1 Let ω be the $(n-1)$-form on $\mathbb{R}^{n} \backslash\{0\}$ defined by

$$
\omega=\sum_{i=1}^{n}(-1)^{i-1} x_{i} d x^{1} \wedge \cdots \wedge \widehat{d x^{i}} \wedge \cdots \wedge d x^{n}
$$

where $\widehat{d x^{i}}$ is omitted. Let M be an n-dimensional submanifold with boundary in \mathbb{R}^{n} (an open set with smooth boundary). Let $i: \partial M \rightarrow \mathbb{R}^{n}$ be the inclusion and compute

$$
\int_{\partial M} i^{*}(\omega), \quad \text { and } \quad \int_{\partial M} i^{*}\left(\omega / r^{n}\right)
$$

where r is the distance to the origin, and we assume $0 \notin \partial M$ for the second integral.
2
A manifold M is simply connected if every piecewise smooth map $S^{1} \rightarrow M$ can be extended to a piecewise smooth map $D^{2} \rightarrow M$. Show that $H^{1}(M)=0$ if M is simply connected.

3 Let $a: S^{n} \rightarrow S^{n}$ be the antipodal map, $a(x)=-x$. Compute the effect of pullback a^{*} on forms and on cohomology.
a) Show that there are no nowhere zero vector fields on S^{n} when n is even. (Hint: There is a nowhere zero vector field on $S^{n} \Rightarrow$ There is a map $v: S^{n} \rightarrow S^{n}$ with $v(x) \cdot x=0$ for all $x \in S^{n} \Rightarrow a$ is homotopic to the identity.)
b) Show that real projective space $\mathbb{R} P^{n}$ has a nowhere zero n-form ($=$ is orientable) if and only if n is odd.

4 A symplectic form on a manifold M of dimension $2 n$ is a closed two-form ω such that $\omega^{n}=\underbrace{\omega \wedge \cdots \wedge \omega}_{n}$ is never zero. Show that ω^{n} is not exact. Show that $H^{2 k}\left(M^{2 n}\right) \neq 0$ for $k=0, \ldots, n$ if $M^{2 n}$ has a symplectic form. Show that S^{2} is the only sphere which has a symplectic form.

5 Solve exercises 10.1.21, 10.1.22 in the book.

6 On the upper half-plane $H=\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$ we define a Riemannian metric by

$$
g=\frac{1}{y^{2}}(d x \otimes d x+d y \otimes d y)
$$

Compute the Levi-Civita connection and the curvature operator associated with this metric.

