For $\alpha \in \mathbb{R}$ define open sets in \mathbb{R}^3 by

 $U_{\alpha} = \mathbb{R}^3 \setminus \{ (t \cos \alpha, t \sin \alpha, s) : t \ge 0, s \in \mathbb{R} \},\$

$$V = (0, 2\pi) \times (-\pi/2, \pi/2) \times (0, \infty), \quad W = (0, 2\pi) \times (0, \infty) \times \mathbb{R},$$

and for $\alpha, \beta \in \mathbb{R}$ define coordinate charts on \mathbb{R}^3 as follows:

- Cartesian coordinates (\mathbb{R}^3, f) , where $f : \mathbb{R}^3 \to \mathbb{R}^3$ is the identity map.
- Spherical coordinates (U_{α}, g_{α}) , where $g_{\alpha} : U_{\alpha} \to V$ is defined by

$$g_{\alpha}^{-1}(\varphi,\theta,\rho) = (\rho\cos(\varphi+\alpha)\cos\theta,\rho\sin(\varphi+\alpha)\cos\theta,\rho\sin\theta).$$

• Cylindrical coordinates (U_{β}, h_{β}) , where $h_{\beta} : U_{\beta} \to W$ is defined by

$$h_{\beta}^{-1}(\psi, r, z) = (r\cos(\psi + \beta), r\sin(\psi + \beta), z).$$

Show that all these charts are contained in the same smooth structure on \mathbb{R}^3 .

- 2 Find a vector field on the odd-dimensional sphere $S^{2k+1} \subset \mathbb{C}^{k+1}$ which is nowhere zero (*Hint:* complex multiplication $p \mapsto e^{it}p$ defines a flow on S^{2k+1}). Find a vector field on S^2 (or S^{2k}) with exactly one zero. Further, solve the same problem with S^n replaced by real projective space P^n .
- **3** The smooth Jordan curve theorem: Solve exercises 3.9.20, 3.9.22, 3.9.23 in the book.
- 4 Use the Brouwer fixed point theorem to prove that any 3×3 -matrix with positive entries has an eigenvector with positive coordinates.