrt{x^{2}+y^{2}}\right)^{2}+z^{2}=b^{2}
$$

is a smooth submanifold. Show that it is parallelizable (Definition 2.5.12, page 62.)
3 Let $V_{1}=y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}$ and $V_{2}=x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}$ be vector fields on \mathbb{R}^{2}, show that they do not commute. Compute the flows $\Phi_{t}^{1}, \Phi_{t}^{2}$ of V_{1}, V_{2} and verify that they also do not commute.
(Similar to Exercise 2.8.21 in the book.) Given $A \in \mathfrak{M}(n)$, explain how the right translation operation $R_{A}: \mathrm{Gl}(n) \rightarrow \mathfrak{M}(n)$ can be viewed as a vector field $R_{A} \in \mathfrak{X}(\mathrm{Gl}(n))$.
(1) Compute the Lie bracket $\left[R_{A}, R_{B}\right]$ for $A, B \in \mathfrak{M}(n)$.
(2) Compute $e^{t B}=\sum_{i=0}^{\infty} \frac{1}{i!}(t B)^{i}$ for the matrix $B=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, and explain how to find the flow on $\mathrm{Gl}(2)$ generated by R_{B}.

5 (Similar to Exercise 3.1.2 in the book.) Show that the sphere S^{n} has a C^{∞} atlas consisting of two charts, the stereographic projections from the north resp. south poles (see Example 1.2.3).

