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I Introduction

The purpose of these notes is to introduce, at the undergraduate level, some basic notions
of mathematics. We present some of the main results, techniques and ideas from the theory
of groups, rings, fields, vector spaces, multilinear forms, Lie algebras, topological spaces,
metric spaces, manifolds, and algebraic varieties. The language, methods and spirit of
these areas penetrate most parts of mathematics, and are important in many branches of
the natural sciences. We consider it of utmost importance that the students encounter
these notions early in their studies.

Throughout we have used matrix groups to motivate the introduction of these concepts.
This is natural historically, as the study of matrix groups was one of the main forces behind
the development of the mentioned theories. Matrix groups also play an important part in
many branches of mathematics, as well as in other sciences, and in technical applications.
Another fascinating feature of the matrix groups is that they lead, in a natural way, to
the study of both algebraic and geometric objects. This unity of algebraic and geomet-
ric theories is deeply rooted in mathematics, and we have emphasized these connections
throughout the notes.

We have tried to keep the presentation alive by including interesting results about ma-
trix groups, mainly by trying to find algebraic and geometric invariants that can distinguish
the groups. On the other hand we have made an effort to keep the material elementary by
including only standard results from the generalizations of the teory of matrices to groups,
manifolds, algebraic varieties and Lie groups. We therefore have covered more material on
matrix groups than in most text on algebra, manifolds or Lie groups, but the notes contain
much less of the standard material in these fields than is normally included in more gen-
eral treatises. Hopefully we have found an equlibrium that make the notes enjoyable, and
useful, to undergraduate students. There is a vast flora of general textbooks in algebra and
geometry that cover the general material of these notes. During the preparation of these
notes we have found the books of [1], [2], [3], [5], [6], and [7], of the reference list, useful.

The prerequisites of the course consist of a standard course in linear algebra and cal-
culus. To appreciate these notes mathematical maturity and interest in mathematics is
important. We assume that the reader, with a few hints, can fill in details in proofs that
are similar to those of the basic courses of linear algebra and calculus. This should cause
no difficulties to a student mastering fully the first year courses, and we hope that it is a
challenge for the student to rethink earlier courses in a more general setting.
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1 Algebraic properties of matrix groups

1-1 Matrix groups

Let Mn(C) be the set of all n × n matrices A = (aij), with complex coordinates aij . The
identity matrix which has diagonal coordinates equal to 1 and the remaining coordinates
equal to 0 is denoted by In and we shall denote the matrix with all coordinates zero by
0, irrespectively of what size it has. Given a matrix A = (aij) in Mn(C) and a complex
number a, we write aA = (aaij) and we denote the determinant of a matrix A in Mn(C)
by detA.

The transpose (aji) of the matrix A = (aij) is denoted by tA. We have that

detA = det tA.

Multiplication of two matrices A = (aij) and B = (bij) in Mn(C) produces a matrix
AB = (

∑n

l=1 ailblj). The multiplication can be considered as a map

Mn(C) × Mn(C) → Mn(C)

from the set of ordered pairs (A,B) of matrices in Mn(C) to Mn(C), which sends (A,B)
to AB. We have the following multiplication rules

A = InA = AIn,

A(BC) = (AB)C,

t(AB) = tBtA,

for any three matrices A,B and C of Mn(C). Moreover, we have that

detAB = detA detB.

A matrix A in Mn(C) is called invertible, or non-singular, if there is a matrix B such
that

AB = BA = In. (1-1.0.1)

The matrix B in the expression 1-1.0.1 is uniquely determined. It is called the inverse of
A and it is denoted by A−1. Since we have that

(tA)−1 = t(A−1),

we can write tA−1 = (tA)−1 = t(A−1), without ambiguity.
The subset of Mn(C) consisting of invertible matrices is denoted by Gln(C), and called

the general linear group. Given two matrices A and B in Gln(C) we have that the product
AB has inverse B−1A−1, that is

(AB)−1 = B−1A−1.
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Hence the product AB is in Gln(C). Moreover, we have that

detA =
1

detA−1
.

The subset of Gln(C) consisting of matrices with determinant 1 is denoted by Sln(C)
and called the special linear group. Given two matrices A and B in Sln(C), it follows from
the equation detAB = detA detB that AB is in Sln(C). Moreover, it follows from the
equation detA−1 = (detA)−1 that A−1 is in Sln(C).

Fix a matrix S in Mn(C). We shall denote by GS(C) the subset of matrices A in
Gln(C) that satisfy the relation

tASA = S.

Given two matrices A and B in GS(C), we have that AB is in GS(C). Indeed, we have
that

t(AB)SAB = tBtASAB = tB(tASA)B = tBSB = S.

Moreover, we have that A−1 is in GS(C). Indeed, when multiplying the relation S = tASA
to the right by A−1 and to the left by tA

−1
, we obtain the equation

tA
−1
SA−1 = S.

When S is in Gln(C) it follows from the equality det tA detS detA = detS that
(detA)2 = 1. Hence detA = ±1. In this case we denote the subset of matrices A in
GS(C) that have determinant equal to 1 by SGS(C) . As in the case with Sln(C) we have
that if A and B are in SGS(C), then AB and A−1 are both in SGS(C).

We have seen that all the sets Gln(C), Sln(C), GS(C) and SGS(C) share the properties
that if A, B and C are elements of the set, then In, A

−1 and AB are also in the set. Clearly
we also have that A = AIn = InA, AA−1 = A−1A = In and A(BC) = (AB)C, because
these relations hold for all elements in Gln(C).

There are two special cases of the above that are particularly interesting. The first
one is obtained when S = In. The corresponding groups GS(C) and SGS(C) are de-
noted by On(C) and SOn(C) and called the orthogonal group and special orthogonal group
respectively. They consist of the elements A in Gln(C) and Sln(C), respectively, such that

tAA = In.

To introduce the second case it is convenient to use the following notation for matrices
Given matrices A, B, C and D of sizes r×s, r×(n−s), (n−r)×s, and (n−r)×(n−s),

respectively, we denote by
(

A B
C D

)

the n× n block matrix with A, B, C and D in the upper left, upper right, lower left, and
lower right corner, respectively.

2



Let Jm be the matrix in Mm(C) with 1 on the antidiagonal, that is the elements aij
with i+ j = m+ 1 are 1, and the remaining coordinates 0. Take

S =

(

0 Jm
−Jm 0

)

. (1-1.0.2)

The corresponding set GS(C) is denoted by Sp2m(C) and it is called the symplectic group.
When we write Spn(C), we always assume that n is even.

Remark 1-1.1. In the following it will be important to view the matrix groups On(C),
SOn(C) and Spn(C) as automorphisms of bilinear forms. We shall return to such a view-
point in Sections 1-7 and 1-8. Here we shall indicate how it is done.

Define a map
〈, 〉 : Cn ×Cn → C,

by

〈(a1, . . . , an), (b1, . . . , bn)〉 =
(

a1 . . . an
)







s11 . . . s1n
...

. . .
...

sn1 . . . snn













b1
...
bn






.

The map 〈, 〉 satisfies the following properties:
Given x, y and z in Cn, and a in C, we have that:

(i) 〈x+ y, z〉 = 〈x, z〉 + 〈y, z〉.

(ii) 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉.

(iii) 〈ax, y〉 = 〈x, ay〉 = a〈x, y〉.

We say that 〈, 〉 is a bilinear form on Cn. A matrix A in Gln(C) is an automorphism of
the form if

〈Ax,Ay〉 = 〈x, y〉, for all pairs x, y in Cn.

We have that GS(C) consists of all automorphisms of the bilinear form 〈, 〉 defined by S
(see Exercise 1-1.4).

Not all the groups given above are different. We have, for example that Sp2(C) = Sl2(C)
(see Exercise 1-1.7). The main theme of these notes is to investigate in which sense they
are different. This is done by imposing algebraic and geometric structures on the groups
and by associating to these structures invariants that make it possible to distinguish them.

Exercises

1-1.1. Determine the groups Gl1(C), Sl1(C), O1(C) and SO1(C).

1-1.2. Show that the inclusions Sln(C) ⊆ Gln(C) and SOn(C) ⊆ On(C) are proper.

1-1.3. Define the groups SSp2(C) and show that SSp2(C) = Sp2(C).
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1-1.4. Show that the group GS(C) is the group of automorphisms of the form 〈, 〉, defined by

〈(x1, . . . , xn), (y1, . . . , yn)〉 =
(

x1 . . . xn
)







s11 . . . s1n
...

. . .
...

sn1 . . . snn













y1
...

yn






.

1-1.5. Given a matrix A in Mn(C). Show that tA is the unique matrix B such that 〈Ax, y〉 =
〈x,By〉 for all x and y in C

n.

1-1.6. Determine all elements of O2(C) and SO2(C).

1-1.7. Show that Sl2(C) = Sp2(C).

1-2 Groups

We have in Section 1-1 given examples of sets whose elements can be multiplied and the
multiplication in all the sets enjoys similar algebraic properties. In this section we shall
formalize the essential properties of the multiplication.

A multiplication on a set S is a map

S × S → S

from the Cartesian product S × S, that is the set of ordered pairs of elements of S, to S.
The image of the pair (a, b) we denote by ab.

Definition 1-2.1. A group is a set G together with a multiplication that satisfies the
following three properties:

(i) (Associativity) For any triple a, b, c of elements of G, we have that

a(bc) = (ab)c.

(ii) (Identity) There is an element e in G such that

a = ae = ea

for all elements a of G.

(iii) (Inverse) For each element a of G there is an element b of G such that

e = ab = ba.

There is only one element in G having the same property (ii) as e. Indeed, if e′ was
another such element we have that

e′ = e′e = e.

Similarly, given a, there is only one element b in G having the property of (iii). Indeed, if
b′ was another such element we have that

b′ = b′e = b′(ab) = (b′a)b = eb = b.
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Example 1-2.2. We saw in Section 1-1 that all the sets Gln(C), On(C), Spn(C), Sln(C)
and SOn(C) are groups.

There are many more natural groups than those in the previous example. Here follows
some well-known examples.

Example 1-2.3. The integers Z, the rational numbers Q, the real numbers R and the
complex numbers C are all groups under addition. In these cases we are used to denote
the multiplication by the symbol + and the identity by 0.

Example 1-2.4. The non-zero rational, real and complex numbers, Q∗, R∗, and C∗ are
groups under multiplication.

Example 1-2.5. Let S be a set. Denote by SS the set of all injective maps of S onto
itself. We define the product τσ of two maps σ : S → S and τ : S → S as the composite
map τσ : S → S. With this multiplication SS is a group. The identity is the map that
leaves all elements of S fixed, and the inverse of a map τ is the map that sends τ(i) to i,
which exists because τ is injective and onto. When S = {1, . . . , n} we write SS = Sn and
we call Sn the symmetric group on n letters. It is a group with n! elements.

Definition 1-2.6. A group G is called abelian if ab = ba for all pairs of elements a, b of
G, and we say that a and b commute.

Remark 1-2.7. In abelian groups we shall often, in accordance with Example 1-2.3, denote
the multiplication by + and the identity by 0.

Example 1-2.8. The groups of Examples 1-2.3 and 1-2.4 are abelian, while none of the
groups in 1-2.2 and 1-2.5 are abelian, when n > 2 (see Exercise 1-2.1).

Definition 1-2.9. A homomorphism from a group G to a group H is a map

Φ : G→ H

such that Φ(ab) = Φ(a)Φ(b), for all a, b in G. We can illustrate this rule by the commutative
diagram

G×G
Φ×Φ−−−→ H ×H





y





y

G −−−→
Φ

H

where the vertical maps are the multiplication maps on G and H respectively.
The homomorphism Φ is called an isomorphism if it is surjective, that is all the elements

ofH is the image of some element inG, and injective, that is if a and b are different elements
in G then Φ(a) and Φ(b) are different elements in H .

The kernel of the homomorphism Φ is the set

kerΦ =
{

a ∈ G
∣

∣ Φ(a) = eH
}

,
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and the image is the set

imΦ =
{

a ∈ H
∣

∣ a = Φ(b), for some b ∈ G
}

.

The kernel and the image of a homomorphism are groups (see Exercise 1-2.3).

Example 1-2.10. The map
det : Gln(C) → C∗

that sends a matrix to its determinant is a homomorphism because of the formula detAB =
detA detB. The kernel of this map is Sln(C) and the image is C∗.

Example 1-2.11. The map
Φ : Gln(C) → Sln+1

given by

Φ(A) =

(

(detA)−1 0
0 A

)

is a homomorphism. Clearly, Φ is injective.

Example 1-2.12. The map C∗ → SO2(C), which sends t to

(

1
2
(t+ t−1) i

2
(t− t−1)

− i
2
(t− t−1) 1

2
(t+ t−1)

)

,

is a group homomorphism (see Exercise 1-2.4).

Example 1-2.13. Let
Φ : Sn → Gln(C)

be the map sending σ to the matrix having coordinates 1 in the position (σ(i), i), for
i = 1, . . . , n, and the remaining coordinates 0. It is clear that Φ is injective.

Let ei = (0, . . . , 1, . . . , 0) be the 1 × n vector with coordinate 1 in the i’th position, for
i = 1, . . . , n. We have that

Φ(σ)tei = teσ(i).

Consequently we have that

Φ(τ)Φ(σ)tei = Φ(τ)teσ(i) = teτσ(i) = Φ(τσ)tei,

that is, Φ(τ)Φ(σ) = Φ(τσ). Thus Φ is a group homomorphism.
The image of Φ consists of matrices with determinant ±1. We define the map

sign : Sn → C∗

by
sign σ = detΦ(σ), for σ ∈ Sn,
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and obtain from Example 1-2.10 that

sign τσ = sign τ sign σ.

In other words, the map
sign: Sn → {±1},

into the group with two elements 1 and −1, under multiplication, is a group homomor-
phism.

Proposition 1-2.14. Let Φ : G → H be a homomorphism between the groups G and H,
with identity eG and eH , respectively. Then

(i) Φ(eG) = eH .

(ii) Φ(a−1) = Φ(a)−1, for all a in G.

Proof. We have that

eH = Φ(eG)Φ(eG)−1 = Φ(eGeG)Φ(eG)−1 = Φ(eG)Φ(eG)Φ(eG)−1 = Φ(eG).

Moreover, we have that

Φ(a−1) = Φ(a−1)Φ(a)Φ(a)−1 = Φ(a−1a)Φ(a)−1 = Φ(eG)Φ(a)−1 = eHΦ(a)−1 = Φ(a)−1.

Proposition 1-2.15. A homomorphism Φ : G→ H of groups is injective if and only if the
kernel is {eG}. In other words, Φ is injective if and only if Φ(a) = eH implies that a = eG.

Proof. If Φ is injective then Φ(a) = eH implies a = eG, by the definition of injectivity, and
because Φ(eG) = eH .

Conversely, assume that Φ(a) = eH implies that a = eG. If Φ(a) = Φ(b), we have that

Φ(ab−1) = Φ(a)Φ(b−1) = Φ(a)Φ(b)−1 = Φ(b)Φ(b)−1 = eH .

Hence, ab−1 = eG and a = ab−1b = eGb = b.

Definition 1-2.16. A subgroup H of a group G is a subset H of G such that for all a and
b in H we have that ab and a−1 are in H . A subgoup H of G is normal if bab−1 is in H for
all b in G and a in H .

Remark 1-2.17. A subgroup H of G is itself a group. Indeed, the associative law (i) of
1-2.1 holds for all elements of G and thus for all elements of H . By definition the inverse
of every element of H is in H and if a is in H then aa−1 = eG is in H , and is the identity
element in H too. When H is a subgroup of G we can consider the inclusion of H in G as
a map ϕ : H → G, which sends an element to itself, that is ϕ(a) = a, for all a in H . This
map is then a group homomorphism, often called the inclusion map.
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Exercises

1-2.1. Show that none of the groups Gln(C), Sln(C), Spn(C), Sn are abelian when n > 2.

1-2.2. Show that the composite map ΨΦ : F → H of two homomorphisms Φ : F → G and
Ψ : G → H is again a homomorphism.

1-2.3. Show that the kernel and image of a homomorphism Φ : G → H are subgroups of G and
H respectively. Moreover, show that the kernel is a normal subgroup of G.

1-2.4. Show that the map C
∗ → SO2(C), which sends t to

(

1
2(t + t−1) i

2(t − t−1)

− i
2(t − t−1) 1

2(t + t−1)

)

,

is a group homomorphism.

1-3 Rings and fields

We have that Z, Q, R, C and Mn(C) are abelian groups under addition. They also have a
multiplication. The non-zero elements of Q, R and C form abelian groups with respect to
the multiplication, whereas the non-zero elements of Z and Mn(C) are not groups under
multiplication (see Exercise 1-3.1).

Definition 1-3.1. A ring is a set R with addition and a multiplication, such that R is an
abelian group under addition and such that all triples of elements a, b and c of R satisfy
the following properties:

(i) (Distributivity) (a+ b)c = ab+ bc and a(b+ c) = ab+ ac.

(ii) (Identity) There is an element 1 in R such that a1 = 1a = a.

(iii) (Associativity) a(bc) = (ab)c.

Here a + b and ab are the sum and product of a and b. We shall denote by 0 – zero
– the identity of the addition. When ab = ba for all a and b in R we say that R is
commutative. The ring R is called a skew field when the non-zero elements form a group
under multiplication, that is, when every non-zero element has a multiplicative inverse. A
commutative skew field is called a field.

A proper subset I of a ring R is called an ideal if it is an additive subgroup, and, if for
all a in R and b in I, we have that ab is in I.

Remark 1-3.2. From the above axioms one easily verifies that the usual rules for com-
putation by numbers hold. We have, for example, 0a = (0 − 0)a = 0a − 0a = 0, and
−1a + a = −1a + 1a = (−1 + 1)a = 0a = 0, so that −1a = −a.

Example 1-3.3. We have that Q, R and C are fields.
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Example 1-3.4. We have that F2 = {0, 1}, where 1+1 = 0, is a field, as is F3 = {0,±1},
where 1 + 1 = −1.

Example 1-3.5. We have that Z and Mn(C) are rings, but not fields.

Example 1-3.6. Let S be a set and R a ring. The set RS consisting of all maps from
S to R forms a ring. Indeed, let f and g be maps S → R. We define the sum f + g by
(f + g)(x) = f(x) + g(x) and the product fg by (fg)(x) = f(x)g(x) (see Exercise 1-3.3).

The following example of rings is extremely important in algebra and geometry.

Example 1-3.7. (Polynomial and formal power series rings.) Let R be a commutative
ring. In the previous example we saw how the set RN of maps N → R form a ring, in a
natural way. In this example we shall give the ring a different multiplicative structure that
also makes it into a ring.

For each element a of R we let, by abuse of notation, a : N → R be the map defined by
a(0) = a and a(i) = 0 for i > 0. In this way we consider R as a subset of RN. Moreover,
we define maps

xi : N → R, for i = 0, 1, . . . ,

by xi(i) = 1 and xi(j) = 0, when i 6= j. Given elements r0, r1, . . . of R we denote by

∞
∑

i=0

rixi : N → R

the map defined by (
∑∞

i=0 rixi)(j) = rj . Clearly all maps f : N → R can be expressed
uniquely as f =

∑∞
i=0 f(i)xi. We can now define multiplication of elements f and g of RN

by

fg =
∞
∑

i=0

f(i)xi

∞
∑

i=0

g(i)xi =
∞
∑

k=0

(
∑

i+j=k

f(i)g(j))xk.

It is easy to check that this multiplication, together with the addition, gives a ring
structure on RN (Exercise 1-3.4). We note that with the given multiplication we have that

xi1 = x1 · · ·x1 = xi.

Let x = x1. Every element can thus be uniquely written as a power series

f =
∞
∑

i=0

f(i)xi,

and multiplication is similar to that for convergent power series. We denote the ring RN,
with the given multiplication, by R[[x]] and call it the ring of power series in the variable
x with coefficients in the ring R.

The subset of R[[x]] consisting of elements f =
∑∞

i=0 f(i)xi such that only a finite
number of coordinates f(i) are non-zero forms a ring under the addition and multiplication
induced by those on R[[x]]. This ring is denoted by R[x] and is called the ring of polynomials
in the variable x with coefficients in the ring R.
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Remark 1-3.8. The advantage of defining polynomial and power series rings with coeffi-
cients in a ring is that the construction can be used inductively to define polynomial and
power series rings in several variables. Indeed, starting with R we have constructed a poly-
nomial ring R[x1]. Then, starting with R[x1] we may construct a polynomial ring R[x1][x2],
which we denote by R[x1, x2]. In this way we can continue to construct polynomial rings
R[x1, . . . , xn] in n variables. Similarly, we can define the power series ring R[[x1, . . . , xn]]
in n variables.

Definition 1-3.9. Let R and S be rings. A map Φ : R → S is a ring homomorphism if,
for all pairs a, b of R, we have that:

(i) Φ(a+ b) = Φ(a) + Φ(b).

(ii) Φ(ab) = Φ(a)Φ(b).

(iii) Φ(1) = 1.

Remark 1-3.10. Since there need not be any inverses of the elements with respect to mul-
tiplication, we have to put Φ(1) = 1 as an axiom, while in a group it follows immediately
that a homomorphism has to map the identity element to the identity element.

The kernel of a ring homomorphism is the set kerΦ = {a ∈ R : Φ(a) = 0}, that is, the
kernel of the map of additive groups. When R is a subset of S, the inclusion map is a ring
homomorphism and ab = ba for all a in R and b in S, we call R a subalgebra of S and we
say that S is an algebra over R or an R-algebra.

Example 1-3.11. We have seen that Z ⊂ Q ⊂ R ⊂ C is a sequence of subrings, and that
the same is true for the sequence R ⊂ R[x] ⊂ R[[x]]. In particular we have that R[x] and
R[[x]] are R-algebras.

Example 1-3.12. Let M2(R) be the set of all 2 × 2 matrices with real coordinates. Let
Φ : C → M2(R) be the map defined by

Φ(z) = Φ(x+ iy) =

(

x y
−y x

)

.

Then Φ is an injective ring homomorphism (see Exercise 1-3.5).

Example 1-3.13. Let M4(R) be the set of 4 × 4 matrices with real coordinates. Let

H =

{(

a b c d
−b a −d c
−c d a −b
−d −c b a

) ∣

∣

∣

∣

a, b, c, d in R

}

.

Moreover, let

i =

(

0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

)

, j =

(

0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

)

, k =

(

0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

)

.
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Every element in H can be written uniquely in the form a+ ib+ jc+ kd, for real numbers
a, b, c, d, where we write a instead of aI4. Consequently the sum of two elements in H is
again in H. We have relations

ij = k, jk = i, ki = j, and i2 = j2 = k2 = −1. (1-3.13.1)

From the relations 1-3.13.1 it follows that the product of two elements in H is again in H.
Consider C as the subset x+ iy + j0 + k0 of H. Then C is a subring.

Every non-zero element a+ ib+ jc+ kd of H has the inverse (a2 + b2 + c2 + d2)−1(a−
ib− jc− kd). Hence H is a skew field called the quaternions. It is however, not a field (see
Exercise 1-3.6).

Example 1-3.14. We have a ring homomorphism H → Gl2(C) defined by

a+ ib+ jc+ kd 7−→
(

a+ ib c + id
−c + id a− ib

)

.

This homomorphism sends the subset {a+ib+jc+kd
∣

∣ a2+b2+c2+d2 = 1} isomorphically
onto Sp2(C).

Example 1-3.15. Let R be a ring. We can define a new ring R[ε], sometimes called the
ring of dual numbers, as follows:

As a group R[ε] is the set R×R with addition defined by (a, b)+ (c, d) = (a+ c, b+ d).
This clearly defines an additive group with zero (0, 0). We define a multiplication on R×R
by (a, b)(c, d) = (ac, ac + bd). It is easily checked that R × R becomes a ring R[ε] with
zero 0 = (0, 0) and unit 1 = (1, 0).We define the multiplication of an element a of R with
(b, c) by a(b, c) = (ab, ac). Write ε = (0, 1). Every element in R[ε], can be written uniquely
as (a, b) = a + bε, and the multiplication is given by the multiplication of R and the rule
ε2 = 0.

Example 1-3.16. The kernel of a homomorphism S → R of rings is an ideal in S (see
Exercise 1-3.7).

Remark 1-3.17. Let K be a field. We write n for the sum 1+ · · ·+1 of the unit in K taken
n times. There are two possibilities:

(i) We have that none of the elements n are equal to 0 in K. For each pair of elements
m and n of K we can then define the elements m/n = mn−1. We can define a map
Q → K by sending m/n in Q to m/n in K. Clearly, this map is injective. In this
case we say that K has characteristic 0 and consider Q as a subfield of K.

(ii) There is an integer n such that n is 0 in K. Since −n = 0 if n = 0 in K we can
assume that n is positive. Let p be the smallest positive integer such that p = 0 in
K. Then p is a prime number because if p = qr we have that p = qr in K and hence
p = 0 implies that q = 0 or r = 0, since K is a field. In this case we obtain a ring
homomorphism Z → K with kernel pZ. We say that K has characteristic p.
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Example 1-3.18. The group {0, 1} with two elements, where 1 + 1 = 0, is a field of
characteristic 2.

Exercises

1-3.1. Show that Z and Mn(C) are not groups under multiplication.

1-3.2. Show that the only ideal of a field is (0).

1-3.3. Show that the set RS of Example 1-3.6 with the addition and multiplication given there
form a ring.

1-3.4. Show that the set RN with the addition and multiplication given in Example 1-3.7 form
a ring.

1-3.5. Show that the map Φ of Example 1-3.12 is a ring homomorphism.

1-3.6. Show that the set H of Example 1-3.13 is a ring and that C is a subring via the inclusion
of that example.

1-3.7. Prove that the kernel of a ring homomorphism S → R is an ideal in S.

1-4 Matrix groups over arbitrary fields

Most of the theory of matrices that we shall need holds for matrices with coefficients in
arbitary fields and the techniques are independent of the field. In this section we shall
introduce some generalizations to arbitrary fields of the matrix groups of Section 1-1.

Fix a field K. Denote by Mm,n(K) the set of m×n matrices with coordinates in K, and
let Mn(K) = Mn,n(K). The determinant of a matrix A = (aij) in Mn(K) is the expression

detA =
∑

σ∈Sn

sign σ a1σ(1) · · ·anσ(n).

For a pair of matrices A, B of Mn(K) we have that

det(AB) = detA detB

(see Exercise 1-4.1). Moreover, for each matrix A of Mn(K), there is an adjoint matrix B
such that

AB = BA = (detA)In

(see Exercise 1-4.2). Consequently, when A is non-singular, that is detA 6= 0, then A has
the inverse (detA)−1B. Hence, the matrices Gln(K) in Mn(K) with non-zero determinant
form a group. Moreover, the subset Sln(K) of Gln(K) consisting of matrices of determinant
1 form a subgroup. These groups are called the general linear group respectively the special
linear group over K.
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We have that, for a fixed matrix S in Mn(K), the subset GS(K) of matrices A in Gln(K)
such that

tASA = S

form a subgroup of Gln(K), as does the subset SGS(K) of matrices with determinant 1
(see Exercise 1-4.4). The particular cases when S = In, that is matrices that satisfy

tAA = In,

are denoted by On(K) and SOn(K) and called the orthogonal group respectively special
orthogonal group over K.

Remark 1-4.1. As we indicated in 1-1.1 we shall, in Sections 1-7 and 1-8 interpret the
orthogonal and symplectic groups in terms of bilinear forms, and we shall see that there
are more groups which it is natural to call orthogonal.

Finally, let Jn be the matrix in Mn(K) with 1 on the antidiagonal, that is the elements
aij with i+ j = n+ 1 are 1, and the remaining coordinates 0. Take

S =

(

0 Jn
−Jn 0

)

. (1-4.1.1)

The corresponding set GS(K) is denoted by Sp2n(K) and is called the symplectic group
over K.

Exercises

1-4.1. Show that, for a pair of matrices A, B of Mn(K), we have that

det(AB) = detAdet B.

1-4.2. For each matrix A of Mn(K), the adjoint matrix B is defined by Bij = (−1)i+j detA(j,i),
where A(i,j) denotes the submatrix of A obtained by deleting the i’th row and the j’th column.
Show that B satisfies

AB = BA = (det A)In.

1-4.3. Let ai1x1 + · · ·+ ainxn = bi, for i = 1, . . . , n be a system of n equations in the n variables
x1, . . . , xn. Show that if the n×n matrix A = (aij)i=1,...n,j=1,...,n is invertible, then the equations
have a unique solution given by ai = (−1)i detAi

detA , where Ai is the matrix obtained from A by
substituting the column t(b1, . . . , bn) for the i’th column of A.

1-4.4. Show that, for a fixed matrix S in Mn(K), the subset GS(K) of matrices A in Gln(K)
such that

tASA = S

form a subgroup of Gln(K), as does the subset SGS(K) of matrices with determinant 1.

1-4.5. Determine the 1-dimensional Lorentz group. That is, all matrices A in Mn(R) such that
tA
(

1 0
0 −1

)

A =
(

1 0
0 −1

)

.

1-4.6. Let K = R. Show that SO2(R) consists of the matrices
(

cos θ sin θ
− sin θ cos θ

)

. Determine O2(R).

1-4.7. Let K be the field with 2 elements. That is K = {0, 1}, with 1 + 1 = 0. Determine
Gl2(K), Sl2(K), O2(K), SO2(K), and Sp2(K). Which of these groups are isomorphic?
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1-5 Generators for groups

Given a group G and elements {ai}i∈I of G. The intersection of all subgroups of G that
contain all the elements ai we denote by G′. The intersection of any family of sugroups of
a group G is again a subgroups of G (see Exercise 1-5.1). Consequently we have that G′

is a group. We call this group the group generated by the elements {ai}i∈I and say that
these elements are generators of the group G′. The elements of G′ can be expressed in an
explicit way as follows:

Let G′′ be the set of all elements of the form

ad1i1 a
d2
i2
· · ·adm

im
, (1-5.0.2)

for allm ∈ N, all sequences (i1, i2, . . . , im) of elements in I and all sequences (d1, d2, . . . , dm)
of exponents ±1. Clearly the set G′′ is a subgroup of G. Hence G′′ ⊆ G′. On the other
hand we have that all the element of G′′ have to be in any subgroup of G that contains all
ai. Consequently we have that G′ = G′′.

Example 1-5.1. The additive group Z is generated by the element 1, and the additive
group of Q is generated by all elements of the form 1/pn, where n ∈ N and p is a prime
number.

We shall, in the following, find generators for the groups of Section 1-4.
To find the generators for Gln(K) and Sln(K) we use a well known method of linear

algebra often called Gaussian elemination. We recall how this is done. Let Eij(a), for
i, j = 1, . . . , n and i 6= j be the matrices of Sln(K) that have 1’s on the diagonal, a ∈ K in
the (i, j)-coordinate, and 0 in all other coordinates. We shall call the matrices Eij(a) the
elementary matrices. Clearly, detEij(a) = 1, so Eij(a) is in Sln(K). For every matrix A
in Mn(K) we have that the matrix Eij(a)A is obtained from A by adding a times the j’th
row of A to the i’th and leaving the remaining coordinates unchanged. Similarly AEij(a)
is obtained by adding a times the i’th colunm of A to the j’th and leaving the remaining
coordinates unchanged.

Proposition 1-5.2. The group Sln(K) is generated by the elementary matrices, and the
group Gln(K) is generated by the elementary matrices and the matrices of the form

(

In−1 0
0 a

)

(1-5.2.1)

with a 6= 0 in K.

Proof. Let A be in Gln(K). Not all the entries in the first column are zero. If ai1 is not
zero for some i > 1, we multiply A to the left with E1i(a

−1
i1 (1 − a11)) and obtain a matrix

whose (1, 1) coordinate is 1. On the other hand, if a11 is the only non-zero entry in the
first column, we multiply A to the left with E21(a

−1
11 (1 − a11))E12(1), and again obtain a

matrix whose (1, 1) coordinate is 1. We can now multiply the resulting matrix, to the right
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and to the left, with matrices of the form E1i(a), respectively Ei1(a), to obtain a matrix
of the form

(

1 0
0 A′

)

,

for some A′ in Gln−1(K). We can thus use induction on n to reduce the (n− 1) × (n− 1)
matrix in the lower right corner to a matrix of the form 1-5.2.1, using only elementary
matrices of the form Eij(a), with i, j > 1.

Thus multiplying the matrix A to the left and to the right with elementary matrices it
can be put in the form 1-5.2.1. Multiplying with the inverses of the elementary matrices
that appear we obtain the assertion of the proposition for Gln(K). To prove it for Sln(K)
we only have to observe that, since the elementary matrices are in Sln(K), we have that
the resulting matrix 1-5.2.1 also must be in this group. Consequently, we must have that
a = 1.

In order to find generators for the groups On(K), SOn(K) and Spn(K) it is convenient
to introduce vector spaces over arbitrary fields and to view the elements of these groups
as automorphisms of bilinear forms. We shall do this in Sections 1-6 and 1-7.

Exercises

1-5.1. Show that the intersection of any family of subgroups of a group is again a subgroup.

1-5.2. Write any matrix
(

a b
c d

)

in Sl2(K) as a product of elementary matrices.

1-6 Vector spaces

In order to fully understand the nature of the matrix groups that were introduced in
Section 1-4, they must be considered as automorphisms of bilinear forms on vector spaces.
We shall show how this is done in Section 1-8. In this section we shall recall the relevant
properties of vector spaces. The results we need and the methods used are the same for
all fields. Consequently we discuss vector spaces over arbitrary fields.

Fix a field K and Let V be an abelian group. We shall denote the addition in K and
V by + and the zero for the addition by 0. It will be clear from the context in which of
the abelian groups we do the addition.

Definition 1-6.1. The group V is a vector space over K if there is a map

K × V → V,

such that we have, for each pair of elements a, b of K and x, y of V , the following four
properties hold:

(i) (a+ b)x = ax+ bx,

(ii) a(x+ y) = ax+ ay,
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(iii) a(bx) = (ab)x,

(iv) 1x = x,

where we denote by ax the image by the element (a, x). We call the elements of K scalars
and the elements of V vectors.

Remark 1-6.2. From the properties (i)-(iv) we can deduce all the usual rules for manipu-
lation of numbers. For example we have that 0x = (0 + 0)x = 0x+ 0x. Subtracting 0x on
both sides, we get that 0x = 0, where the zero to the left is in K, and the one to the right
is in V . Similarly, we have that a0 = a(0 + 0) = a0 + a0. Subtracting a0 on both sides, we
get that a0 = 0. Moreover, we have that −1x+ x = −1x+ 1x = (−1 + 1)x = 0, such that
−x = −1x. Thus −ax = (a(−1))x = a(−1x) = a(−x).

The following definition gives the most important example of vector spaces.

Definition 1-6.3. The n’th Cartesian product Kn, considered as an abelian group via
coordinatewise addition, that is x+ y = (a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn),
is a vector space over K under the multiplication which sends a in K and x = (a1, . . . , an)
to (aa1, . . . , aan). We will denote this vector space by V n

K
, or sometimes just V n.

In particular the set Mm,n(K) is a vector space over K. We shall often think of V n
K

as
the set Mn,1, when we want to operate with an n × n-matrix on V n

K
by multiplication on

the left. It will be clear by the context whether the element is considered as an n-tuple or
as an n× 1 matrix.

Example 1-6.4. Let V and W be two vector spaces over K. We define a vector space,
called the direct sum of V and W , and denoted by V ⊕W , as follows:

The set V ⊕W is the Cartesian product V ×W . We add two elements (x, y) and (x′, y′)
by the rule (x, y) + (x′, y′) = (x + x′, y + y′), and multiply by an element a of K by the
rule a(x, y) = (ax, ay). It is clear that that V ⊕W becomes a vector space. We write x+y
instead of (x, y).

Example 1-6.5. Let V and W be two vector spaces over K. We define a structure
as vector space, called the direct product of V and W , on V × W by defining the sum
(x, y) + (x′, y′) of two vectors to be (x + x′, y + y′) and the scalar product a(x, y) of an
element of K with a vector to be (ax, ay).

Remark 1-6.6. As we have defined direct sum and direct product, above, there is nothing
but the notation that differs, but in principle they are different concepts and we shall
distinguish between them.

Definition 1-6.7. Let V be a vector space over K. A set of vectors {xi}i∈I generates V
if all elements x in V can be written in the form

x = a1xi1 + · · · + anxin ,
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for some indices i1, . . . , in of I and elements a1, . . . , an of K. The vectors {xi}i∈I are linearly
independent over K if there is no relation of the form

a1xi1 + · · ·+ anxin = 0,

where i1, . . . , in in I, and a1, . . . , an are elements in K, that are not all zero.
The space V is finitely generated if there is a set of generators with finitely many

elements. A set of generators consisting of linearly independent elements is called a basis
for V .

Example 1-6.8. The vectors (1, 0, . . . , 0), . . . , (0, . . . , 0, 1) form a basis for the space V n
K

,
called the standard basis.

The following is the main result about generators and linear independence in finitely
generated vector spaces:

Theorem 1-6.9. Let V be a vector space that has generators x1, . . . , xm. Then any set of
linearly independent elements contains at most m elements. Moreover, given a (possibly
empty) subset xi1 , . . . , xir of x1, . . . , xm, consisting of linearly independent elements of V ,
then it can be extended to a subset {xi1 , . . . , xin} of {x1, . . . , xm} that is a basis of V .

Proof. First consider the case m = 1. Assume that y1, . . . , yn are linearly independent
vectors in V , where n > 1. Then we have that y1 = a1x1 and y2 = a2x1 for two nonzero
elements a1 and a2 of K. We obtain that a2y1 − a1y2 = a2a1x1 − a1a2x1 = 0, which
contradicts the linear independence of y1 and y2. Hence any set of linearly independent
vectors in V contains at most one element.

Consequently, we can proceed by induction on m. Assume that the first part of the
theorem holds for m − 1. Let y1, . . . , yn be linearly independent vectors in V . We shall
show that n ≤ m. Assume, to the contrary, that n > m. To obtain a contradiction we
only need to consider the vectors y1, . . . , ym+1, that is, we consider the case n = m + 1.
Since the xi generate V we have that

yi =
m
∑

j=1

aijxj ,

for i = 1, . . . , m+1 for some aij . Since the yi are nonzero, there is an aij which is nonzero,
for each i. By, possibly, renumbering the xj , we may assume that am+1,m 6= 0. The vectors

y′i = yi −
ai,m

am+1,m
ym+1 =

m−1
∑

j=1

(aij −
ai,m

am+1,m
am+1,j)xj , for i = 1, . . . , m

are in the vector space W spanned by x1, x2, . . . , xm−1. Hence by the induction hypothesis
we have that any set of linearly independent vectors in W contains at most m−1 elements.

However, y′1, y
′
2, . . . , y

′
m are linearly independent because, if

∑m

i=1 biy
′
i = 0, for some bi,

not all zero, we get that
∑m

i=1 bi(yi−(ai,m/am+1,m)ym+1) = 0. This implies that
∑m

i=1 biyi−
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(
∑m

i=1 biai,m/am+1,m)ym+1 = 0, which contradicts the linear independence of y1, . . . , ym+1.
Thus we have a contradiction to the assumption that n > m, which proves the first part
of the theorem.

For the second part, denote byW the vector space generated by the linearly independent
vectors xi1 , . . . , xir . If V = W we have finished. If not, there is a vector xir+1 which is not
in W . Then the vectors xi1 , . . . , xir+1 are linearly independent, because if we have a linear
dependence a1xi1 + · · ·+ ar+1xir+1 = 0, then ar+1 6= 0, since the first r vectors are linearly
independent. Consequently, we obtain that xir+1 = −(a1/ar+1)xi1 − · · · − (ar/ar+1)xir ,
which contradicts the choise of xir+1 outside of W . We have proved the second part of the
theorem.

It follows from Theorem 1-6.9, that when V is finitely generated, the smallest number
of generators is equal to the largest number of linearly independent elements. This number
is called the dimension of V , and denoted dimK V . It also follows from the theorem that
every finite dimensional vector space has a basis, and that all bases have the same number,
dimK V , of elements (see Exercise 1-6.2).

Definition 1-6.10. Let V and W be two vector spaces over K. A map

Φ : V → W

is K-linear if, for a in K and all pairs x, y of V we have that:

(i) Φ(x+ y) = Φ(x) + Φ(y).

(ii) Φ(ax) = aΦ(x).

A linear map is an isomorphism if it is injective and surjective.

Example 1-6.11. Let V n
K

and V m
K

be the vector spaces of Example 1-6.3, and let A = (aij)
be an m× n matrix. The map A : V n

K
→ V m

K
, which sends (a1, . . . , an) to At(a1, . . . , an) is

linear.

Let U , V and W be vector spaces over K and let Φ : U → V and Ψ : V → W be
K-linear maps. Then the composite map ΨΦ : U → W is a linear map (see Exercise 1-6.3).

Definition 1-6.12. Let Φ : V → W be a linear map between vector spaces over K. The
kernel of Φ is

kerΦ =
{

x ∈ V
∣

∣ Φ(x) = 0
}

,

and the image is
imΦ =

{

Φ(x)
∣

∣ x ∈ V
}

.

Hence these concepts are the same as for maps of abelian groups.
When V is a subset of W and Φ is the inclusion, we say that V is a subspace of W .

The image of a map Φ : V →W is a subspace of W and the kernel a subspace of V .
Given two subspaces U and V of a space W . If every vector z in W can be written

uniquely as x + y, with x in U and y in V we say that W is the direct sum of U and V ,
and write W = U ⊕ V .
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Lemma 1-6.13. Let V be a finite dimensional vector space and let Φ : V → W a linear
map into a vector space W . Then kerΦ and imΦ are both finite dimensional and

dimK V = dimK kerΦ+ dimK imΦ.

In particular, if dimK V = dimKW , then Φ is injective, or surjective, if and only if it
is an isomorphism.

Proof. See Exercise 1-6.4.

1-6.14. We denote by HomK(V,W ) the set of all linear maps between the vector spaces V
and W . The sum of two linear maps Φ and Ψ and the product of a linear map by a scalar
a are defined by

(Φ+ Ψ )(x) = Φ(x) + Ψ (x),

and
(aΦ)(x) = aΦ(x).

With these operations we have that HomK(V,W ) is a vector space (see Exercise 1-6.5).
The case when W = K is particularly important. We denote by V̌ the vector space

HomK(V,K) and we call this space the dual space of V .
We denote the space HomK(V, V ) by M(V ) and the subset consisting of isomorphisms

by Gl(V ). We define the product of two elements Φ and Ψ of Gl(V ) to be the composite
map ΦΨ . With this product we have that Gl(V ) is a group. We call Gl(V ) the general
linear group of V .

1-6.15. Let {vi}i∈I be a basis for V . A linear map Φ : V → W is uniquely determined
by its values Φ(vi) on the basis for i ∈ I. Conversely, given vectors {wi}i∈I in W , then
there is a unique linear map Ψ : V → W such that Ψ (vi) = wi, for i ∈ I. We have, for
x = a1vi1 + · · · + anvin , that Ψ (x) = a1wi1 + · · ·+ anwin (see Exercise 1-6.6).

In particular, let
v̌i : V → K

be the linear map defined by v̌i(vi) = 1 and v̌i(vj) = 0, for i 6= j. The set {v̌i}i∈I is
linearly independent, and if V is finite dimensional, it spans V̌ , and we say that {v̌i}i∈I
is the dual basis of {vi}i∈I . In particular, when V is finite dimensional, we obtain that
dimK V = dimK V̌ (see Exercise 1-6.6).

Remark 1-6.16. Let v1, . . . , vn be a basis for V . Then we obtain a canonical isomorphism

Ψ : V → V n
K

defined by Ψ (a1v1 + · · ·+anvn) = (a1, . . . , an). Hence every finite dimensional vector space
is isomorphic to some space V n

K
. This explains the importance of the spaces V n

K
.
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1-6.17. Let v1, . . . , vn be a basis for the vector spaces V , and w1, . . . , wm a basis for the
vector space W . A linear map Φ : V → W determines uniquely a matrix A = (akj) in
Mm,n(K) by the formula

Φ(vi) = a1iw1 + · · · + amiwm, for i = 1, . . . , n.

Conversely, every matrix in Mm,n(K) determines uniquely a linear map V → W , by the
same formula. That is, we have a bijective correspondence

HomK(V,W ) → Mm,n(K). (1-6.17.1)

The map 1-6.17.1 is an isomorphism of vector spaces. Let Θ : W → V m
K

be the isomorphism
corresponding to the basis w1, . . . , wm. Then, if A is the matrix corresponding to a linear
map Φ : V → W , we have the commutative diagram

V
Φ−−−→ W

Ψ





y





y
Θ

V n
K

ΘΦΨ−1

−−−−→ V m
K
,

(1-6.17.2)

where the lower map ΘΦΨ−1 is given by the matrix A. That is, it sends t(a1, . . . , an) to
At(a1, . . . , an).

Remark 1-6.18. When we relate the linear maps to their expression as matrices with respect
to given bases the notation becomes confusing. Indeed, it is natural to consider the vectors
of V n

K
as n × 1-matrices. However, if Φ : V n

K
→ V m

K
is a linear map, and A its associated

matrix with respect to the standard bases, we have that Φ(a1, . . . , an) = (b1, . . . , bm), if and
only if At(a1, . . . , an) = t(b1, . . . , bm). Hence, to use the functional notation, and avoid the
more monstrous (b1, . . . , bm) = t(At(a1, . . . , an)) = (a1, . . . , an)

tA, we transpose the vectors
of V n

K
. The above is one argument for using the notation (x)f for the value of a function

f at an element x. Another reason is that the latter notation looks better when we take
composition of functions.

Let B and C be the invertible matrices that represent Ψ respectively Θ with respect
to the given bases of V and W , respectively, and the standard basis of V n

K
. Then Φ is

expressed by CAB−1 with respect to e1, . . . , en and f1, . . . , fm. In particular, when V = W
and ei = fi we have that Φ is expressed by BAB−1. Consequently detA is independent of
the choise of basis for V and we can define detΦ to be detA = det(BAB−1).

Definition 1-6.19. The subset of Gl(V ) consisting of linear maps with determinant 1 is
clearly a subgroup. This group is called the special linear group of V and is denoted by
Sl(V ).

Exercises
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1-6.1. Show that in example 1-6.11 we have that ker A consists of all solutions (a1, . . . , an) to the
equations ai1x1 + · · ·+ ainxn = 0, for i = 1, . . . , n, in the n variables x1, . . . , xn, and the image is
the subspace of V n

K
generated by the columns t(a1j , . . . , amj) of A, for j = 1, . . . , n.

1-6.2. Let V be a finite dimensional vector space over K. Prove that V has a basis and that the
following numbers are equal

(a) The smallest number of generators of V .

(b) The largest number of linearly independent elements in V .

(c) The number of elements of any basis of V .

1-6.3. Prove that if U , V and W are vector spaces over K and that Φ : U → V and Ψ : V → W
are K linear maps. Then the composite map ΨΦ : U → W is a linear map.

1-6.4. Let V be a finite dimensional vector space and let Φ : V → W a linear map into a vector
space W .

(a) Prove that ker Φ and im Φ are both finite dimensional and that dimK V = dimK ker Φ +
dimK im Φ.

(b) Prove that if dimK V = dimK W , then Φ is injective, or surjective, if and only if it is an
isomorphism.

1-6.5. Show that HomK(V,W ) is a vector spaces with the addition and scalar multiplication
given in 1-6.14

1-6.6. Let V be a finite dimensional vector space with basis {vi}i∈I and let W be another vector
space.

(a) Show that any linear map Φ : V → W is uniquely determined by the images Φ(vi), for
i ∈ I.

(b) Given elements wi ∈ W for all i ∈ I. Show that there is a uniqe linear map Φ : V → W
such that Φ(vi) = wi, for all i ∈ I.

(c) Show that dimK V = dimK V̌ .

1-6.7. Let V and W be vector spaces and {v1, v2, . . . , vn} and {w1, w2, . . . , wm}, bases for V
respectively W . Show that there is a bijective map

HomK(V,W ) → Mm,n(K),

which is also an isomorphism of vector spaces.

1-7 Bilinear forms

Let V be a finite dimensional vector space over a field K.

Definition 1-7.1. Let V1, V2 and W be vector spaces. A bilinear map from the Cartesian
product (see Example 1-6.5) V1 × V2 to W is a map

Φ : V1 × V2 →W,

such that, for each scalar a of K, and vectors x1, y1 in V1 and x2, y2 in V2, we have that:
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(i) Φ(x1 + y1, x2) = Φ(x1, x2) + Φ(y1, x2),

(ii) Φ(x1, x2 + y2) = Φ(x1, x2) + Φ(x1, y2),

(iii) Φ(ax1, x2) = Φ(x1, ax2) = aΦ(x1, x2).

A bilinear form on a vector space is a bilinear map

〈, 〉 : V × V → K.

It is symmetric if 〈x, y〉 = 〈y, x〉 for all vectors x and y and it is alternating if 〈x, x〉 = 0
for all vectors x. Let S be a subset of V . A vector x of V is orthogonal to S if 〈x, y〉 = 0
for all vectors y in S. We write

S⊥ = {x ∈ V
∣

∣ 〈x, y〉 = 0, for all y ∈ S}.

Remark 1-7.2. An easier way to phrase that a form V1 × V2 → W is bilinear, is that,
for each vector x1 in V1 and x2 in V2 we have that the maps Φ(∗, x2) : V1 → W and
Φ(x1, ∗) : V2 → W , sending y1 to Φ(y1, x2), respectively y2 to Φ(x1, y2), all are linear.
Similarly, one can define multilinear maps

Φ : V1 × · · · × Vn →W,

as maps Φ(x1, . . . , ∗, . . . , xn) : Vi →W , all are linear.

Given a bilinear form, we obtain a linear map

Φ : V → V̌ ,

which send x in V to the map Φ(x) : V → K defined by Φ(x)(y) = 〈x, y〉. The kernel of Φ
is V ⊥.

Definition 1-7.3. We say that the form is non-degenerate if Φ is injective, that is, if
V ⊥ = 0, or equivalently, if 〈x, y〉 = 0 for all y ∈ V implies that x = 0.

Since dimK V = dimK V̌ by Paragraph 1-6.15, we have that Φ is injective if and only
if it is an isomorphism. Assume that the form is non-degenerate. Fix y in V . If we have
that 〈x, y〉 = 0 for all x in V we have that Φ(x)(y) = 0 for all x in V . However, since Φ
is surjective, it then follows that α(y) = 0 for all linear maps α : V → K. Consequently
y = 0 (see 1-7.1). We have proved that for a non-degenerate form 〈x, y〉 = 0 for all x in V
implies that y = 0. Consequently, the condition to be non-degenerate is symmetric in the
two arguments. That is, when the form is non-degenerate the map

Ψ : V → V̌ ,

which send y in V to the map Ψ (y) : V → K, that sends x to Ψ (y)(x) = 〈x, y〉, is an
isomorphism.
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Lemma 1-7.4. Let V be vector space with a non-degenerate form, and let W be a subspace.
Then we have that

dimK V = dimKW + dimKW
⊥.

Proof. Let W be a subspace of V . Then we have a canonical map V̌ → W̌ , sending a
map α : V → K to the map α|W : W → K. This map is surjective, as is easily seen by
choosing a basis for W and extending it to a basis of V , see theorem 1-6.9 and Paragraph
1-6.17. Composing the isomorphism Φ, associated to the bilinear form with this surjection,
we obtain a map V → W̌ with kernel W⊥. Consequently the lemma follows from Lemma
1-6.13.

Lemma 1-7.5. Let V be vector space with a non-degenerate form, and let W be a subspace.
If W ∩W⊥ = 0 then we have that V = W ⊕W⊥ and the form 〈, 〉 induces a non-degenerate
form on W⊥.

Proof. If U = W + W⊥, we have that U = W ⊕ W⊥ since W ∩ W⊥ = 0. It follows
from Lemma 1-7.4 that dimK V = dimKW + dimKW

⊥. Hence U is a subspace of V of
dimension dimK V . Consequently U = V and we have proved the second assertion of the
lemma.

Definition 1-7.6. Let V be a vector space with a non-degenerate bilinear form. Given a
linear map α : V → V . For each y in V we obtain a linear map V → K which sends x in
V to 〈α(x), y〉. Since the linear map Ψ : V → V̌ associated to the form is surjective, there
is a vector y′ in V such that 〈α(x), y〉 = 〈x, y′〉, for all x in V . The map

α∗ : V → V

that sends y to y′ is clearly linear. It is called the adjoint of α.

It is clear from the definition that, given two maps α and β of HomK(V, V ) and a scalar
a of K, we have the formulas

(α∗)∗ = α, (α+ β)∗ = α∗ + β∗, (aα)∗ = aα∗.

Definition 1-7.7. Two bilinear forms 〈, 〉f and 〈, 〉g on V are equivalent if there is an
isomorphism α : V → V such that

〈α(x), α(y)〉f = 〈x, y〉g,

for all pairs x, y of V .

1-7.8. Given a bilinear form 〈, 〉 on V . Fix a basis e1, . . . , en of V . Let S = (cij) be the
n × n matrix with (i, j)’th coordinate cij = 〈ei, ej〉. Then, for x = a1e1 + · · · + anen and
y = b1e1 + · · ·+ bnen we have that

〈x, y〉 = (a1, . . . , an)







c11 . . . c1n
...

. . .
...

cn1 . . . cnn













b1
...
bn






= txSy =

n
∑

ij=1

aicijbj .
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If follows, in particular, that the form is non-degenerate if and only if the matrix S is
non-singular.

Given a linear map α : V → V , let A = (aij) be the corresponding linear map as in
Paragraph 1-6.17. The adjoint map α∗ corresponds to the matrix S−1tAS.

We have that the bilinear form is symmetric if and only if S is symmetric, that is
S = tS, and it is alternating, or anti-symmetric, if and only if S = −tS.

Let f1, . . . , fn be another basis for V and let T be the matrix associated to the bilinear
form, with respect to this basis. Moreover, let A : V → V be the non-singular matrix
defined by tei = Atf i, for i = 1, . . . , n. Then, for all u and v in V we have that 〈x, y〉 =
txSy = t(Au)S(Av) = tutASAv. where x = Au and y = Av. Consequently we have that

T = tASA.

Exercises

1-7.1. Let V be a vector space and y a vector of V . Show that if α(y) = 0 for all α in V̌ , we
have that y = 0.

1-8 The orthogonal and symplectic groups

Let V be a vector space over K, with a non-degenerate bilinear form 〈, 〉. In the case of a
symmetric bilinear form we will always assume that 2 is an invertible element of the field
K, i.e., that the characteristic of K is not equal to 2.

Lemma 1-8.1. Assume that the form is symmetric. Then there is an element x of V such
that 〈x, x〉 6= 0.

Proof. Suppose that 〈x, x〉 = 0 for all x in V . Since the form is symmetric we have that
〈y+ z, y+ z〉 = 〈y, y〉+ 2〈y, z〉+ 〈z, z〉 for y, z in V . Since 2 is invertible, we can rearrange
this into 〈y, z〉 = (〈y + z, y + z〉 − 〈y, y〉 − 〈z, z〉)/2, which is zero by the assumption
that 〈x, x〉 = 0 for all x in V . However, this means that 〈, 〉 is totally degenerate, which
contradicts the assumption made in the beginning of the section that the form should be
non-degenerate. Hence there must be an element x in V with 〈x, x〉 6= 0.

Proposition 1-8.2. Assume that the form is symmetric. Then there is a basis for V with
respect to which the associated matrix 1 is diagonal.

Moreover, this basis can be chosen so that it includes any given non-zero vector x.

Proof. It follows from Lemma 1-8.1 that there is an element x of V such that 〈x, x〉 6= 0.
Let e1 = x and let W = Ke1. Then W is a subspace of V . Thus we have that W ∩W⊥ = 0
and it follows from Lemma 1-7.5 that V = W⊕W⊥. Moreover, we have that the restriction
of the bilinear form to W⊥ is non-degenerate. We can therefore use induction on dimK V
to conclude that there is a basis e2, . . . , en of W⊥ such that 〈ei, ej〉 = 0 and 〈ei, ei〉 6= 0,
for i, j = 2, . . . n and i 6= j. By definition, we also have that 〈e1, ei〉 = 0 for i = 2, . . . , n.
Consequently, we have proved the proposition.

1see Paragraph 1-7.8
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Remark 1-8.3. Another way of phrasing the assertion of the proposition is that there is a
basis e1, . . . , en of V such that 〈ei, ei〉 = ci and 〈ei, ej〉 = 0, for i, j = 1, . . . n, and i 6= j.

We can choose e1 to be any x with 〈x, x〉 6= 0.
We can also say that there are non-zero elements c1, . . . , cn in K, such that, if we write

x = (a1, . . . , an) and y = (b1, . . . , bn), with respect to this basis, we have that

〈x, y〉 = a1b1c1 + · · ·+ anbncn.

Definition 1-8.4. A basis with the properties of Proposition 1-8.2 is called an orthogonal
basis. When ci = 1, for i = 1, . . . , n, the basis is orthonormal. A linear map α : V → V
such that 〈α(x), α(y)〉 = 〈x, y〉, for all pairs x, y of V , is called orthogonal. The set of
all orthogonal linear maps is denoted by O(V, 〈, 〉). The subset consisting of linear maps
with determinant 1 is denoted by SO(V, 〈, 〉). As in section 1-1 we see that O(V, 〈, 〉) is
a subgroup of Gl(V ), and that SO(V, 〈, 〉) is a subgroup of Sl(V ). We call the groups
O(V, 〈, 〉) and SO(V, 〈, 〉) the orthogonal group, respectively the special orthogonal group of
〈, 〉.

Remark 1-8.5. When the field K contains square roots of all its elements we can, given
an orthogonal basis ei, replace ei with

√
ci

−1
ei. We then get an orthonormal basis. In

this case, we consequently have that all bilinear forms are equivalent to the form 〈x, y〉 =
a1b1 + · · ·+ anbn. This explains the choise of terminology in sections 1-1 and 1-4.

Proposition 1-8.6. Assume that the form is alternating. We then have that n = 2m is
even and there is a basis e1, . . . , en for V , with respect to which the associated matrix (see
Paragraph 1-7.8) is of the form

S =

(

0 Jm
−Jm 0

)

,

where Jm be the matrix in Mm(C) with 1 on the antidiagonal, that is the elements aij with
i+ j = m+ 1 are 1, and the remaining coordinates 0.

Moreover, this basis can be chosen so that it contains any given non-zero vector x.

Proof. If n = 1 there is no non-degenerate form. So assume that n > 1. Let e1 be an
arbitrary non-zero vector. Since the form is non-degenerate there is a vector v such that
〈e1, v〉 6= 0. Let en = 1

〈e1,v〉
v. Then 〈e1, en〉 = 1. Let W = Ke1 + Ken be the subspace

of V spanned by e1 and en. Then W ∩ W⊥ = 0. It follows from Lemma 1-7.4 that
dimK(W ⊕W⊥) = dimK V . Consequently we have that V = W ⊕W⊥. It follows from
Lemma 1-7.5 that the restriction of the bilinear form to W⊥ is non-degenerate. We can
now use induction to conclude that dimKW

⊥ and thus dimK V are even, and that there
is a basis e2, . . . , en−1 such that 〈ei, en+1−i〉 = 1, for i = 2, . . . , m and all other 〈ei, ej〉 = 0.
However, 〈e1, ei〉 = 0 = 〈en, ei〉, for i = 2, . . . , n − 1. Thus we have a basis e1, . . . , en as
asserted in the proposition.
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Remark 1-8.7. The proposition says that there is a basis {e1, e2, . . . , en} such that

〈ei, ej〉 =

{

1, if i+ j = n+ 1,
0, otherwise

With respect to this basis, we have that

〈x, y〉 =

m
∑

i=1

(aibn+1−i − an+1−ibi).

It follows from the proposition that all non-degenerate alternating bilinear forms on a
vector space are equivalent.

Definition 1-8.8. A basis with the properties of Proposition 1-8.6 is called a symplectic
basis. A linear map α : V → V such that 〈α(x), α(y)〉 = 〈x, y〉, for all pairs x, y of V , is
called symplectic. The set of all symplectic linear maps is denoted by Sp(V, 〈, 〉). As in 1-1
we see that Sp(V, 〈, 〉) is a subgroup of Gl(V ), We call the group Sp(V, 〈, 〉) the symplectic
group, of 〈, 〉.

1-9 Generators of the orthogonal and symplectic groups

Let V be a vector space with a fixed non-degenerate bilinear form.

Definition 1-9.1. Assume that 2 = 1 + 1 is non-zero in K and that 〈, 〉 is symmetric. A
linear map α : V → V that fixes all the vectors in a subspace H of V of codimension 1,
that is dimKH = dimK V − 1, and is such that α(x) = −x for some non-zero vector x of
V , is called a reflection of V . Given an element x in V such that 〈x, x〉 6= 0. The map
sx : V → V defined by

sx(y) = y − 2
〈y, x〉
〈x, x〉x,

is clearly linear.

Remark 1-9.2. Let e1 = x and let {e1, e2, . . . , en} be an orthogonal basis with respect to
〈, 〉. Then we have that sx(a1e1 + a2e2 + · · ·+ anen) = −a1e1 + a2e2 + · · ·+ anen, and the
matrix representing sx in this basis is given by

(

−1 0
0 In−1

)

.

Thus the determinant of sx is −1.
There are also reflections that are not of the form sx for any x ∈ V .

The maps of the form sx are reflections. Indeed, let W = Kx. It follows from Lemma
1-7.4 that we have that dimKW

⊥ = n − 1. For y ∈ W⊥ we have that sx(y) = y and we
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have that sx(x) = −x. In particular s2
x is the identity map. Moreover, the maps sx are

orthogonal because

〈sx(y), sx(z)〉 =

〈

y − 2
〈y, x〉
〈x, x〉x, z − 2

〈z, x〉
〈x, x〉x

〉

= 〈y, z〉 − 2
〈y, x〉
〈x, x〉〈x, z〉 − 2

〈z, x〉
〈x, x〉〈y, x〉

+ 4
〈y, x〉〈z, x〉
〈x, x〉2 〈x, x〉 = 〈y, z〉.

(1-9.2.1)

Since det sx = −1, we have that sx ∈ O(V ) \ SO(V ).

Lemma 1-9.3. Let x and y be two elements of V such that 〈x, x〉 = 〈y, y〉 6= 0. Then there
is a linear map, which takes x to y and which is a product of at most 2 reflections of the
form sz.

Proof. Assume that 〈x, y〉 6= 〈x, x〉 = 〈y, y〉. Then 〈x − y, x − y〉 = 2(〈x, x − y〉) =

2(〈x, x〉−〈x, y〉) 6= 0. Take z = x−y. Then 〈z, z〉 6= 0 and sz(x) = x−2 〈x,x−y〉
〈x−y,x−y〉

(x−y) = y,

since 2 〈x,x−y〉
〈x−y,x−y〉

= 1.

On the other hand, if 〈x, y〉 = 〈x, x〉, we have that 〈−x, y〉 6= 〈x, x〉 and we take szsx,
with z = −x− y.

Proposition 1-9.4. The orthogonal group O(V ) is generated by the reflections of the form
sx with 〈x, x〉 6= 0, and the subgroup SO(V ) is generated by the products sxsy.

Proof. It follows from Lemma 1-8.1 that there is an element x of V such that 〈x, x〉 6= 0.
Consequently, it follows from Lemma 1-7.5 that, if W = Kx, we have that V = W ⊕W⊥,
and that the bilinear form induces a non-degenerate bilinear form on W⊥.

Let α be an element of O(V ). Then 〈α(x), α(x)〉 = 〈x, x〉 6= 0. It follows from Lemma
1-9.3 that there is a product β of at most 2 reflections of the form sy such that β(x) = α(x).
Consequently β−1α induces a linear map β−1α|W⊥ ofW⊥. We now use induction on dimK V
to write β−1α|W⊥ as a product of reflections of the form sz on W⊥ for z in W⊥. However,
the reflection sz considered as a reflection on W⊥ is the restriction of sz considered as a
reflection on V . Hence β−1α and thus α can be written as a product of reflections of the
form sz. We have proved the first part of the proposition. Since det sz = −1 we have that
such a product is in SO(V ) if and only if it contains an even number of factors. Hence the
second assertion of the proposition holds.

Definition 1-9.5. Assume that the bilinear form is alternating. Let x be a non-zero vector
in V and a an element of K. We define a map Ψ : V → V by Ψ (y) = y + a〈x, y〉x. It is
clear that Ψ is a linear map. The linear maps of this form are called transvections.

Remark 1-9.6. We have that each transvection is in Sp(V ). Indeed, by the last assertion
of Proposition 1-8.6 we can choose a symplectic basis e1, . . . , en for the bilinear form with
x = e1. Then we have that Ψ (ei) = ei for i 6= n and Ψ (en) = en + ae1. Hence det Ψ = 1.
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Lemma 1-9.7. Let 〈, 〉 be a non-degenerate alternating form on V . Then for every pair
x, y of non-zero vectors of V there is a product of at most 2 transvections that sends x to
y.

Proof. For every pair x, y of elements of V such that 〈x, y〉 6= 0 the transvection associated
to the vector x− y and the element a defined by a〈x, y〉 = 1 will satisfy Ψ (x) = y. Indeed,
Ψ (x) = x+ a〈x− y, x〉(x− y) = x− a〈x, y〉x+ a〈x, y〉y.

Assume that x 6= y. By what we just saw it suffices to find an element z such that
〈x, z〉 6= 0 and 〈y, z〉 6= 0. If 〈x〉⊥ = 〈y〉⊥ we can take z to be any element outside 〈x〉⊥.
On the other hand if 〈x〉⊥ 6= 〈y〉⊥ we take u ∈ 〈x〉⊥ \ 〈y〉⊥ and u′ ∈ 〈y〉⊥ \ 〈x〉⊥, and let
z = u+ u′.

Lemma 1-9.8. Let 〈, 〉 be a non-degenerate alternating form on V and let x, y, x′, y′ be
vectors in V such that 〈x, y〉 = 1 and 〈x′, y′〉 = 1. Then there is a product of at most 4
transvections that sends x to x′ and y to y′.

Proof. By Lemma 1-9.7 we can find two transvections, whose product Φ sends x to x′. Let
Φ(y) = y′′. Then 1 = 〈x′, y′〉 = 〈x, y〉 = 〈x′, y′′〉. Consequently it suffices to find two more
transvections that send y′′ to y′ and that fix x′. If 〈y′, y′′〉 6= 0, we let Ψ (z) = z + a〈y′′ −
y′, z〉(y′′ − y′). Then we have that Ψ (y′′) = y′, by the same calculations as above, and we
have that Ψ (x′) = x′, because 〈y′′−y′, x′〉 = 1−1 = 0. On the other hand, when 〈y′, y′′〉 = 0,
we have that 1 = 〈x′, y′′〉 = 〈x′, x′ + y′′〉 = 〈x′, y′〉 and 〈y′′, x′ + y′′〉 6= 0 6= 〈y′, x′ + y′′〉, so
we can first tranform (x′, y′′) to (x′, x′ + y′′) and then the latter pair to (x′, y′).

Proposition 1-9.9. The symplectic group Sp(V ) is generated by transvections.
In particular we have that the symplectic group is contained in Sl(V ).

Proof. Choose a basis e1, e
′
1, . . . , em, e

′
m of V such that 〈ei, e′i〉 = 1, for i = 1, . . . , m, and

all other products of basis elements are 0. Let Φ be an element in the symplectic group
and write Φ(ei) = ēi and Φ(e′i) = ē′i. We have seen above that we can find a product Ψ of
transvections that sends the pair (e1, e

′
1) to (ē1, ē

′
1). Then Ψ−1Φ is the identity on the space

generated by (e1, e
′
1). Thus Ψ−1Φ acts on the orthogonal complement of (e1, e

′
1), which is

generated by the remaining basis vectors. Hence we can use induction on the dimension
of V to conclude that Φ can be written as a product of transvections.

The last part of the proposition follows from Remark 1-9.6.

Exercises

1-9.1. Write the linear map V 2
C

→ V 2
C

corresponding to the matrix
(

a b
−b a

)

, where a2 + b2 = 1,
as a product of reflections, with respect to the bilinear form corresponding to the matrix ( 1 0

0 1 ).
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1-10 The center of the matrix groups

Definition 1-10.1. Let G be a group. The set C of elements of G that commutes with
all elements of G, that is

Z(G) = {a ∈ G : ab = ba, for all b ∈ G}

is called the center of G.

It is clear that Z(G) is a normal subgroup of G and that isomorphic groups have
isomorphic centers.

Proposition 1-10.2. The center of Gln(K) consists of all scalar matrices, that is all
matrices of the form aIn for some non-zero element a of K. The center of Sln(K) consists
of all matrices of the form aIn with an = 1.

Proof. It is clear that the matrices of the form aIn are in the center of Gln(K). Moreover,
we have that the center of Sln(K) is the intersection of the center of Gln(K) with Sln(K).
Indeed, every element A of Gln(K) is of the form (detAIn)(detA−1)A, where (detA−1)A
is in Sln(K). In particular, the last assertion of the proposition follows from the first.

Let A in Gln(K) be in the center. Then A must commute with the elementary matrices
Eij(a). However, the equality AEij(1) = Eij(1)A implies that aij + ajj = aij + aii and that
aii = aii + aji. Consequently we have that aji = 0 and aii = ajj , when i 6= j, and we have
proved the proposition.

We shall next determine the center of the orthogonal groups.

Lemma 1-10.3. Let V be a vector space of dimension at least 3 over a field K where
2 6= 0, and let 〈, 〉 be a symmetric non-degenerate form. If Ψ is an element in O(V ) that
commutes with every element of SO(V ). Then Ψ commutes with every element of O(V ).

In particular we have that Z(SO(V )) = Z(O(V )) ∩ SO(V ).

Proof. Let x be a vector in V such that 〈x, x〉 6= 0. It follows from the last assertion of
Proposition 1-8.2 that we can find an orthogonal basis e1, . . . , en such that e1 = x.

Let W1 and W2 be the spaces generated by en, e1 and e1, e2 respectively. Since n ≥ 3,
we have that W1 and W2 are different, and we clearly have that W1 ∩W2 = Ke1 = Kx.
Denote by si the reflection sei

of Definition 1-9.1.
We have that Ψ (Wi) ⊆ Wi, for i = 1, 2. Indeed, we have that −Ψ (e1) = Ψ (s1s2e1) =

s1s2Ψ (e1) = s1(Ψ (e1) − 2 〈Ψ(e1),e2〉
〈e2,e2〉

e2) = Ψ (e1) − 2 〈Ψ(e1),e1〉
〈e1,e1〉

e1 − 2 〈Ψ(e1),e2〉
〈e2,e2〉

e2. Consequently,

Ψ (e1) = 〈Ψ(e1),e1〉
〈e1,e1〉

e1 − 〈Ψ(e1),e2〉
〈e2,e2〉

e2. Similarly it follows that Ψ (e2) ∈W2. A similar argument,

with indices n, 1 instead of 1, 2 gives that Ψ (W1) ⊆ W1. We obtain that Ψ (W1 ∩W2) ⊆
W1 ∩W2. Consequently we have that Ψ (x) = ax, for some a ∈ K.

Since x was an arbitrary vector with 〈x, x〉 6= 0, we have that Ψ (y) = ayy, for some
element ay in K for all y in V such that 〈y, y〉 6= 0. In particular we have that Ψ (ei) = aiei,
for i = 1, . . . , n. It is now easy to check that Ψsx and sxΨ take the same value on all the
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vectors e1, . . . , en, and hence Ψsx = sxΨ . It follows from Proposition 1-9.4 that Ψ commutes
with all the generators of O(V ), and consequently, with all the elements of O(V ). We have
proved the first part of the lemma. The second part follows immediately from the first.

Proposition 1-10.4. Let V be a vector space over a field K with more than 3 elements,
where 2 6= 0, and let 〈, 〉 be a symmetric non-degenerate form. Then we have that

(i) Z(O(V )) = {I,−I}

(ii) Z(SO(V )) = {I,−I} if dimK V > 2 and dimK V is even.

(iii) Z(SO(V )) = {I} if dimK V > 2 and dimK V is odd.

Proof. Let n = dimK V and let Φ be an element in the center of O(V ). It follows from
Proposition 1-9.4 that Φ commutes with all reflections of the form sx, where 〈x, x〉 6= 0.
For all y in V we have that

Φ(y) − 2
〈y, x〉
〈x, x〉Φ(x) = Φsx(y) = sxΦ(y) = Φ(y) − 2

〈Φ(y), x〉
〈x, x〉 x.

Consequently, we have that 〈y, x〉Φ(x) = 〈Φ(y), x〉x. In particular we must have that
Φ(x) = axx, for some ax ∈ K. We get that a2

x〈x, x〉 = 〈axx, axx〉 = 〈Φ(x), Φ(x)〉 = 〈x, x〉.
Consequently, we have that ax = ±1. It follows from proposition 1-8.2 that we have an
orthogonal basis e1, . . . , en for 〈, 〉. Then Φ(ei) = aiei, with ai = ±1. We shall show that
all the ai’s are equal. To this end we consider 〈ei + aej , ei + aej〉 = 〈ei, ei〉 + a2〈ej , ej〉,
for all a ∈ K. Since K has more than 3 elements we can find an a 6= 0 such that
〈ei, ei〉 + a2〈ej , ej〉 6= 0. We then have that aiei + aajej = Φ(ei + aej) = b(ei + aej) for
some b ∈ K. Consequently, we have that ai = aj , for all i and j, and we have proved the
first part of the proposition. The assertions for SO(V ) follow from the first part of the
proposition and from Lemma 1-10.3.

Proposition 1-10.5. The center of Sp(V ) is {I,−I}.

Proof. Let Φ be in the center of Sp(V ). It follows from proposition 1-9.9 that Φ commutes
with all transvections. Let Ψ be the transvection corresponding to x in V and a in K.
Then, for all y in V , we have that Φ(y)+a〈y, x〉Φ(x) = ΦΨ (y) = ΨΦ(y) = Φ(y)+〈Φ(y), x〉x.
Let z be another vector in V . We obtain, in the same way, that Φ(z) = azz and Φ(x+z) =
ax+z(x+z). Consequently we have that axx+azz = Φ(x+z) = ax+z(x+z). Consequently,
ax = az and there is an element a in K such that Φ(x) = ax for all x in V . Choose y
such that 〈y, x〉 6= 0. We see that Φ(x) = ax, for some a in K. Moreover, we have that
a2〈x, y〉 = 〈ax, ay〉 = 〈Φ(x), Φ(y)〉 = 〈x, y〉, so that a = ±1. Hence, we have proved the
proposition.

Example 1-10.6. We have proved the following assertions:

(i) Z(Gln(C)) ∼= C∗ = C \ 0, for all n.

30



(ii) Z(Sln(C)) ∼= Z/nZ, for all n (see Example 3-5.2).

(iii) Z(On(C)) ∼= {±1}, for all n.

(iv) Z(SOn(C)) ∼= {±1}, when n ≥ 4 is even.

(v) Z(SOn(C)) ∼= {1}, when n ≥ 3 is odd.

(vi) Z(Spn(C)) ∼= {±1}, for all even n.

Hence Sln(C), for n > 3, SOn(C), for n odd and Gln(C), are neither isomorphic as
groups, nor isomomorphic, as groups to any of the other groups. We can however, not rule
out isomorphisms between the remaining groups. The purpose of the next chapter is to
give all the groups a geometric structure, and to introduce invariants of this structure that
permits us to rule out isomorphism with respect to the geometric structure. It is however,
first when we take both the algebraic and geometric structure into account in the next
chapter that the theory is seen in its natural context.

Exercises

1-10.1. Let K = F3, i.e., the field with three elements {0, 1, 2} where 1+1 = 2 and 1+1+1 = 0.
(a) Show that if 〈, 〉 is the form given by 〈(a1, b1), (a2, b2)〉 = a1a2 − b1b2, we have that

O(V 2
K

, 〈, 〉) consists of 4 elements and is commutative.
(b) Show that if 〈, 〉 is the form given by 〈(a1, b1), (a2, b2)〉 = a1a2 + b1b2, we have that

O(V 2
K

, 〈, 〉) consists of 8 elements and is non-commutative.
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2 The exponential function and the geometry of ma-

trix groups

2-1 Norms and metrics on matrix groups

Throughout this chapter the field K will be the real or complex numbers, unless we ex-
plicitly state otherwise.

All the matrix groups that we introduced in chapter 1 were subsets of the n×n matrices
Mn(K). In this section we shall show how to give Mn(K) a geometric structure, as a metric
space. This structure is inherited by the matrix groups.

Definition 2-1.1. Given a vector x = (a1, . . . , an) in V n
K

. We define the norm ‖x‖ of x by

‖x‖ = Cmax
i

|ai|,

where |a| is the usual norm of a in K and C is some fixed positive real number.

Remark 2-1.2. We have that V 1
K

and K are canonically isomorphic as vector spaces. Under
this isomorphism the norm ‖‖ on V 1

K
correspond to the norm || on K.

Proposition 2-1.3. For all vectors x and y of Kn, and elements a of K, the following
three properties hold:

(i) ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0,

(ii) ‖ax‖ = |a|‖x‖,

(iii) ‖x+ y‖ ≤ ‖x‖ + ‖y‖.

Proof. The properties of the proposition hold for the norm || on K (see Remark 2-1.2).
Consequently, all the properties follow immediately from Definition 2-1.1 of a norm on
V n

K
.

Remark 2-1.4. We can consider Mn(K) as a vector space V n2

K
of dimension n2, where

addition of vectors is the addition of matrices. In the definition of the norm on Mn(K) we
shall choose C = n, and in all other cases we choose C = 1, unless the opposite is explicitly
stated.

Next we shall see how the norm behaves with respect to the product on Mn(K).

Proposition 2-1.5. Let X and Y be matrices in Mn(K). We have that

‖XY ‖ ≤ ‖X‖‖Y ‖.

32



Proof. Let X = (aij) and Y = (bij). Then we obtain that

‖XY ‖ = nmax
ij

(
n
∑

k=1

aikbkj) ≤ nmax
ij

(
n
∑

k=1

|aik||bkj|)

≤ nnmax
ij

(|aik||bkj|) ≤ n2 max
ij

|aij |max
ij

|bij | = ‖X‖‖Y ‖.

It is possible to give V n
K

several different, but related, norms (see Exercise 2-1.3). Con-
sequently it is convenient to give a more general definition of a norm, valid for all vector
spaces.

Definition 2-1.6. Let V be a vector space. A norm on V is a function

‖ · ‖ : V → R,

such that for all x and y of V and all a in K we have that

(i) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0,

(ii) ‖ax‖ = |a|‖x‖,

(iii) ‖x+ y‖ ≤ ‖x‖ + ‖y‖.
We call the the pair (V, ‖ · ‖) a normed space.

Example 2-1.7. Choose a basis e = (e1, . . . , en) for the vector space V . We obtain a
canonical isomorphism

Ψe : V → V n
K

(see Paragraph 1-6.15). The norm ‖ · ‖ on V n
K

of Definition 2-1.1 induces a norm ‖ · ‖e on
V by

‖x‖e = ‖Ψe(x)‖.
Choose another basis f = (f1, . . . , fn) of V . We get another norm ‖ · ‖f of V , which is
closely related to ‖ · ‖e. More precisely, there are two positive constants C1 and C2 such
that

C2‖x‖f ≤ ‖x‖e ≤ C1‖x‖f .
Indeed, let fi =

∑n
j=1 aijej , for i = 1, . . . , n. For each vector x =

∑n
i=1 fi of V we obtain

that

‖x‖e = ‖
n
∑

i=1

aifi‖ = ‖
n
∑

i=1

n
∑

j=1

aiaijej‖e = max
j

(‖
n
∑

i=1

aiaij‖)

≤ max
j

(
n
∑

i=1

‖ai‖‖aij‖) ≤ nmax
i

(‖ai‖) max
ij

(‖aij‖) = n‖x‖f max(‖aij‖).

We can choose C1 = nmax(‖aij‖). Similarly, we find C2.
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From a norm on a vector space we can define a distance function on the space.

Definition 2-1.8. Let (V, ‖ · ‖) be a normed vector space. Define, for each pair of vectors
x and y of V , the distance d(x, y) between x and y to be

d(x, y) = ‖x− y‖.

Proposition 2-1.9. Let (V, ‖‖) be a normed vector space. For all vectors x, y and z of V
the following three properties hold for the distance function of Definition 2-1.8:

(i) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, z) ≤ d(x, y) + d(y, z).

Proof. The properties (i) and (ii) follow immediately from properties (i) and (ii) of Defi-
nition 2-1.6. For property (iii) we use property (iii) of Definition 2-1.6 to obtain d(x, z) =
‖x− z‖ = ‖x− y + y − z‖ ≤ ‖x− y‖ + ‖y − z‖ = d(x, y) + d(y, z).

Sets with a distance function enjoying the properties of the proposition appear every-
where in mathematics. It is therefore advantageous to axiomatize their properties.

Definition 2-1.10. Let X be a set. A metric on X is a function

d : X ×X → R

such that, for any triple x, y, z of points of X, we have

(i) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, z) ≤ d(x, y) + d(y, z).

The pair (X, d) is called a metric space

Remark 2-1.11. For every subset Y of a metric space (X, dX), we have a distance function
dY on Y defined by dY (x, y) = dX(x, y), for all x and y in Y . It is clear that Y , with this
distance function, is a metric space. We say that (Y, dY ) is a metric subspace of (X, dX).

Definition 2-1.12. Let r be a positive real number and x a point in X. A ball B(x, r), of
radius r with center x, is the set

{y ∈ X : d(x, y) < r}.

We say that a subset U of X is open if, for every point x in U , there is a positive real
number r such that the ball B(x, r) is contained in U (see Exercise 2-1.4).
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Remark 2-1.13. We have that every ball B(x, r) is open. Indeed, let y be in B(x, r). Put
s = r − d(x, y). Then the ball B(y, s) is contained in B(x, r), because, for z ∈ B(y, s) we
have that d(x, z) ≤ d(x, y) + d(y, z) < d(x, y) + s = r.

The metric on V n
K

is defined by d((a1, . . . , an), (b1, . . . , bn)) = maxi |ai − bi|. Hence a
ball B(x, r) with center x and radius r is, in this case, geometrically a cube centered at x
and with side length 2r. We see that, if a subset U of V n

K
is open with respect to the norm

given by one constant C, then it is open with respect to the norm defined by all other
positive constants.

Metrics on a vector space that are associated to the norms on a vector space given by
different choices of bases, as in Example 2-1.7, also give the same open sets.

The definition of a continuous map from calculus carries immediately over to metric
spaces.

Definition 2-1.14. A map Φ : X → Y , from a metric space (X, dX) to a metric space
(Y, dY ), is continuous if, for each point x of X and any positive real number ε, there is a
positive real number δ, such that the image of B(x, δ) by Φ is contained in B(Φ(x), ε). A
continuous map between metric spaces that is bijective and whose inverse is also continuous
is called a homeomorphism of the metric spaces.

We next give a very convenient criterion for a map to be continuous. The criterion
easily lends itself to generalizations (see Section 3-3).

Proposition 2-1.15. Let Φ : X → Y be a map between metric spaces (X, dX) and (Y, dY ).
We have that Φ is continuous if and only if, for every open subset V of Y , the inverse
image Φ−1(V ) is open in X.

Proof. Assume first that Φ is continuous. Let V be open in Y . We shall show that
U = Φ−1(V ) is open in X. Choose x in U . Since V is open, we can find a positive
number ε such that B(Φ(x), ε) is in V , and since Φ is continuous, we can find a positive
integer δ such that Φ(B(x, δ)) ⊆ B(Φ(x), ε). That is, the ball B(x, δ) is contained in U .
Consequently, every x in U is contained in a ball in U . Hence U is open.

Conversely, assume that the inverse image by Φ of every open subset of Y is open
in X. Let x be in X and let ε be a positive real number. Then B(Φ(x), ε) is open in
Y . Consequently, the set U = Φ−1(B(Φ(x), ε) is open in X. We can therefore find a
positive real number δ such that B(x, δ) is contained in U . Consequently, we have that
Φ(B(x, δ)) ⊆ Φ(U) = B(Φ(x), ε). That is, Φ is continuous.

Remark 2-1.16. Many properties of continuous maps follow directly from Proposition 2-
1.15. For example, it is clear that the composite ΨΦ of two continuous maps Φ : X → Y
and Ψ : Y → Z is continuous.

Example 2-1.17. The map
det : Mn(K) → K
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is given by the polynomial

det(xij) =
∑

σ∈Sn

sign(σ)x1σ(1) · · ·xnσ(n),

of degree n in the variables xij , where i, j = 1, . . . , n. The symbol sign σ is 1 or −1
according to whether σ is an even or odd permutation (see Example 1-2.13). In particular
the determinant is a continuous map (see Exercise 2-1.5). For each matrix A in Gln(K) we
have that detA 6= 0. Let ε = | detA|. Then there is a positive real number δ such that the
ball B(A, δ) in V n2

K
maps into the ball B(detA, ε) in K. The latter ball does not contain

0. In other words we can find a ball around A that is contained in Gln(K). Hence Gln(K)
is an open subset of the space Mn(K).

Example 2-1.18. We have that the determinant induces a continuous map

det : On(K) → {±1}.

The inverse image of 1 by this map is SOn(K). Since the point 1 is open in {±1} we have
that SOn(K) is an open subset of On(K).

Exercises

2-1.1. Let X be a set. Define a function

d : X × X → R

by d(x, y) = 1 if x 6= y and d(x, x) = 0. Show that (X.d) is a metric space, and describe the open
sets of X.

2-1.2. Let (X1, d1), . . . , (Xm, dm) be metric spaces.

(i) Show that the Cartesian product X = X1 × · · · × Xm with the function d : X × X → R

defined by

d((x1, . . . , xm), (y1, . . . , ym)) = d1(x1, y1) + · · · + dm(xm, ym),

is a metric space.

(ii) When X1 = · · · = Xm and di, for i = 1, . . . ,m is the metric of the previous problem, the
metric is called the Hamming metric on X. Show that d((x1, . . . , xm), (y1, . . . , ym)) is the
number of indices i such that xi 6= yi.

(iii) When X1 = · · · = Xm = K, where K is the real or complex numbers, we have that
X = V m

K
, and we call the metric, the taxi metric. Show that the open sets for the taxi

metric are the same as the open sets in the metric on V m
K

associated to the norm on V m
K

defined in the lecture notes.
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2-1.3. Let X = K
n and, for x in X let

‖x‖ =
√

|x1|2 + · · · + |xn|2.

Show that this defines a norm on X.
Hint: Consider the sesquilinear product

〈 , 〉 : C
n × C

n → C,

defined by
〈x, y〉 = x1ȳ1 + · · · + xnȳn,

where x = (x1, . . . , xn) and y = (y1, . . . , yn) and ȳi is the complex conjugate of yi.
For all points x, y and z of C

n we have that

(i) 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉

(ii) 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉

(iii) a〈x, y〉 = 〈ax, y〉 = 〈x, āy〉

(vi) 〈x, y〉 = 〈y, x〉.

Then ‖x‖ =
√

〈x, x〉 and we have Schwartz inequality,

‖〈x, y〉‖ ≤ ‖x‖‖y‖,

with equality if and only if x = ay for some a ∈ K.
In order to prove the Schwartz inequality we square the expression and prove that 〈x, y〉2 ≤

‖x‖2‖y‖2. If ‖y‖2 = 0, the inequality clearly holds, so you can assume that ‖y‖2 > 0. We have
that

n
∑

j=1

∣

∣‖y‖2xj − 〈x, y〉yj
∣

∣

2
=

n
∑

j=1

(‖y‖2xj − 〈x, y〉yj)(‖y‖2x̄j − 〈x, y〉yj)

= ‖y‖4‖x‖2 − ‖y‖2〈x, y〉
n
∑

j=1

xj ȳj − ‖y‖2
n
∑

j=1

x̄jyj + ‖〈x, y〉‖2‖y‖2

= ‖y‖4‖x‖2 − ‖y‖2‖〈x, y〉‖2 − ‖y‖2‖〈x, y〉‖2 + ‖y‖2‖〈x, y〉‖2

= ‖y‖2(‖y‖2‖x‖2 − ‖〈x, y〉‖2).

Since the first term is nonnegative and ‖y‖2 > 0, you obtain the inequality ‖〈x, y〉‖2 ≤ ‖x‖2‖y‖2.

The first term is zero if and only if x = 〈x,y〉
‖y‖2 , hence equlity holds if and only if x = ay for some a.

2-1.4. Let (X, d) be a metric space. Show that the collection U = {Ui}i∈I of open sets satisfies
the following three properties:

(i) The empty set and X are in U .

(ii) If {Uj}j∈J is a collection of sets from U , then the union ∪j∈JUj is a set in U .
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(iii) If {Uj}j∈K is a finite collection of sets from U , then the intersection ∩j∈KUj is a set in U .

2-1.5. Show that if f and g are continuous functions K
n → K, then cg, f + g, and fg are

continuous for each c in K. Consequently, all polynomial functions are continuous.

2-1.6. Given a polynomial function f : K
n → K. Show that the points where f is zero can not

contain a ball B(a, ε), for a ∈ K
n and ε > 0.

Hint: Solve the problem for n = 1 and use induction on n.

2-2 The exponential map

We saw in Section 2-1 that we have a norm on the space Mn(K), which satisfies the property
of Proposition 2-1.5. We shall use the associated metric (see Definition 2-1.8) to define an
exponential and a logarithmic function on Mn(K).

The fundamental notions of calculus carry over to any metric space virtually without
any change.

Definition 2-2.1. Let (X, d) be a metric space. A sequence x1, x2, . . . of elements in X
converges to an element x of X if, for every positive real number ε, there is an integer m
such that d(x, xi) < ε, when i > m.

A sequence x1, x2, . . . is a Cauchy sequence if, for every positive real number ε, there
is an integer m such that d(xi, xj) < ε, when i, j > m.

The space X is complete if every Cauchy sequence in X converges.
When X is a vector space and the metric comes from a norm, we say that the series

x1 + x2 + · · · converges if the sequence {yn = x1 + · · · + xn}n=1,2,... converges.

As in calculus, we have that every convergent sequence in a metric space is a Cauchy
sequence (see Exercise 2-2.2).

Proposition 2-2.2. The space V n
K
, with the norm of Definition 2-1.1, is complete.

Proof. Let xi = (ai1, . . . , ain) be a Cauchy sequence in V n
K

. Given ε there is an integer m
such that ‖xi − xj‖ = maxk |aik − ajk| < ε, when i, j > m. Consequently, the sequences
a1k, a2k, . . . are Cauchy in K, for k = 1, . . . , n. Since K is complete we have that these
sequences converge to elements a1, . . . , an. It is clear that x1, x2, . . . converges to x =
(a1, . . . , an).

2-2.3. For X in Mn(K) and m = 0, 1, . . . , let expm(X) be the matrix

expm(X) = In +
1

1!
X +

1

2!
X2 + · · · + 1

m!
Xm.

The sequence {expm(X)}m=0,1,... is a Cauchy sequence in Mn(K) because, for q > p, we
have that

‖ expq(X) − expp(X)‖ = ‖ 1

(p+ 1)!
Xp+1 + · · ·+ 1

q!
Xq‖

≤ 1

(p+ 1)!
‖Xp+1‖ + · · · + 1

q!
‖Xq‖ ≤ 1

(p+ 1)!
‖X‖p+1 + · · · + 1

q!
‖X‖q,
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and the term to the right can be made arbitrary small with big p because the sequence
{1 + 1

1!
‖X‖ + · · · + 1

m!
‖X‖m}m=0,1,... converges to exp(‖X‖), where exp(x) is the usual

exponential function on K.

Definition 2-2.4. For X in Mn(K) we define exp(X) to be the limit of the sequence
exp0(X), exp1(X), . . . .

Example 2-2.5. Let X = ( 0 1
−1 0 ). Then we have that X2 = −I2, X3 = −X, X4 = I2,

. . . . We see that exp(yX) = I2 + 1
1!
yX + 1

2!
y2 − 1

3!
y3X + 1

4!
y4 + . . . . Consequently, we have

that exp(yX) =
(

cos y sin y
− sin y cos y

)

. Let Φ : C → M2(R) be the map given by Φ(x+ iy) = (
x y
−y x )

(see Example 1-3.12). Then we have that Φ exp(iy) = exp(Φ(iy)). In the last formula the
exponential function on the left is the usual exponential function for complex numbers and
the one to the left the exponential function for matrices.

Remark 2-2.6. The exponential function defines a continuous map exp: Mn(K) → Mn(K).
Indeed, we have seen that ‖ expm(X)‖ ≤ exp(‖X‖). Let B(Z, r) be a ball in Mn(K),
and choose Y in Mn(K) such that ‖Z‖ + r ≤ ‖Y ‖. Then, for any X in B(Z, r), we
have that ‖X‖ ≤ ‖X − Z‖ + ‖Z‖ ≤ r + ‖Z‖ ≤ ‖Y ‖. Consequently, we have that
‖ expm(X)‖ ≤ exp(‖X‖) ≤ exp(‖Z‖), for all X in B(Z, r). It follows that the series
exp0(X), exp1(X), . . . , converges uniformly on B(Z, r) (see Exercise 2-2.3 (iii)). The func-
tions expm : Mn(K) → Mn(K) are given by polynomials, hence they are continuous. Since
they converge uniformly their limit exp is therefore continuous on B(Z, r). Consequently,
exp is continuous everywhere. In Section 2-4 we shall show that the exponential function
is analytic. Hence, in particular, it is differentiable with an analytic derivative.

Example 2-2.7. Let X = ( 0 1
−1 0 ). Then X2 = I2, X

3 = −X, X4 = I2, . . . . We obtain,
for each t in K that exp tX = I2 + 1

1!
tX − 1

2!
t2I2 − 1

3!
t3X + · · · . Consequently, we have

that exp tX = ( cos t sin t
− sin t cos t ). We see that we get a homomorphism of groups K → SO2(K),

which gives an one to one correspondence between a neighborhood of I2 in SO2(K) and
small neighborhoods of points of K.

The exponential map in Mn(K) has the usual properties of the exponential function in
K.

Proposition 2-2.8. The following properties hold for the exponential function:

(i) exp(0) = In,

(ii) exp(X + Y ) = exp(X) exp(Y ), if XY = Y X,

(iii) exp(−X) exp(X) = In. Consequently exp(X) is in Gln(K).

(iv) exp(tX) = t(exp(X)),

(v) exp(Y −1XY ) = Y −1 exp(X)Y , for all invertible matrices Y .
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(vi) If X =

( a1 ··· 0
...

...
...

0 ··· an

)

is diagonal, then exp(X) =

(

exp(a1) ··· 0

...
...

...
0 ··· exp(an)

)

.

Proof. Assertion (i) is obvious. To prove assertion (ii) we observe that, if XY = Y X, then
(X + Y )i =

∑i
j=0

(

i

j

)

XjY i−j . We obtain that

expm(X + Y ) = In + (X + Y ) + · · ·+
m
∑

i=0

1

i!(m− i)!
X iY m−i.

On the other hand, we have that

expm(X) expm(Y ) = (In +
1

1!
X + · · · + 1

m!
Xm)(In +

1

1!
Y + · · ·+ 1

m!
Y m)

= In +
1

1!
(X + Y ) + · · · + 1

m!
Xm +

1

(m− 1)!
Xm−1Y + · · · + 1

m!
Y m +

1

m!
gm(X, Y ),

where gm(X, Y ) consists of sums of products of the form 1
(p−j)!j!

XjY p−j with p > m. Con-

sequently ‖gp(X, Y )‖ = ‖ exp2p(X + Y ) − expp(X + Y )‖. Since the sequence {expm(X +
Y )}m=0,1,... converges to exp(X + Y ), we have that the sequence {gm(X, Y )}m=0,1,... con-
verges to zero, and we have proved assertion (ii).

Assertion (iii) follows from assertion (i) and assertion (ii) with Y = −X. We have that
assertion (iv) follows from the formulas t(Xm) = (tX)m, for m = 1, 2, . . . , and assertion (v)
from the formulas (Y −1XY )m = Y −1XmY and Y −1XY + Y −1ZY = Y −1(X + Z)Y .

Assertion (vi) follows from the definition of the exponential function.

Example 2-2.9. Although the exponential function for matrices has features similar to
those of the usual exponential function, and, in fact, generalizes the latter, it can look
quite different. For example, we have that

exp
(

0 x y
0 0 z
0 0 0

)

=
(

1 x y+ 1
2
xz

0 1 z
0 0 1

)

.

For upper triangular matrices with zeroes on the diagonal the exponential function exp(X)
is, indeed, always a polynomial in X (see Exercise 2-2.4).

By direct calculation it is easy to check that, if X = ( 1 1
0 0 ) and Y = ( −1 1

0 0 ), then
exp(X) = ( e e−1

0 1 ), and exp(Y ) =
(

e−1 1−e−1

0 1

)

. We have that XY 6= Y X and exp(X+Y ) =

( 1 2
0 1 ), whereas exp(X) exp(Y ) =

(

1 2(e−1)
0 1

)

.

2-2.10. For A in Mn(K), and m = 1, 2, . . . , let logm(A) be the matrix

logm(A) = (A− In) −
1

2
(A− In)

2 + · · · + (−1)m−1 1

m
(A− In)

m.

Assume that ‖A− I‖ < 1. Then the sequence log1(A), log2(A), . . . is a Cauchy sequence.
Indeed, we have that for q > p

‖ logq(A) − logp(A)‖ = ‖(−1)p
1

p+ 1
(A− In)

p+1 + · · · + (−1)q
1

q
(A− In)

q‖

≤ 1

p+ 1
‖A− In‖p+1 + · · · + 1

q
‖(A− In)‖q,
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and the term to the right can be made arbitrary small with big p because the sequence
{‖A− In‖+ 1

2
‖A− In‖2 + · · ·+ 1

m
‖A− In‖m}m=1,2,... converges, when ‖A− In‖ ≤ 1, where

log is the usual logarithmic function on K.

Definition 2-2.11. Given A in Mn(K). We define log(A) to be the limit of the sequence
log1(A), log2(A), . . . , when the sequence converges.

Proposition 2-2.12. The following properties hold for the logarithmic function:

(i) log(In) = 0,

(ii) log(tA) = t(log(A)),

(iii) We have that log(A) is defined if and only if log(B−1AB) is defined, where B is
invertible, and we have that log(B−1AB) = B−1 log(A)B.

(iv) If A =

( a1 ... 0
...

...
...

0 ... an

)

is diagonal, then log(A) =

(

log(a1) ... 0

...
...

...
0 ... log(an)

)

.

(iv) log(A) log(B) = log(B) log(A), when AB = BA, and log(A), log(B) and log(AB)
are defined.

Proof. All the assertions are easily proved by methods similar to those used in the proof
of Proposition 2-2.8. For the last assertion we note that when AB = BA the partial sums
logm(A) logm(B) and logm(B) logm(A) are actually equal.

Remark 2-2.13. The logarithmic defines a continuous map log : B(In, 1) → Mn(K). This
follows from the inequality ‖ 1

m
Xm‖ ≤ 1

m
‖X‖m, since the sequence log(1 − x) = −(x +

1
2
x2 + · · · ) converges for |x| < 1 (see Exercise 2-2.3). In Section 2-4 we shall show that the

logarithmic function is analytic. Hence, in particular, it is differentiable with an analytic
derivative.

Most of the properties of the usual exponential and logarithmic functions hold for the
more general functions on matrices. These properties can be proved by similar, but more
complicated, methods to those used in analysis. The formal manipulations of series can
however be quite complicated. We shall instead choose to deduce the properties of the
exponential and logarithmic functions for the matrices from those of calculus by geometric
methods. The idea is that such deductions are immediate for diagonalizable matrices and
that, since the functions are continuous, there are sufficiently many diagonalizable matrices
for the properties to hold for all matrices.

Exercises

2-2.1. Determine the matrices exp ( 1 1
0 1 ), and exp ( 1 1

4 1 ).

2-2.2. Show that in a metric space every convergent sequence is a Cauchy sequence.
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2-2.3. Let X be a set, S a subset, and (Y, dY ) a metric space. A sequence f0, f1, . . . of functions
fm : S → Y converges uniformly to a function f : S → Y if, for every positive real number ε there
is an integer m such that dY (f(x), fp(x)) < ε, for p > m and all x ∈ S. A sequence f0, f1, . . .
satisfies the Cauchy criterion if, for every positive real number ε, there is an integer m such that
dY (fp(x), fq(x)) < ε, for p, q > m, and all x in S.

(i) Show that a sequence f0, f1, . . . of functions fm : S → Y that converges to a function
f : S → Y , satisfy the Cauchy criterion.

(ii) Assume that (Y, dY ) is complete. Show that a sequence f0, f1, . . . of functions fm : S → Y
that satisfies the Cauchy criterion converges to a function f : S → Y .

(iii) Let f0, f1, . . . be a sequence of functions fm : S → Y such that ‖fm(x)‖ ≤ am, for m =
0, 1, . . . , where

∑∞
m=0 am is a convergent sequence. Show that the sequence {sm(x) =

f0(x) + · · · + fm(x)}m=0,1,... converges uniformly.

(iv) Let (X, dX ) be a metric space and let f0, f1, . . . be a sequence of continuous functions
fm : X → Y . If the sequence converges uniformly to a function f : X → Y , then f is
continuous.

2-2.4. Let X be an upper triangular matrix with zeroes on the diagonal. Show that the equality
exp(X) = In + 1

1!X + · · · + 1
(n−1)!X

n−1 holds.

2-3 Diagonalization of matrices and the exponential and loga-

rithmic functions

The easiest way to prove the properties of the exponential and logarithmic functions for
matrices is to deduce them from the corresponding properties of the usual exponential and
logarithmic functions. From properties (v) and (vi) of Proposition 2-2.8 and properties
(iii) and (iv) of Proposition 2-2.12 it follows that the properties of the usual exponential
and logarithmic functions are inherited by the diagonalizable matrices. Then we use that
the exponential and logarithmic functions are continuous and that there are diagonalizable
matrices sufficiently near all matrices, to the deduce the desired properties for all matrices.

Definition 2-3.1. A subset S of a metric space (X, d) is dense, if every ball B(x, ε) in
X contains an element in S. Equivalently, S is dense if every nonempty open set in X
contains an element of S.

Lemma 2-3.2. Let (X, dX) and (Y, dY ) be metric spaces, and T a dense subset of X.
Moreover, let f and g be continuous functions from X to Y . If f(x) = g(x) for all x in T ,
then f(x) = g(x), for all x in X.

Proof. Assume that the lemma does not hold. Then there is a point x in X such that
f(x) 6= g(x). Let ε = dY (f(x), g(x)). The balls B1 = B(f(x), ε

2
) and B2 = B(g(x), ε

2
) do

not intersect, and the sets U1 = f−1(B1) and U2 = g−1(B2) are open in X and contain x.
Since T is dense we have a point y in T contained in U1∩U2. We have that z = f(y) = g(y)
and consequently, z is contained in both B1 and B2. This is impossible since B1 and B2

42



are disjoint. Consequently there is no point x such that f(x) 6= g(x), and we have proved
the lemma.

Definition 2-3.3. We say that a matrix X in Mn(K) is diagonalizable if there is an
invertible matrix B such that B−1XB is diagonal.

Proposition 2-3.4. Given a matrix X in Mn(C). Then there exists a matrix Y , complex
numbers di and ei, for i = 1, . . . , n, with the ei all different, and a real positive number ε
such that, for all nonzero t ∈ C with |t| < ε, we have that X + tY is diagonalizable and
with diagonal matrix whose (i, i)’th coordinate is di + tei, for i = 1, . . . , n.

Proof. The proposition clearly holds when n = 1. We shall proceed by induction on n.
Assume that the proposition holds for n− 1. Choose an eigenvalue d1 of X and a nonzero
eigenvector x1 for d1. That is, we have Xx1 = d1x1. It follows from Theorem 1-6.9 that
we can choose a basis x1, . . . , xn of V n

K
. With respect to this basis the matrix X takes the

form X =
(

d1 a
0 X1

)

, where a = (a12, . . . , a1n) and where X1 is an (n− 1) × (n− 1) matrix.
By the induction hypothesis there is a matrix Y1, elements di and ei of C, for i = 2, . . . , n,
where the ei are all different, and an ε1 such that, for all nonzero |t| < ε1 there is a matrix
C1(t) such that X1 + tY1 = C1(t)D1(t)C1(t)

−1, where D1(t) is the (n−1)× (n−1) diagonal
matrix with (i−1, i−1)’th entry di+ tei for i = 2, . . . , n. The equality can also be written

(X1 + tY1)C1(t) = C1(t)D1(t). (2-3.4.1)

Let
X =

(

d1 a
0 X1

)

, Y =
(

e1 0
0 Y1

)

, C(t) =
(

1 c(t)
0 C1(t)

)

, D(t) =
(

d1+te1 0
0 D1(t)

)

,

where c(t) = (c12(t), . . . , c1n(t)), for some elements c1i(t) of K. Note that detC(t) =
detC1(t) for all t 6= 0 such that |t| < ε1, so that the matrix C(t) is invertible for any choise
of the elements c1i(t) of K. Let X(t) = X + tY . We shall determine the numbers c1i(t)
and e1 such that the equation

X(t)C(t) = C(t)D(t), (2-3.4.2)

holds. We have that

X(t)C(t) =
(

d1+te1 a
0 X1+tY1

)

(

1 c(t)
0 C1(t)

)

=
(

d1+te1 (d1+te1)c(t)+a′(t)
0 (X1+tY1)C1(t)

)

,

where a′(t) = (
∑n

i=2 a1ici2(t), . . . ,
∑n

i=2 a1icin(t)). On the other hand we have that

C(t)D(t) =
(

1 c(t)
0 C1(t)

)(

d1+te1 0
0 D1(t)

)

=
(

d1+te1 c′(t)
0 C1(t)D1(t)

)

,

where c′(t) = ((d2 + te2)c12(t), . . . , (dn + ten)c1n(t)). Since the Equation 2-3.4.1 holds the
Equality 2-3.4.2 holds exactly when

(d1 + te1)c1i(t) + a12c2i(t) + · · · + a1ncni(t) = (di + tei)c1i(t), (2-3.4.3)
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for i = 2, . . . , n. Choose e1 different from all the e2, . . . , en. Then each equation d1 + te1 =
di+ tei has exactly one solution t = −(di−d1)/(ei− e1), and we can choose an ε < ε1 such
that for a nonzero t with |t| < ε we have that (di − d1) + t(ei − e1) 6= 0. Then

c1i(t) =
1

(di − d1) + t(ei − e1)
(a12c2i(t) + · · · + a1ncni(t)), for i = 2, . . . n

solve the equations 2-3.4.3, and we have proved the proposition.

Corollary 2-3.5. The subset of Mn(C) consisting of diagonalizable matrices is dense in
Mn(C).

Proof. Given an element X of Mn(C). If follows from the proposition that we can find
diagonalizable matrices X + tY for sufficiently small nonzero t. We have that ‖X + tY −
X‖ = |t|‖Y ‖. Consequently we can find diagonalizable matrices in every ball with center
X.

Theorem 2-3.6. Let U be the ball B(In, 1) in Gln(K) and let V = log(U). The following
five properties hold:

(i) log expX = X, for all X ∈ Mn(K) such that log expX is defined.

(ii) exp logA = A, for all A ∈ Gln(K) such that logA is defined.

(iii) det expX = exp trX, for all X ∈ Mn(K), where tr(aij) =
∑n

i=1 aii.

(iv) The exponential map exp : Mn(K) → Gln(K) induces a homeomorphism V → U .
The inverse map is log |U .

(v) log(AB) = logA+logB, for all matrices A and B in U such that AB ∈ U , and such
that AB = BA.

Proof. To prove assertion (i) we first note that log expX and X are continuous maps from
V to Mn(C). It follows from Proposition 2-3.4 that the diagonalizable matrices are dense
in V . Consequently, it follows from Lemma 2-3.2 that it suffices to prove the assertion
when X is a diagonalizable matrix. From Proposition 2-2.8 (v) and Proposition 2-2.12 (iii)
it follows that Y −1(log expX)Y = log(Y −1(expX)Y ) = log exp(Y −1XY ). Consequently
it suffices to prove assertion (i) for diagonal matrices. It follows from 2-2.8 (v) and 2-2.12
(iv) that

log exp

( a1 ··· 0
...

...
...

0 ··· an

)

= log

( exp a1 ··· 0

...
...

...
0 ··· exp an

)

=

(

log exp a1 ··· 0

...
...

...
0 ··· log exp an

)

=

( a1 ··· 0
...

...
...

0 ··· an

)

.

Hence we have proved the first assertion.
To prove assertion (ii) we use that exp logA and A are continuous functions from U to

Mn(C). Reasoning as in the proof of assertion (i) we see that it suffices to prove assertion
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(ii) for diagonal matrices. The verification of the assertion for diagonal matrices is similar
to the one we used in the proof for diagonal matrices in assertion (i).

To prove assertion (iii) we use that det expX and exp trX are continuous functions
from Mn(C) to Mn(C). We have that det(Y −1XY ) = detX and tr(Y −1XY ) = trX, for
all invertible Y (see Exercise 2-3.1). It follows, as in the proofs of assertions (i) and (ii)
that it suffices to prove assertion (iii) for diagonal matrices. However,

det exp

( a1 ··· 0
...

...
...

0 ··· an

)

= det

( exp a1 ··· 0

...
...

...
0 ··· exp an

)

= exp(a1) · · · exp(an),

and

exp tr

( a1 ··· 0
...

...
...

0 ··· an

)

= exp(a1 + · · ·+ an) = exp(a1) · · · exp(an).

Hence we have proved assertion (iii).
Assertion (iv) follows from assertions (i) and (ii) since exp and log are continuous.
Finally, to prove assertion (v), we give A and B in U , such that AB is in U . It

follows from assertion (iv) that we can find X and Y in Mn(K) such that A = expX, and
B = expY . Consequently it follows from assertion (iv) that X = logA and Y = logB.
From Proposition 2-2.12 (v) that XY = logA logB = logB logA = Y X. Consequently it
follows from Proposition 2-2.8 (ii) it follows that exp(X + Y ) = exp(X) exp(Y ). Hence it
follows from assertion (i) that log(AB) = log(expX expY ) = log(exp(X+Y )) = X+Y =
logA+ logB, and we have proved the last assertion.

Part (iv) of Theorem 2-3.6 is a particular case of a much more general result that we
shall prove in Chapter 3. We shall next show that a similar assertion to Theorem 2-3.6
(iv) holds for the matrix groups Gln(K), Sln(K), and GS(K), when S is invertible. First
we shall introduce the relevant subspaces of Mn(K).

Definition 2-3.7. Let gln(K) = Mn(K). We let

sln(K) = {X ∈ gln(K)| trX = 0},

where as usual the trace trX of a matrix X = (aij) is defined by trX =
∑n

i=1 aii.
Let S be a matrix in Mn(K). We let

gS(K) = {X ∈ gln(K)|tXS + SX = 0}.

In the special cases when S = In, or S is the matrix of Display 1-4.1.1 we denote gS(K)
by son(K) respectively spn(K).

Remark 2-3.8. All the sets sln(K) and gS(K) are subspaces of gln(K). We also note that
son(K) is a subspace of sln(K) because tr tA = trA, so that 2 trA = 0, and we always
assume that 2 is invertible in K when we treat the orthogonal groups.
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Proposition 2-3.9. Assume that S is invertible. We have that the exponential map

exp : Mn(K) → Gln(K)

induces maps
exp : sln(K) → Sln(K),

and
exp : gS → GS(K).

Let G be any of the groups Gln(K), Sln(K) or GS(K). Then there is a neighborhood U of
In in G, on which log is defined, such that exp induces an homeomorphism log(U) → U .
The inverse of exp |log(U) is given by log |U .

In particular we have maps

exp : son → On(K),

exp : son → SOn(K),

and
exp : spn(K) → Spn(K),

and if G is one of the groups On(K), SOn(K) or Spn(K), there is an open subset U of G,
such that these maps induce a homeomorphism log(U) → U with inverse log |log(U).

Proof. We have already proved the assertions of the proposition for Gln(K). To prove
them for Sln(K) we take X in sln. It follows from assertion (iii) Theorem 2-3.6 that
det expX = exp trX = exp 0 = 1. Consequently, we have that expX is in Sln(K),
as asserted.

To prove the second assertion about Sln(K) we take A in U ∩ Sln(K). It follows
from assertion (iii) of Theorem 2-3.6 that, when detA = 1, we have that exp tr logA =
det exp logA = detA = 1. Consequently, we have that tr logA = 0. For the last assertion
we may, in the complex case, have to shrink U in order to make sure that | tr logA| < 2π.
We have shown that exp induces a bijective map sln(K)∩ log(U) → Sln(K)∩U . Both this
map and its inverse, induced by the logarithm , are induced by continuous maps, and the
metric on Sln(K) and sln(K) are induced by the metrics on Gln(K) respectively gln(K).
Consequently, the induced map and its inverse are continuous and therefore homeomor-
phisms.

Let X be in gS(K). That is, we have tXS + SX = 0. Since S is assumed to be
invertible, the latter equation can be written S−1tXS + X = 0. Since S−1tXS = −X we
have that S−1tXS and X commute. Hence we can use assertion (ii) of Proposition 2-2.8 to
obtain equalities In = exp(S−1tXS + X) = exp(S−1tXS) expX = S−1(exp tX)S expX =
S−1texpXS expX. Consequently texpXS expX = S. That is, expX is in GS(K), as
asserted.

To prove the second assertion about GS(K) we take A in GS(K). Then tASA = S
or equivalently, S−1tASA = In. Consequently we have that log((S−1tAS)A) = 0. We
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have that S−1tAS is the inverse matrix of A, and hence that S−1tAS and A commute.
Since the map of Gln(K) that sends A to tA is continuous, as is the map that sends A to
S−1AS, we can choose U such that log is defined on S−1tAS. It follows from assertion (v)
of Theorem 2-3.6 that log((S−1tAS)A) = log(S−1tAS) + logA = S−1(log tA)S + logA =
S−1tlogAS + logA. We have proved that S−1tlogAS + logA = 0. Multiply to the left
with S. We get tlogAS + S logA = 0. That is logA is in gS(K). We have proved that
exp induces a bijective map gS(K)∩ exp−1(U) → GS(K)∩U . A similar argument to that
used for Sln(K) proves that this bijection is a homeomorphism. Hence we have proved the
second assertion of the proposition forGS(K).

All that remains is to note that SOn(K) is an open subset of On(K) containing In.

Exercises

2-3.1. Show that for all matrices X and Y in Mn(K), where Y is invertible, we have that
tr(Y −1XY ) = tr X.

2-4 Analytic functions

We shall, in this section, introduce analytic functions and study their basic properties. The
exponential and logarithmic functions are analytic and we shall see how the properties of
the matrix groups that were discussed in Section 2-2 can then be reinterpreted as asserting
that the matrix groups are analytic manifolds.

2-4.1. Let I be the set of n-tuples i = (i1, . . . , in) of nonnegative integers ik and let R denote
the set of n-tuples r = (r1, . . . , rn) of positive real numbers ri. For each r = (r1, . . . , rn)
and each n-tuple of variables x = (x1, . . . , xn), we write ri = ri11 · · · rinn and xi = xi11 · · ·xinn .
Moreover, we write |i| = i1 + · · ·+ in and for j in I we write

(

j

i

)

=
(

j1
i1

)

· · ·
(

jn
in

)

.
For any two n-tuples of real numbers r = (r1, . . . , rn) and s = (s1, . . . , sn), we write

r < s if ri < si for i = 1, . . . , n and for x = (x1, x2, . . . , xn) in Kn, we denote by |x| the
n-tuple (|x1|, |x2|, . . . , |xn|).

We shall, in the following, use polydiscs instead of balls. As we shall see, these are
equivalent as far as topological and metric properties, like openness and analyticity, is
concerned. However, for analytic functions polydiscs are notationally more convenient
than balls.

Definition 2-4.2. Let r be in R and x in Kn. The open polydisc P (x, r) around x with
radius r is the set

{y ∈ Kn : |x− y| < r}.

Remark 2-4.3. Given a polydisc P (x, r), and let ǫ = mini ri. Then we have that B(x, ǫ) ⊆
P (x, r), where B(x, ǫ) is the ball in Kn with respect to the norm of Definition 2-1.1, with
C = 1. Conversely, given a ball B(x, ǫ) we have that P (x, r) ⊆ B(x, ǫ), with r = (ǫ, . . . , ǫ).
It follows that every polydisc is open and conversely that every ball can be covered by
polydiscs. Hence a set is open if and only if it can be covered by polydiscs.
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Definition 2-4.4. We say that a formal power series (see Exercise 1-3.4 and Example 1-
3.7)

∑

i∈I

cix
i,

with coefficients in K converges in the polydisc P (0, r) if the sequence

sm =
∑

|i|≤m

|ci|r′i

converges for all r′ < r. It follows that sn(x) =
∑

|i|≤n cix
i converges uniformly in P (0, r′)

(see Exercise 2-2.3). In particular the series defines a continuous function

f(x) =
∑

i∈I

cix
i

in P (0, r).

2-4.5. We note that the function f(x) is zero for all x where it is defined, if and only if
ci = 0, for all i ∈ I. Indeed, this is clear for n = 1 and follows in the general case by
induction on n.

Let r′ < r and let C =
∑

i∈I |ci|r′i. Then

|cir′i| ≤ C for all i ∈ I.

Conversely, given a formal power series
∑

i∈I cix
i, such that

|ci|ri ≤ C,

for some C, then
∑

i∈I cix
i converges uniformly in P (0, r′) for all r′ < r. In particular

∑

i∈I cix
i converges in P (0, r). Indeed, we have that

∑

i∈I

|ci|r′i =
∑

i∈I

|ci|ri
r′i

ri
≤ C

∑

i∈I

r′i

ri
= C

n
∏

i=1

(1 − r′i
ri

)−1.

Definition 2-4.6. Let U be an open subset of Kn. A function

g : U → K

is analytic in U if, for each x in U , there is an r in R and a formal power series f(x) =
∑

i∈I cix
i which is convergent in P (0, r), such that

g(x+ h) = f(h) for all h ∈ P (0, r)such that x+ h ∈ U.

A function
g = (g1, . . . , gm) : U → Km

is analytic, if all the functions gi are analytic.
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Example 2-4.7. All maps Φ : Kn → Km which are given by polynomials, that is Φ(x) =
(f1(x), . . . , fm(x)), where the fi are polynomials in n variables, are analytic.

Example 2-4.8. It follows from the estimates of of Paragraphs 2-2.3 and 2-2.10, and the
definitions of the exponential and logarithmic functions in Definitions 2-2.4 and 2-2.11,
that the exponential and logarithmic functions are analytic.

Proposition 2-4.9. Let f(x) =
∑

i∈I cix
i be a formal power series which is convergent in

P (0, r). We have that

(i) Dif =
∑

j≥i cj
(

j

i

)

xj−i is convergent in P (0, r).

(ii) For x in P (0, r) the series
∑

i∈I D
if(x)hi converges in P (0, r− |x|).

(iii) We have that

f(x+ h) =
∑

i∈I

Dif(x)hi for h ∈ P (0, r− |x|).

In particular we have that f is analytic in P (0, r).

Proof. Let x ∈ P (0, r). Choose an r′ such that |x| ≤ r′ < r and let s = r − r′. We have
that

(x+ h)j =
∑

i≤j

(

j

i

)

xj−ihi.

Hence, we obtain that

f(x+ h) =
∑

j∈I

cj

(

∑

i≤j

(

j

i

)

xj−ihi

)

for h ∈ P (0, s).

For |h| ≤ s′ < s we have that

∑

j∈I

∑

i≤j

|ci
(

j

i

)

xj−ihi| ≤
∑

j∈I

∑

i≤j

|cj |
(

j

i

)

r′
j−i
s′
i
=
∑

j∈I

|cj|(r′ + s′)j <∞. (2-4.9.1)

The last inequality of Formula 2-4.9.1 holds since f converges in P (0, r) and r′ + s′ < r.
Assertions (i) and (ii) follow from the above inequality. Moreover, it follows from the
inequality 2-4.9.1 that we can rearrange the sum in the above expression for f(x + h).
Consequently

f(x+ h) =
∑

i∈I

(

∑

i≤j

cj

(

j

i

)

xj−i

)

hi =
∑

i∈I

Dif(x)hi.

and we have proved the proposition.
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2-4.10. Let V be an open subset in Kp and g : V → Kn an analytic function such that
g(V ) ⊆ U . Then the composite function fg : V → Km of g with f : U → Km, is analytic.
Indeed, it suffices to consider a neighborhood of 0 in Kp, and we can assume that g(0) = 0,
and f(0) = 0, and that m = 1. Let f(x) =

∑

i∈I cix
i be a convergent series in P (0, s),

for some s in R and g = (g1, . . . , gn), with gk(y) =
∑

j∈J dk,jy
j, be an n-tuple of series

that are convergent in P (0, r) for some r in R, and where J are p-tuples of positive real
numbers. Choose r′ < r such that

∑

i∈J

|dk,i|r′i <
sk
2

for k = 1, . . . , n.

Then, for h ∈ P (0, r), we have that

∑

i∈I

|ci|(
∑

j∈J

|d1,j||h|j, . . . ,
∑

j∈J

|dn,j||h|j)i ≤
∑

i∈I

|ci|
(s

2

)i

<∞.

Consequently, we have that
∑

i∈I

ci(
∑

j∈J

d1,jy
j, . . . ,

∑

j∈J

dn,jy
j)i (2-4.10.1)

converges in P (0, r′), and the series 2-4.10.1 represents fg(y).

Definition 2-4.11. Let U be an open subset of Kn and let

f : U → Km

be a function. If there exists a linear map A : Kn → Km such that

lim
‖h‖→0

‖f(x+ h) − f(x) − Ah‖
‖h‖ = 0,

where ‖h‖ = maxi |hi|, we say that f is differentiable at x. Clearly, A is unique if it
exists, and we write f ′(x) = A and call f ′(x) the derivative of f at x. We say that f is
differentiable in U if it is differentiable at each point of U .

Remark 2-4.12. Usually the linear map f ′(x) is represented by anm×nmatrix with respect
to the standard bases of Kn and Km and the distinction between the matrix and the map
is often suppressed in notation. The matrix f ′(x) is referred to as the Jacobian of the map
f .

When f = (f1, . . . , fm) we have that f is differentiable, if and only if all the fi are
differentiable, and we have that f ′ = (f ′

1, . . . , f
′
m).

Proposition 2-4.13. Let f : U → K be an analytic function defined on an open subset U
of Kn, and let f(x) =

∑

i∈I cix
i. Then f(x) is differentiable in U and the derivative f ′(x)

is an analytic function f ′ : U → K given by

f ′(x)h =
∑

|i|=1

Dif(x)hi =
∑

j≥i,|i|=1

cj

(

j

i

)

xj−ihi, for all h ∈ Kn,

with the notation of Proposition 2-4.9.
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Proof. It follows from Proposition 2-4.9 (iii) that f(x+ h) − f(x) −∑|i|=1D
if(x)hi is an

analytic function of h in P (0, r) whose terms in h of order 0 and 1 vanish. Consequently
we have that

lim
‖h‖→0

‖f(x+ h) − f(x) −∑|i|=1D
if(x)hi‖

‖h‖ = 0,

that is f ′(x)h =
∑

|i|=1D
if(x)hi. It follows from Proposition 2-4.9 that f ′(x) is analytic.

Remark 2-4.14. Let m = 1 and let f be analytic. For i = 1, . . . , n we let ∂f

∂xi
(x) be the

(1, i)’th component of the 1 × n matrix A. It follows from Proposition 2-4.13 that

∂f

∂xi
(x) = D(0,...,1,...,0)f(x),

where the 1 in the exponent of D is in the i’th place. Consequently, we have that

f ′(x) =

(

∂f

∂x1
, . . . ,

∂f

∂xn

)

.

For any m and with f = (f1, . . . , fm) we obtain that f ′(x) is the m× n matrix f ′(x) =

(∂
jfi

∂xj
).

When g : V → Kn is an analytic function from an open subset V in Kp, Formula
2-4.10.1 shows that for x in V we have that

(fg)′(x) = f ′(g(x))g′(x) (2-4.14.1)

Example 2-4.15. We have that the derivative exp′(X) of the exponential function at X
is equal to exp(X). Indeed, it follows from Example 2-4.8 and Proposition 2-4.13, that
both exp′(X) and exp(X) are analytic, hence continuous. Consequently, it follows from
Lemma 2-3.2 that is suffices to show the equality on diagonalizable matrices. However,
we have that (Y −1 exp(X)Y )′(X) = Y −1(exp)′(X)Y (see Exercise 2-4.2), for all invertible
Y . It follows from assertion (v) of Proposition 2-2.8 that it suffices to prove the equality
exp′(X) = exp(X) for diagonal matrices. The latter equality follows from the sequence of
equalities:

(

exp

( x1 ··· 0
...

...
...

0 ··· xn

))′

=

( expx1 ··· 0

...
...

...
0 ··· expxn

)′

=

(

exp′ x1 ··· 0

...
...

...
0 ··· exp′ xn

)

=

( exp x1 ··· 0

...
...

...
0 ··· exp xn

)

= exp

( x1 ··· 0
...

...
...

0 ··· xn

)

.

Remark 2-4.16. Let G be one of the groups Gln(K), Sln(K) or GS(K), for some invert-
ible S. It follows from Proposition 2-3.9 that for each matrix group G there is an open
neighborhood U of the identity, and an open subset V of some vector space, such that the
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exponential function induces an isomorphism exp: V → U , with inverse log |U . Let A be an
element in G. There is a map λA : G→ G, called left translation, defined by λA(B) = AB.
The left translations are given by polynomials, hence they are analytic. The left translation
λA induces a homeomorphism λA|U : U → λA(U) onto the open neighborhood λA(U) of A,
with inverse λA−1. Consequently, for each A, we have a homeomorphism ϕA : V → UA onto
some neighborhood of A. Clearly, if we have another such homeomorphism ϕB, such that
UA ∩ UB 6= ∅, we have that the map ϕ−1

A (UA ∩ UB) → ϕ−1
B (UA ∩UB) induced by ϕ−1

B ϕA, is
an analytic map. We summarize these properties by saying that G is an analytic manifold.

Exercises

2-4.1. Let X = ( 1 1
0 1 ). For every positive real number ǫ, find a matrix Y in Mn(C) such that Y

is diagonizable and ‖Y − X‖ < ǫ. Can you find a matrix Y in Mn(R) which is diagonizable and
such that ‖Y − X‖ < ǫ, when ǫ is some small positive real number?

2-4.2. Let X be a matrix of the form X(x) = (fij(x)), where the functions fij : V n
K

→ K are
analytic, and let Y be an invertible matrix with coefficients in K. Show that the the derivative
(Y −1XY )′ of the function Y −1XY : V n

K
→ Mn(K), which takes x to Y −1X(x)Y , is equal to

Y −1X ′(x)Y .

2-5 Tangent spaces of matrix groups

We shall, in this section, determine the tangent spaces of all the matrix groups that we
have encountered so far.

Definition 2-5.1. A curve in V n
K

is an analytic map γ : B(a, r) → V n
K

, from some ball
B(a, r) in K. The it tangent of the curve γ at γ(a) is the vector γ′(a).

Let γ : B(a, r) → Mn(K) be a curve and let G be one of the matrix groups Gln(K),
Sln(K), or GS(K), for some invertible S. We say that γ is acurve in G if γ(B(a, r)) is in
G and if γ(a) = In.

The tangent space TIn(G) of G is the set of the tangent vector at a for all curves
γ : B(a, r) → Mn(K) in G.

Remark 2-5.2. Since SOn(K) is an open subset of On(K) containing In, we have that
SOn(K) and On(K) have the same tangent space.

Example 2-5.3. Given a matrixX, the derivative exp′(tX) of the curve γ(t) : K → Mn(K)
that is defined by γ(t) = exp(tX) is equal to X exp tX (see Exercise 2-5.3). When X is in
gln(K), sln(K) or gS(K), for some S, it follows from Proposition 2-3.9 that γ has image
contained in Gln(K), Sln(K) or GS(K), respectively.

In particular, the tangent spaces of Gln(K), Sln(K), On(K), SOn(K) and Spn(K)
contain the vector spaces gln(K), sln(K), son(K), son(K), and spn(K), respectively.

We shall next show that the inclusions of spaces of Example 2-5.3 are equalities.
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Proposition 2-5.4. The tangent spaces at In of the matrix groups Gln(K), Sln(K) or
GS(K), where S is an invertible matrix, are the vector spaces gln(K), sln(K), and gS(K)
respectively.

In particular, the tangent spaces of On(K), SOn(K) and Spn(K) are son(K), son(K),
and spn(K) respectively.

Proof. Let G be one of the groups Gln(K), Sln(K), or GS(K), and let γ : B(a, r) → Mn(K)
be a curve from a ball B(a, r) in K, such that γ(a) = In. It follows from Exercise 2-5.3
that is suffices to show that, when the image of γ is in G, the derivative γ′(a) is in gln(K),
son(K) or gS(K), respectively.

For Gln(K) this is evident since the tangent space is the whole of gln(K) = Mn(K). If
the image of γ is in Sln(K), we have that det γ(t) = 1 for all t in B(a, r). We differentiate
the last equality and obtain that 0 = (det γ)′(a) = tr(γ′)(a) (see Exercise 2-5.1), that is,
γ′(a) is in sln(K).

Let γ be in GS(K). That is, we have tγ(t)Sγ(t) = S, for all t in B(a, r). We have
that tγ′(t)Sγ(t) + tγ(t)Sγ′(t) = 0, for all t in B(a, r) (see Exercise 2-5.2). Consequently,
we have that tγ′(0)Sγ(0) + tγ(0)Sγ′(0) = tγ′(0)SIn + tInSγ

′(0) = tγ′(0)S + tSγ′(0), and we
have proved the last part of the proposition.

For the last part of the proposition it suffices to note that it follows from Remark 2-5.2
that SOn(K) and On(K) have the same tangent space.

Definition 2-5.5. Let G be one of the groups Gln(K), Sln(K), or GS(K), where S is
invertible. The dimension dimG is the dimension of the vector space TIn(G).

Proposition 2-5.6. The dimensions of the matrix groups are:
dim Gln(K) = n2, dim Sln(K) = n2 − 1, dim On(K) = dim SOn(K) = n(n−1)

2
, and

dim Spn(K) = n(n+1)
2

.

Proof. We shall use the description of the tangent spaces of Proposition 2-5.4.
The dimension of gln(K) = Mn(K) is clearly n2. That the dimension of the space

sln(K) of matrices with trace zero is n2 −1 follows from Exercise 2-5.4. The spaces On(K)
and SOn(K) have the same tangent space son(K) consisting of skew-symmetric matrices.

It follows from Exercise 2-5.5 that this dimension is n(n−1)
2

.
The space spn(K) consists of invertible matrices X such that tXS + SX = 0, where

S is the matrix of the form 1-4.1.1. We have that the map Mn(K) → Mn(K) that sends
a matrix X to SX is an isomorphism (see Exercise 2-5.6). The latter map sends spn(K)
isomorphically onto the space of symmetric matrices. Indeed, we have that tXS + SX =
−tX tS + SX = SX − t(SX). However, the space of symmetric matrices has dimension
n(n+1)

2
(see Exercise 2-5.7).

We summarize the results of Sections 2-5 and 1-10 in Table 1:

Exercises
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Group n Center Dim.
Gln(C) arb. K∗ n2

Sln(C) arb. Z/nZ n2 − 1

On(C) arb. {±1} n(n−1)
2

SOn(C) even {±1} n(n−1)
2

SOn(C) odd 1 n(n−1)
2

Spn(C) arb. {±1} n(n+1)
2

Table 1: The classical groups over the complex numbers

2-5.1. Given an n × n matrix X(x) = (fij(x)), where the coordinates are analytic functions
fij : B(b, s) → K on a ball B(b, s) in V m

K
. We obtain an analytic function det : B(b, s) → K.

Show that

(det X)′(x) =
n
∑

i=1

det

(

f11(x) ... f ′1i(x) ... f1n(x)

...
...

...
fn1(x) ... f ′ni(x) ... fnn(x)

)

.

Assume that X(0) = In. Show that (det X)′(0) =
∑n

i=1 f ′
ii(0) = tr(X ′)(0).

2-5.2. Let X(t) = (fij(t)) and Y (t) = (gij(t)) be functions B(a, r) → Mn(K) given by analytic
functions fij and gij on a ball B(a, r) in K. Show that (XY )′(t) = X ′(t)Y (t) + X(t)Y ′(t).

2-5.3. Let X be a matrix in Mn(K). Show that the tangent of the curve γ : K → Mn(K) given
by γ(t) = exp(tX) at t is X exp(tX).

2-5.4. Show that the vector space of matrices in Mn(K) with trace zero, that is with the sum of
the diagonal elements equal to zero, has dimension n2 − 1.

2-5.5. Show that the vector space of matrices in Mn(K) consisting of skew-symmetric matrices

has dimension n(n−1)
2 .

2-5.6. Fix a matrix B in Gln(K). Show that the map Mn(K) → Mn(K) that sends a matrix X
to the matrix BX is an isomorphism of vector spaces.

2-5.7. Show that the subset of Mn(K) consisting of symmetric matrices is a vector space of

dimension n(n+1)
2 .

2-5.8. Which of the groups Gln(K), Sln(K), On(K), SOn(K), and Spn(K), can be distinguished
by the table of this section.

2-5.9. Determine the the dimension and a basis of the tangent space gS(R) of the Lorentz group

defined by the matrix S =
(

In−1 0
0 −1

)

.
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2-6 Lie algebras of the matrix groups

Remark 2-6.1. In addition to the usual matrix multiplication on the space of matrices
Mn(K) we have a map

[ , ] : Mn(K) × Mn(K) → Mn(K)

defined by [A,B] = AB − BA. It is easy to check (see 2-6.1) that [ , ] is an alternating
bilinear map which satisfies the Jacobi Identity

[

A, [B,C]
]

+
[

C, [A,B]
]

+
[

B, [C,A]
]

= 0, for all A,B,C ∈ Mn(K)

We summarize these properties by saying that Mn(K) is a Lie algebra. When Mn(K) is
considered as a Lie algebra we shall denote it by gln(K). A subspace V of Mn(K) such
that [A,B] ∈ V , for all A and B in V , is called a Lie subalgebra of Mn(K). Clearly the
Jacobi Identity holds for all elements in V . Hence V is itself a Lie algebra.

Example 2-6.2. The tangent spaces gln(K), sln(K), and gS(K), when S is invertible, of
Gln(K), Sln(K), and GS(K) respectively, are all Lie subalgebras of gln(K).

In particular, the tangent spaces son(K), son(K), and spn(K) of On(K), SOn(K), and
Spn(K) respectively, are Lie subalgebras of gln(K).

It follows from Exercise 2-6.2 that sln(K) is a Lie subalgebra of gln(K). That gS(K)
is a Lie subalgebra of gln(K) follows from the calculation [A,B]S + St[B,A] = (AB −
BA)S+St(AB − BA) = ABS−BAS+StBtA−StAtB = AStB−BStA+StBtA−StAtB =
StAtB − StBtA + StBtA− StAtB = 0.

Exercises

2-6.1. Show that the Properties (i)-(v) of Remark 2-6.1 hold for Mn(K).

2-6.2. Show that the subspace of matrices of Mn(K) with trace zero is a Lie algebra.

2-6.3. Let V = K
3 and define [, ] as the cross product from linear algebra, i.e.,

[(x1, y1, z1), (x2, y2, z2)] = (y1z2 − z1y2, z1x2 − x1z2, x1y2 − y1x2).

Show that V becomes a Lie algebra with this product.

2-6.4. Show that the tangent space so3(K) as a Lie algebra is isomorphic to the Lie algebra of
the previous problem.

2-6.5. In quantum mechanics, we have the Pauli spin matrices

1 = ( 1 0
0 1 ) , σx = ( 0 1

1 0 ) , σy =
(

0 −i
i 0

)

and σz =
(

1 0
0 −1

)

.

(i) Show that the set {1, σx, σy, σz} spans the Lie algebra gl2(C).

(ii) Show that the set {σx, σy, σz} spans a three dimensional sub Lie algebra of gl2(C) which
is identical to sl2(C).

(iii) Show that the Lie algebra of (ii) is isomorphic to the Lie algebras of the previous two
problems.
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2-7 One parameter subgroups of matrix groups

One parameter groups play an important part in the theory of Lie groups of Section 4. In
this section we determine the one parameter subgroups for matrix groups.

Definition 2-7.1. Let G be one of the matrix groups Gln(K), Sln(K) or GS(K), when
S is invertible. A one parameter subgroup of the matrix groups G is a curve γ : K → G,
which is also a group homomorphism. That is γ(t+ u) = γ(t)γ(u), for all t and u in K.

Example 2-7.2. Let X be a matrix in TIn(G). It follows from Example 2-5.3 that γ : K →
G defined by γ(t) = exp(tX) is a curve in G. Since tX and sX commute, it follows from
Proposition 2-2.8 (ii), that γ is a one parameter group.

We shall show that all one parameter groups of the matrix groups are of the form of
Example 2-7.2.

Proposition 2-7.3. Let G be one of the matrix groups Gln(K), Sln(K) or GS(K), for some
invertible matrix S. Then all one parameter groups of G are of the form γ(t) = exp(tX),
for some X in gln(K), sln(K) or gS(K), respectively.

Proof. Let γ : K → G be a one parameter group. It follows from Proposition 2-3.9 and
Example 2-4.8 that there is a neighborhood U of In in G such that the logarithm induces an
analytic function log : U → Mn(K). We obtain an analytic map log γ : B(a, r) → Mn(K),
on some ball B(a, r) in K, and log γ(a) = log(In) = 0. For all t and u in B(a, r), such that
t+ u is in B(a, r) we have that

log γ(t+ u) − log γ(t) − (log γ)′(t)tu = log(γ(t)γ(u)) − log(γ(t)) − (log γ)′(t)tu

= log(γ(t)) + log(γ(u)) − log(γ(t)) − (log γ)′(t)tu = log γ(u) − (log γ)′(t)tu.

Consequently, we have that

lim
|u|→0

‖ log γ(t+ u) − log γ(t) − (log γ)′(t)tu‖
‖u‖ = lim

|u|→0

‖ log γ(u) − (log γ)′(t)tu‖
‖u‖ = 0.

That is, we have (log γ)′(0) = (log γ)′(t). Hence (log γ)′(t) is constant equal to X =
(log γ)′(0) on some ball B(a, ε). We thus have that log γ(t) = tX. Using the exponential
function on log γ(t) = tX, and Theorem 2-3.6 (i), we obtain that γ(t) = exp(tX), for all t
in the ball B(a, ε). It follows that γ(t) = exp(tX) for all t. Indeed, given an element t of
K. Choose an integer n such that 1

n
t is in B(a, ε). Then we obtain that γ(t) = γ(n

n
t) =

γ( 1
n
t)n = exp( 1

n
tX)n = exp(n

n
tX) = exp(tX), which we wanted to prove.
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3 The geometry of matrix groups

In Chapter 2 we saw how the matrix groups can be made into analytic manifolds via the
exponential map. In the first part of this chapter we shall consider the manifold structure
from a different point of view. The main technique in this chapter will be the Implicit
Function Theorem for analytic functions. The approach is more general than that of
Chapter 2 and shows that all analytic sets with a group structure are manifolds.

In the second half of the present chapter we shall study manifolds, and in particular
their tangent spaces. The point is much more general than that of Section 2-5 and we shall
reconsider the results of that section from the more general point of view.

In the final sections of the chapter we consider connectedness and compactness of the
matrix groups.

Unless explicitly stated otherwise, the field K will be the real or the complex numbers
throughout this chapter.

3-1 The Inverse Function Theorem

We shall in this section prove the Inverse Function Theorem and show how several versions
of the Implicit Function Theorem is deduced from the inverse function theorem. Most of
these results are probably known for the differentiable case from a course in calculus of
several variables. The reason why we give proofs is that the analytic case, although easier,
is less standard in calculus books.

Theorem 3-1.1. (Inverse Function Theorem) Let W be an open subset of Kn and Φ : W →
Kn an analytic function. Given a point y in W such that Φ′(y) is invertible. Then there
exists an open neighborhood U of y in W and an open set V in Kn such that Φ is injective
on U and Φ(U) = V . Moreover the inverse function Φ−1 : V → Kn, defined by

Φ−1(Φ(x)) = x, for all x ∈ U ,

is analytic on V .

Proof. We may assume that y = Φ(y) = 0 and, following Φ with the analytic, linear,
function Φ′(0) : Kn → Kn, we may assume that

Φk(x) = xk −
∑

|i|>1

ckix
i = xk − ϕk(x), for k = 1, 2, . . . , n.

Moreover, we may replace Φ(x) by CΦ(x/C) for some positive real number C, and assume
that |cki| < 1 for all i in I.

Suppose that the analytic function Ψ = (Ψ1, Ψ2, . . . , Ψn), given by

Ψk(y) =
∑

i∈I

dkiy
i
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is an inverse function to Φ. Then Ψ must satisfy the equation

Ψk(y) =
∑

i∈I dkiy
i = yk + ϕk(Ψ (y))

= yk +
∑

|i|>1 cki(
∑

|j|>0 d1jy
j)i1 · · · (∑|j|>0 dnjy

j)in , for k = 1, . . . , n.

(3-1.1.1)
Comparing coefficients on both sides of the equation we see that dk(0,...,1,...,0) is 1 when the
1 in (0, . . . , 1, . . . , 0) is in the k’th coordinate, and 0 otherwise. Moreover, we see that dkj
is a linear combination with positive integral coefficients of monomials in the dmi and the
cmi with |i| < |j|. By induction on |i| we obtain that

dkj = Pkj(cmi), (3-1.1.2)

where Pki is a polynomial with positive integral coefficients that depend only on cmi, with
|i| < |j|. In particular we have that each Ψk is uniquely determined if it exist. The problem
is to show that the formal power series determined by the solutions of the equation 3-1.1.2
converges. To this end, assume that we can find real positive power series ϕ̄k =

∑

i∈I c̄kix
i,

for k = 1, . . . , n, which converge in some polydisc around 0 in Kn and which is such that
the unique power series Ψ̄k =

∑

i∈I d̄kix
i determined by the equation

d̄ki = Pki(c̄mj),

for k = 1, . . . , n, and hence satisfy

Ψ̄k(y) = yk + ϕ̄k(Ψ̄(y)), for k = 1, . . . , n,

converge in some polydisc around 0 and satisfy the conditions

|cki| ≤ c̄ki, for all k and i.

Then we have that

|dki| = |Pki(cmi)| ≤ Pki(|cmj|) ≤ Pki(c̄mj) = d̄ki,

since Pki has positive integral coefficients. Consequently Ψk is dominated by Ψ̄k and thus
converges for k = 1, . . . , n. It remains to find such series ϕ̄k, for k = 1, 2, . . . , n.

Assume that n = 1. We have that, for any positive real number p, the series

ϕ̄(p)(y) =
∞
∑

i=2

(px)i =
(px)2

1 − px
,

will satisfy the conditions. Indeed, it converges and satisfies |ci| ≤ c̄i, since |ci| ≤ 1. We
must show that the corresponding Ψ̄ (p) converges. However,

Ψ̄ (p)(y) = y +
(pΨ̄ (p)(y))2

1 − pΨ̄ (p)(y))
.
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Solving the latter equation we obtain that

Ψ̄ (p) =
1

2

(1 + yp) −
√

(1 + yp)2 − 4(p2 + p)y

p2 + p
,

which converges in a polydisc around 0.
Let n > 1 and put

ϕ̄k(x) =

∞
∑

i=2

(x1 + · · · + xn)
i =

(x1 + · · ·+ xn)
2

1 − (x1 + · · ·+ xn)
, for k = 1, 2, . . . , n.

Then ϕ̄k converges in a neighborhood of 0 and we have that |cki| < c̄ki for all k and i, since
|cki| < 1. Observe that Φ̄j(x) − Φ̄k(x) = xj − xk, for k 6= j. Hence, if we can find the
average of x1, . . . , xn, from Φ̄1(x), . . . , Φ̄n(x), we can determine the inverse function Ψ . In
fact we have that

1

n

n
∑

k=1

Φ̄k(x) =
1

n

n
∑

k=1

xk − ϕ̄(1)

(

n
∑

k=1

xk

)

=
1

n

n
∑

k=1

xk − ϕ̄(n)

(

1

n

n
∑

k=1

xk

)

.

Hence we get that 1
n

∑n
k=1 xk = Ψ̄ (n)

(

1
n

∑n
k=1 Φ̄k(x)

)

, that is,

1

n

n
∑

k=1

Ψ̄k(y) = Ψ̄ (n)

(

1

n

n
∑

k=1

yk

)

.

We can now find Ψ̄ by

Ψ̄k(y) =
1

n

∑

j 6=k

(

Ψ̄k(y) − Ψ̄j(y)
)

+
1

n

n
∑

j=1

Ψ̄j(y) =
1

n

∑

j 6=k

(yk − yj) + Ψ̄ (n)

(

1

n

n
∑

j=1

yj

)

,

for k = 1, 2, . . . , n, all of which converges.
We have proved that there is a polydisc P (0, r) around 0, and an analytic function

Ψ : P (0, s) → Kn where P (0, s) ⊆ Φ(P (0, r)) which is an inverse to Φ|P (0,r). The open sets
V = P (0, s) and U = Φ−1(V ) satisfy the conditions of the theorem.

Theorem 3-1.2. (Implicit Function Theorem — Dual Form) Let Φ : V → Km+n be an
analytic map where V is open in Kn. Suppose that x is a point in V where Φ′(x) has rank
n. Then there exist an open set U in Km+n and an analytic function Ψ : U → Km+n such
that

(i) Ψ (U) is an open neighborhood of Φ(x) in Km+n.

(ii) Ψ is injective with an analytic inverse Ψ−1 : Ψ (U) → U .

(iii) There is an n-dimensional linear subspace W in Km+n such that Ψ gives a bijection
between the sets Φ(V ) ∩ Ψ (U) and W ∩ U .
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Proof. By a change of coordinates we may assume that the lower n × n-minor of Φ′(a)
is non-zero. Hence we can write Φ as (Φ1, Φ2), where Φ1 : V → Km and Φ2 : V → Kn

with rankΦ′
2(a) = n. Define the analytic map Ψ : Km × V → Km+n by Ψ (x, y) = (x +

Φ1(y), Φ2(y)), for x ∈ Kn, y ∈ V . Then we have that

Ψ ′(0, a) =

(

Im Φ′
1(a)

0 Φ′
2(a)

)

is invertible and it follows from the Inverse Function Theorem 3-1.1 that there is an analytic
inverse G : U ′ → Km × Kn ∼= Km+n defined on some neighborhood U ′ of Ψ (a). Let
U = Ψ−1(U ′). Since we have that Φ(y) = Ψ (0, y) for all y ∈ V , such that (0, y) ∈ U ,
we get that Φ(V ) ∩ Ψ (U) = Ψ (W ∩ U), where W is the n-dimensional subspace {(x, y) ∈
Km × Kn

∣

∣ x = 0} of Km+n.

Theorem 3-1.3. (Implicit Function Theorem) Let U be an open subset of Km+n and let
Φ : U → Km be an analytic function. Suppose that x ∈ U is a point where Φ(x) = 0 and
that Φ′(x) has rank m. Then there exist an open neighborhood V of x in U and an analytic
function Ψ : V → Km+n, such that

(i) Ψ (V ) is open set in Km+n.

(ii) Ψ is injective with an analytic inverse Ψ−1 : Ψ (V ) → V .

(iii) There is an n-dimensional linear subspace W of Km+n such that Ψ gives a bijection
between the sets V ∩ Φ−1(0) and W ∩ Ψ (V ).

Proof. By a change of coordinates, we may assume that the leftmost m×m-minor of Φ′(x)
is non-zero. Let π1 and π2 be the projections of Km+n = Km×Kn onto its two factors and
let W be the kernel of π1. Define Ψ (y) = (Φ(y), π2(y)), for all y ∈ U . Then Ψ is analytic
and

Ψ ′(x) =

(

Φ′(x)π1 Φ′(x)π2

0 In

)

.

In particular Ψ ′(x) is invertible and we can use the Inverse Function Theorem 3-1.1 to find
an open subset V containing x and an analytic inverse function Ψ−1 : Ψ (V ) → V . It is
clear that Ψ (x) ∈W if and only if Φ(x) = 0.

Remark 3-1.4. We have stated the Implicit Function Theorem 3-1.3 in a slightly different
way from what i usually done in that we keep the embedding of the set of zeroes of Φ into
Km+n through the analytic map Ψ . Usually, only the restriction of Ψ to the subspace W
is mentioned in the Implicit Function Theorem. Of course the usual form follows from the
one given above.
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3-2 Matrix groups in affine space

In this section we shall show how the Implicit Function Theorem can be used to induce a
structure as manifolds on groups that are defined as the zeroes of analytic functions.

We have seen in Example 2-1.17 that Gln(K) is open in Mn(K). However, the subgroups
Sln(K), GS(K), and GS(K), for a matrix S are not open sets in Gln(K). Quite to the
contrary they are zeroes of polynomials in the variables xij which are the matrix entries
(see Exercise 2-1.6). We have that Sln(K) is the subset of Gln(K) which consists of the
zeroes of the polynomial

det(xij) = 1. (3-2.0.1)

The set GS(K) is the zeroes of the n2 quadratic equations in the variables xij obtained by
equating the n2 coordinates on both sides of

(xij)S
t(xij) = S.

Finally, SGS(K) is the subset of Gln(K) which is the intersection of GS(K) with the
matrices satisfying Equation 3-2.0.1.

On the other hand we have that Gln(K) itself can be considered as the zeroes of
polynomials in the space Mn+1(K). Indeed we have seen in Example 1-2.11 that we have
an injection Φ : Gln(K) → Sln+1(K). As we just saw Sln+1(K) is the zeroes of a polynomial
of degree n + 1 in the variables xij , for i, j = 1, . . . , n + 1, and clearly imΦ is given, in
Sln+1(K) by the relations x1i = xi1 = 0 for i = 2, . . . , n+ 1.

3-2.1 Zeroes of analytic functions in affine space

We will now study the more general problem of a subset Z ∈ Kn which is given as the
common zeroes of some set of analytic functions defined on Kn. The main result is that
in such a set we can always find points around which Z locally looks exactly as some open
set in Km, for some m.

Definition 3-2.1. A subset Z of Kn is an analytic set if there is a set of analytic functions
{fi}i∈I such that Z = {x ∈ Kn

∣

∣ fi(x) = 0, for all i ∈ I}. For an analytic set Z we
define the ideal of analytic functions vanishing on Z by

I(Z) = {f : Kn → K
∣

∣ f is analytic and f(x) = 0, for all x ∈ Z}.

Furthermore, at each point x ∈ Z, we define the normal space by

Nx(Z) =

{(

∂f

∂x1
(x),

∂f

∂x2
(x), . . . ,

∂f

∂xn
(x)

) ∣

∣

∣

∣

f ∈ I(Z)

}

.

Remark 3-2.2. It is clear that the normal space Nx(Z) is a linear subspace of Kn whose
dimension may vary over Z. Let Zr be the set of points x ∈ Z where dimK(Nx(Z)) ≤ r.
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Then Zr is given by the points x ∈ Z where all the determinants

∣

∣

∣

∣

∣

∣

∣

∣

∂fi1

∂xj1
. . .

∂fi1

∂xjr+1

...
. . .

...
∂fir

∂xj1
. . . ∂fir

∂xjr+1

∣

∣

∣

∣

∣

∣

∣

∣

are zero, for i1, i2, . . . , ir+1 ∈ I and j1, j2, . . . , jr+1 ∈ {1, 2, . . . , n}. These determinants are
analytic functions and hence the set Zr is an analytic set. In particular Zr is closed for
all integers r = 0, 1, . . . , n, which implies that dimKNx(Z) takes its maximal value on an
open subset of Z.

Theorem 3-2.3. Let Z be an analytic set and let x ∈ Z be a point where dimKNx(Z)
attains its maximal value m. Then there exists a neighborhood U of x in Kn and an anlytic
bijection Φ : V → U where V is open in Kn such that

(i) Φ−1 : U → V is analytic.

(ii) Z ∩ U = Φ(V ∩W ), where W is a linear subspace of Kn of dimension n−m.

(iii) If y is another point where dimKNy(Z) = m, and Ψ : V ′ → U ′ is the corresponding
analytic function, then the function

Ψ−1Φ : Φ−1(U ∩ U ′) → Ψ−1(U ∩ U ′),

is analytic as well as its restriction to W ∩ Φ−1(U ∩ U ′).

Proof. We first prove the theorem for the special case where m = 0. Then we have that
Nx(Z) is zero-dimensional for all points x ∈ Z and it follows that for any analytic function
f in I(Z), we have that ∂f/∂xi(x) = 0, for all i = 1, 2, . . . , n and all x ∈ Z. This means
that the analytic functions ∂f/∂xi, for i = 1, 2, . . . , n, are in I(Z). Inductively, we get that
all partial derivatives Dif of f are in I(Z). However, around each point x ∈ Z, we can
write f as the convergent power series f(x+h) =

∑

i∈I D
if(x)hi, which is now identically

zero. Hence there is a neighborhood of x in Kn contained in Z which shows that Z is open.
On the other hand, we have that Z is closed, since it is the intersections of the closed sets
f−1(0), for f ∈ I(Z). We know that the only subsets of Kn which are both open and
closed are ∅ and Kn. Hence all the assertions of the theorem are fullfilled.

If m > 0, we can pick a subset {f1, f2, . . . , fm} of I(Z) such that the vectors

(∂fi/∂x1(x), ∂fi/∂x2(x), . . . , ∂fi/∂xn(x)),

for i = 1, 2, . . . , m, span Nx(Z).
Let Z ′ be the common zeroes of f1, f2, . . . , fm. Then we have by the Implicit Function

Theorem 3-1.3 that there is a neighborhood U of x in Kn and a bijective analytic map
Φ : V → U with analytic inverse such that Z ′ ∩ U = Φ(V ∩W ), where V is open in Kn

and W ⊆ Kn is a vector space of dimension n−m.
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If we restrict our attention to the set W ∩ Φ−1(Z ∩ U), we see that this set is the
intersection of an analytic set in W by V . The functions fiΦ : V ∩W → K are identically
zero. Hence all their partial derivatives are zero. Let g be an analytic function defined on
W and vanishing on Φ−1(Z ∩ U). Since we know that all the partial derivatives of gΦ−1

are in the span of (∂fi/∂x1(x), ∂fi/∂x2(x), . . . , ∂fi/∂xn(x)), for i = 1, 2, . . . , m, it follows
that all partial derivatives of g must vanish on all of W ∩ Φ−1(Z ∩ U). Hence we use the
case m = 0 to conclude that Z ′ = Z and the two first assertions of the theorem follows.

For the third assertion, we note that the composition of analytic functions are analytic,
as well as the restriction to linear subspaces.

Corollary 3-2.4. Let G be one of the groups Gln(K), Sln(K), GS(K) or SGS(K), for a
matrix S. Then, for each A in G there exists an open neighborhood U of A in Mn(K),
an open set V in some affine space Km, depending only on the group, and an injective
analytic map Φ : V → U , whose image is V ∩G.

Moreover, if Ψ : V ′ → U ′ is another such map, then Ψ−1Φ : Φ−1(U ∩U ′) → Ψ−1(U ∩U ′)
is analytic.

Proof. By the theorem, we can find one point B of G with the properties given in the
corollary. For any other point, A in G, we can compose the analytic maps into G to a
neighborhood of B by the analytic map λAB−1 : Mn(K) → Mn(K) defined by λAB−1X =
AB−1X. This map has an analytic inverse and maps a neighborhood of B in G to a
neighborhood of A in G.

Exercises

3-2.1. Write down the quadratic polynomials in xij that define On(K) in Gln(K) and Sp4(K) in
Gl4(K).

3-2.2. Use Exercise 1-4.6 to find directly maps R
1 → SO2(R) that give bijections from open sets

of R
1 to some U ∩ SO2(R), where U is open in M2(R).

3-3 Topolgical spaces

In Proposition 2-3.9 Section 3-2 we saw that the groups Gln(K), Sln(K), GS(K), and
SGS(K), for any invertible matrix S, and thus On(K), SOn(K), Spn(K), in a natural way,
can be covered by subsets that are homeomorphic to open subsets in Kn, for some n.
Like we used the algebraic structure of these groups to motivate the abstract structure
of groups, we shall use the geometric structures to motivate the geometric structures,
topology, manifold, and algebraic variety.

Definition 3-3.1. topological space is a set X together with a collection of subsets U =
{Ui}i∈I of X satisfying the following three properties:

(i) The empty set and X are in U .
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(ii) If {Ui}i∈J is a collection of sets from U , then the union
⋃

i∈J Ui is a set in U .

(iii) If {Ui}i∈K is a finite collection of sets from U , then the intersection
⋂

i∈K Ui is a set
in U .

The sets of the form Ui will be called open and their complement X \ Ui will be called
closed.

Let x be a point of X, we call an open subset of X that contain x a neighborhood of x.

Example 3-3.2. In Section 3-2 we have already seen one of the most important topologies
on the space X = Kn. Indeed, the subsets of Kn that are unions of balls, form the open
sets of a topology (see Exercise 2-1.4). We call this topology on Kn, the metric topology
(compare Exercise 2-1.10).

Example 3-3.3. Let X and Y be topological spaces given by open subsets {Ui}i∈I respec-
tively {Vj}j∈J . On the Cartesian product the collection of sets consisting of all unions of the
sets in {Ui×Vj}(i,j)∈I×J defines a topology, called the product topology (see Exercise 3-3.4).

Example 3-3.4. The metric topology on the set Kn is the product, n times, of the metric
topology on K.

Definition 3-3.5. Let X and Y be topological spaces. A map Φ : X → Y is continuous if,
for every open subset V of Y , we have that Φ−1(V ) is open in X. We say that a continuous
map is a homeomorphism if it is bijective, and the inverse is also continuous.

Example 3-3.6. We saw in Exercise 2-1.15 that, when K is the real or the complex num-
bers, the definition coincides with the usual definition of continuous maps from analysis.

Example 3-3.7. The analytic map Φ : Kn → Km is continuous in the metric topology.
Indeed, it suffices to show that the inverse image of a polydisc P (a, r) in Km is open in
Kn, that is, there is a polydisc around every point b in the inverse image that is contained
in the inverse image. Let Φ = (Φ1, . . . , Φm). Then Φ−1(P (a, r)) =

⋂m

i=1 Φ
−1
i (P (ai, ri)).

Consequently, it suffices to prove that the map is continuous when m = 1. With m = 1
and Φ = Φ1, let b in Kn a point such that Φ(b) = a. It follows from Definition 2-4.11 that
we have Φ(a+x) = Φ(a)+Φ′(a)tx+ r(x), for x in some polydisc P (0, s) in Kn, where r(x)

is analytic in the polydisc, and where limx→0
‖r(x)‖
‖x‖

= 0. Hence, by choosing ‖x‖ small we

can make ‖Φ(a+ x) − Φ(a)‖ as small as we like, and Φ is continuous.

Example 3-3.8. Let Φ : [0, 2π) → {z ∈ C : |z| = 1} be the map defined by Φ(x) = eix.
Then Φ is continuous and bijective. However, it is not a homeomorphism because the image
of the open subset [0, π) of [0, 2π) is the upper half circle plus the point (1, 0). Hence, the
inverse map is not continuous.

Definition 3-3.9. Let Y be a subset of a topological space X and {Ui}i∈I the open subsets
of X. Then the sets {Y ∩ Ui}i∈I are the open sets of a topology of Y which we call the
induced topology.
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Example 3-3.10. We saw in Corollary 3-2.4 that the matrix groups Gln(K), Sln(K),
GS(K), and SGS(K), for all invertible matrices S considered as subsets of Mn(K), are
covered by sets that are in bijective correspondence, via analytic maps, with balls in affine
spaces. We also saw that these sets can be taken to be the intersection of the group with
a ball in Mn(K). Consequently, these subsets are open sets in the the topology induced by
the metric topology on Mn(K), and given a point x in one of the groups G and an open
set U of G in the induced topology, then there is an open subset V of U , obtained as in
Corollary 3-2.4, such that x ∈ V ⊆ U .

Exercises

3-3.1. A topological space X is Hausdorff, if, given two points x and y of X, there are open
neighborhoods of x and y that do not intersect. Show that every metric topology is Hausdorff.

3-3.2. Let X = K
n. Show that the two metrics, associated by Exercise 2-1.10 to the norms of

Definition 2-1.6 and Exercise 2-1.3, define the same topology on X.

3-3.3. Let X be a set. Show that the family of all finite subsets of X, together with X itself and
the empty set, are the closed sets of a topology. We call this topology the finite topology. Show
that the finite topology is not Hausdorff.

3-3.4. Let X and Y be topological spaces given by open subsets {Ui}i∈I respectively {Vj}j∈J .
Show that the collection of sets consisting of all unions of the sets in {Ui × Vj}(i,j)∈I×J defines a
topology on the Cartesian product.

3-3.5. Let X = Z and for a ∈ Z \ {0} and b ∈ Z define Xa,b = {ax + b
∣

∣ x ∈ Z}. Let U consist
of all unions of sets of the form Xa,b.

(i) Show that U is a topology on X.

(ii) Show that all the sets Xa,b, for a, b ∈ Z, are both open and closed.

(iii) Let P ⊆ Z be the set of prime numbers. Show that
⋃

p∈P Xp,0 = X \ {1,−1}.

(iv) Show that {−1, 1} is not open, and that this implies that P is infinite.

3-3.6. Let S = K × K \ {(0, 0)}, and say that (x, y) ≡ (x′, y′) if xy′ = x′y. Define the projective

line P
1
K

by S/ ≡. Let Φ,Ψ : K → P
1
K

be defined by Φ(x) = (x, 1) and Ψ(x) = (1, x), for all x ∈ K

and let U = im Φ and V = im Ψ . Let U be the subsets W of P
1
K

such Φ−1(W ) and Ψ−1(W ) are
open.

(i) Show that U is a topology on P
1
K

and that Φ,Ψ are homeomorphisms.

(ii) Show that {(U,K, Φ), (V,K, Ψ)} is an atlas on P
1
K

, which defines P
1
K

as an analytic man-
ifold.

(iii) Show that P
1
R

is isomorphic to SO2(R) as an analytic manifold.

(iv) Show that the ring OP1
C

(P1
C

) of analytic functions on P
1
C

consists entirely of constant

functions. (Hint: Use Liouville’s Theorem.)
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3-4 Manifolds

In Remark 2-4.16 we summarized certain properties of the matrix groups under the term
manifold. The same properties that we used were also stated in Corollary 3-2.4. In this
section we introduce manifolds and show how Remark 2-4.16 and Corollary 3-2.4 are rein-
terpreted in the language of manifolds.

Definition 3-4.1. Let X be a topological space. A chart of X consists of an open set U
of X, an open subset V in Kn for some n with the metric topology, and a homeomorphism
Φ : V → U . A family of charts {(Φi, Vi, Ui)}i∈I is called an atlas if the open sets {Ui}i∈I
cover X and if the map Φ−1

j Φi : Φ
−1
i (Ui ∩ Uj) → Φ−1

j (Ui ∩ Uj) is analytic, when Ui ∩ Uj is
non-empty.

Here, and in the following, we write, for simplicity, Φ−1
j Φi for the map

Φ−1
j |(Ui∩Uj)Φi|Φ−1

i (Ui∩Uj)
.

The set where Φ−1
j Φi is defined will be clear from the context.

A topological space M together with an atlas of equal-dimensional charts is called an
analytic manifold. It is often convenient to include in the atlas all the homeomorphisms
Φ : V → U , from an open subset in Kn to an open subset in X, such that, for all x ∈ U
and some Ui in the chart that contains x, we have that Φ−1

i Φ is analytic on Φ−1(U ∩ Ui).
The condition then holds for all charts containing x. Such a maximal chart is called an
analytic structure.

For each open subset U of M the charts Φi : Φ
−1
i (U ∩ Ui) → U ∩ Ui define a structure

as manifold on U , called the itinduced structure.

3-4.2. The number n that appear in the definition of a manifold is uniquely determined by
the analytic structure, in the sense that if Φ : V →M is a homeomorphism of an open set
in Km to an open subset of M , such that for all x in U and some member Ui of a chart that
contains x, we have that Φ−1

i Φ is analytic on Φ−1(U ∩ Ui), then m = n. Indeed, it follows
from Equation 2-4.14.1 that (Φ−1

i Φ)′(x) = (Φ−1
i )′(Φ(x))Φ′(x) is the identity map on Kn.

Hence the linear maps Φ′
i(Φ(x)) and Φ′(x) are both invertible and we have that m = n.

Definition 3-4.3. The number n appearing in Definition 3-4.1 is called the dimension of
M and denoted by dimM .

Example 3-4.4. The space Kn is a manifold. A chart is Kn itself with the identity map.

Example 3-4.5. Clearly Corollary 3-2.4 states that the topological spaces Gln(K), Sln(K),
GS(K), and SGS(K), and in particular, we have that On(K), SOn(K), Spn(K) are analytic
manifolds.

Example 3-4.6. The homeomorphism R2 → C sending (a, b) to a+ bi defines a structure
on C as a real manifold of dimension 2. Similarly the map R4 → H sending (a, b, c, d) to
a+ ib+ jc+ kd (see Example 1-3.13) defines a structure of a real manifold of dimension 4
on the quaternions H.
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Example 3-4.7. Let M and N be manifolds defined by charts {(Φi, Ui)}i∈I respectively
{(Ψj, Vj)}j∈J . We give the Cartesian product M × N product topology (see Example 3-
3.3). The maps Φi × Ψj : Ui × Vj → M × N clearly are homeomorphisms of topological
spaces. Moreover, these maps define a chart on M × N because if Φ × Ψ : U × V →
M × N is another one of these homeomorphisms, then the map (Φi × Ψj)(Φ × Ψ )−1 on
(Ui× Vj)∩ (Φi× Ψj)

−1((Φ× Ψ )(U × V ) = (U ∩Φ−1
i Φ(U)× (Vj ∩ Ψ−1

j Ψ (V )) is given by the
analytic map ΦiΦ

−1 × ΨjΨ
−1. In this way M × N becomes a manifold which we call the

product manifold.

Definition 3-4.8. Let M be an analytic manifold and U an open subset. A function
f : U → K is analytic if for every x in U and some chart Φi : Vi → Ui, where x is contained
in Ui, we have that the map fΦi is analytic on Φ−1

i (U ∩ Ui). The condition then holds for
all such charts. We denote by OM(U) the set of all analytic functions on U .

Remark 3-4.9. The set OM (U) is clearly a ring, and for an open subset V of M contained
in U there is a natural ring homomorphism ρU,V : OM(U) → OM(V ) sending a function f
to its restriction f |V . The following two fundamental properties hold:

(i) If f ∈ OM(U) and there is an open cover {Ui}i∈I of U such that ρU,Ui
(f) = 0, for all

i ∈ I, we have that f = 0.

(ii) If {Ui}i∈I is an open covering of U and {fi}i∈I is a collection of functions fi ∈ OM (Ui)
such that ρUi,Ui∩Uj

(fi) = ρUj ,Ui∩Uj
(fj), for all i and j, there is a function f ∈ OM(U)

such that ρU,Ui
(f) = fi, for all i ∈ I.

We summarize these properties by saying that OM is a sheaf on M .

Definition 3-4.10. Let N and M be analytic manifolds and Φ : N → M a continuous
map. We say that Φ is analytic if, for every open subset U of M and every analytic
functionf : U → K on U , we have that fΦ is analytic on Φ−1(U). When Φ has an analytic
inverse, we say that Φ is an isomorphism of manifolds.

Remark 3-4.11. It follows immediately from the definition that if Ψ : P → N is another
analytic map of manifolds, then the composite ΨΦ : P →M is also analytic.

Let X be a topological space and U an open subset. We denote by CX(U) the ring
of all continuous functions U → K. A continuous map Φ : N → M of topological spaces
induces, for all open subsets U of M , a ring homomorphism CM (U) → CN (f−1(U)), which
sends a function f : U → K to the composite fΦ : Φ−1(U) → K. When M and N are
analytic manifolds, the map fΦ is analytic, by definition, if and only if it induces a map
Φ∗(U) : OM(U) → ON(Φ−1(U)), on the subrings of analytic functions. Clearly Φ∗(U) is a
ring homomorphism and, when V is an open subset of U we have that

OM (U)
Φ∗(U)−−−→ ON (Φ−1(U))

ρU,V





y





y

ρ
Φ−1(U),Φ−1(V )

OM(V )
Φ∗(V )−−−→ ON (Φ−1(V ))

(3-4.11.1)

is commutative.
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Remark 3-4.12. When M and N are open subsets of Km respectively Kn, with the induced
manifold structures, we have that a map Φ : N →M is an analytic map of manifolds if and
only if it is an analytic map of open subsets of Km and Kn, in the sense of Definition 2-4.6.
Indeed, the two notions clearly coincide when M = K, and since composition of analytic
functions in the sense of Definition 2-4.6 is again analytic in the same sense, we have that if
a function is analytic as in Definition 2-4.6, it is an analytic map of manifolds. Conversely,
let M ⊆ Km and Φ = (Φ1, . . . , Φm) is an analytic map of manifolds. The coordinate
functions xi : M → K defined by xi(a1, . . . , am) = ai are clearly analytic according to both
definitions. Hence xiΦ = Φi is analytic, for i = 1, . . . , m. Consequently Φ is analytic in the
sense of Definition 2-4.6.

Example 3-4.13. It follows from Corollary 3-2.4 that the inclusion map of the matrix
groups Gln(K), Sln(K), GS(K), and SGS(K), and hence in particular, On(K), SOn(K),
Spn(K) into Mn(K) are analytic.

Example 3-4.14. The group homomorphisms of Examples 1-2.10, 1-2.11, and 1-2.12 are
all analytic.

Example 3-4.15. Let M and N be manifolds. Then the maps π1 : M × N → M and
π2 : M × N → N , from the product manifold onto the factors are analytic maps. We call
π1 and π2 the projection onto the first, respectively second, factor.

Exercises

3-4.1. Let X = R, and for each open set U ∈ X, let OX(U) be the set of all functions f : U → R,
such that for all x ∈ U , there exist two polynomials g and h and a neighborhood V of x in U ,
with the property that for all y ∈ V

f(y) =

{

g(y), if y ≤ x,

h(y) if y ≥ x.

Hence OX(X) consists of all piecewise polynomial functions on X.

(i) Show that OX is a sheaf of rings on X.

(ii) Determine the ring of germs OX,x for x ∈ X.

(iii) Determine the tangent space Tx(X), i.e., the vector space of derivations D : OX,x → R,
with respect to the augmentation map ϕ : OX,x → R, sending f to f(x).

(iv) Determine the set of vector fields Z on X, i.e, the set of derivations ZU : OX(U) → OX(U),
with respect to the identity map OX(U) → OX(U), that commute with the restriction maps
ρU,V : OX(U) → OX(V ).

(v) Determine the set of left-invariant vector fields on X, if the group operation on X is
addition.

(vi) Determine the set of left-invariant vector fields on X \{0}, if the group operation on X \{0}
is multiplication.

68



3-5 Equivalence relations and applications

Equivalence relations are fundamental in all parts of mathematics. Here we shall define
equivalence relations and give some important examples. The reason that we introduce
the material at this point is that the ring of germs of analytic functions at a point, which
is defined in example 3-5.4, is very convenient for the treatment of tangent spaces in
section 3-6.

Definition 3-5.1. A partition of a set S is a family of disjoint subsets {Si}i∈I of S that
cover S. That is

Si ∩ Sj = ∅, if i 6= j

and
S =

⋃

i∈I

Si.

A relation on the set S is a subset T of S×S. If (x, y) is in T we write x ≡ y and say that
x and y are related. We say that the relation ≡ is an equivalence relation if the following
three properties hold, for all x, y and z in S:

(i) (reflexivity) x ≡ x,

(ii) (symmetry) if x ≡ y, then y ≡ x,

(iii) (transitivity) if x ≡ y and y ≡ z, then x ≡ z.

Given a partition {Si}i∈I of a set S, we obtain an equivalence relation on S by defining
x to be related to y if x and y lie in the same subset Si for some i. Conversely, given an
equivalence relation ≡ on a set S we obtain a partition {Si}i∈I of S as follows:

For each x in S let Sx = {y ∈ S : y ≡ x} be the set of all elements in S related to x.
Then we have that x ∈ Sx, and Sx = Sy if and only if x ≡ y. Let I = S/ ≡ be the set
whose elements are the different sets Sx. For x in S we write [x] for the element of S/ ≡
corresponding to the set Sx. Then [x] = [y] if and only if x ≡ y, and each i in S/ ≡ is of
the form [x] for some x in S. For i in S/ ≡ we let Si be the set Sx for any x such that
i = [x].

Given a multiplication on S, that is, a map

S × S → S,

and denote by xy the image of (x, y) by this map. If, for all elements x, y and z of S such
that x ≡ y, we have that xz ≡ yz and zx ≡ zy, we obtain a multiplication

(S/ ≡) × (S/ ≡) → S/ ≡,

defined by [x][y] = [xy]. Indeed, if [x] = [x′] and [y] = [y′], we have that xy ≡ x′y ≡ x′y′,
and consequently that [xy] = [x′y′].
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Example 3-5.2. Let G be a group and H a subgroup. Define a relation on G by a ≡ b if
ab−1 ∈ H . This is an equivalence relation. Indeed, it is reflexive because aa−1 = e ∈ H ,
symmetric because, if ab−1 ∈ H , then ba−1 = (ab−1)−1 ∈ H , and transitive because if
ab−1 ∈ H and bc−1 ∈ H , then ac−1 = ab−1(bc−1) ∈ H . We write G/H = G/ ≡. If H is
a normal subgroup of G, we have that G/H has a multiplication. Indeed, if a ≡ b, then
ca ≡ cb and ac ≡ bc, because ca(cb)−1 = cab−1c−1 ∈ G and ac(bc)−1 = ab−1 ∈ G. It is
easily checked that, with this multiplication, G/H is a group with unit [e]. Moreover, the
canonical map

G→ G/H,

that sends a to [a] is a group homomorphism with kernel H . We call the group G/H the
residue group of G with respect to H (see Exercise 3-5.4).

Let R be a commutative ring and I ⊆ R an ideal (see Definition 1-3.1). Let R/I be
the residue group. The multiplication on R induces a multiplication

R/I × R/I → R/I

on R/I, which sends ([a], [b]) to [ab]. With this multiplication R/I becomes a ring, and
the map

R → R/I

is a ring homomorphism with kernel I. We call R/I the residue ring of R with respect to
I (see Exercise 3-5.5).

The best known case of a residue ring is the residue Z/nZ of Z with respect to the
ideal nZ = {m ∈ Z : n|m} (see Exercises 3-5.1 and 3-5.2).

Example 3-5.3. Let S = Kn+1\(0). Defining (a0, . . . , an) and (b0, . . . , bn) to be related, if
there is a non-zero element a of K such that ai = abi, for i = 0, . . . , n, we obtain a relation
on S. This relation clearly is an equivalence relation. The set (Kn+1 \ (0))/ ≡ is denoted
Pn(K), and is called the projective space of dimension n over K. We have a canonical map

Φ : Kn+1 \ {0} → Pn(K).

The sets U in Pn(K) such that Φ−1(U) is open in the metric topology on Kn+1, are the
open sets in a topology on Pn(K). By definition, the map Φ is continuous with respect to
this topology and the metric topology on Kn.

For i = 0, . . . , n we denote by Hi the subset of Pn(K) consisting of points of the form
[(a0, . . . , ai−1, 0, ai+1, . . . , an)]. Then Hi is closed in the topology. Let Ui = Pn(K) \ Hi.
Then the sets Ui, for i = 0, . . . n, form an open covering of Pn(K). Let

Φi : Kn → Pn(K)

be the map defined by Φi(a1, . . . , an) = [(a1, . . . , ai−1, 1, ai, . . . , an)]. Then Φi is a homeo-
morphism of Kn onto the open subset Ui of Pn(K). We have that the map Φ−1

j Φi is defined

on the set Φ−1
i (Ui∩Uj) and is given byΦ−1

j Φi(a1, . . . , an) = (a1
aj
, . . . ,

aj−1

aj
,
aj+1

aj
, . . . , an

aj
), where

aj 6= 0 because Φi(a1, . . . , an) is in Ui ∩ Uj. We see that (Ui, Φi), for i = 0, . . . , n define a
chart on Pn(K), which makes Pn(K) into a manifold over K of dimension n.
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Example 3-5.4. Let M be a manifold and x a point of M . Let S be the set consisting
of pairs (U, f), where U is an open neighborhood of x and f an analytic function on
U . We give a relation on S by defining (U, f) to be related to (V, g) if there is an open
neighborhood W of x, contained in U ∩ V such that f |W = g|W . Clearly this relation is
an equivalence relation. The residual set S/ ≡ is denoted by OM,x. The elements of OM,x

can be added and multiplied by the rules [(U, f)] + [(V, g)] = [(U ∩ V, (f + g)|U∩V )] and
[(U, f)][(V, g)] = [(U ∩ V, (fg)|U∩V )]. Clearly OX,x becomes a ring with this addition and
multiplication, zero being the element [(M, 0)] and the unity the element [(M, 1)].

For every open neighborhood U of x we obtain a ring homomorphism

OM(U) → OM,x,

sending f to [(U, f)]. The ring OM,x is called the ring of germs of analytic functions at x.
We also have a ring homomorphism

OM,x → K,

sending f to f(x). This map is called the augmentation map at x.
Given an analytic map Φ : N → M of analytic manifolds, we have a natural ring

homomorphism
Φ∗
x : OM,Φ(x) → ON,x

defined by Φ∗
x[(U, f)] = [(Φ−1(U), fΦ)].

Exercises

3-5.1. Show that the ring Z/nZ has n elements.

3-5.2. Show that Z/nZ is a field if and only if n is a prime number.

3-5.3. Show that R/I is a field, if and only if I is not contained in any other ideal.

3-5.4. Let H be an invariant subgroup of a group G. Show that the product [a][b] = [ab] is well
defined for all a and b in G/H and that G/H with this product is a group. Also, show that the
map G → G/H that sends a to [a] is a groups homomorphism.

3-5.5. Let R be a commutative ring and I ⊆ R an ideal. Show that the multiplication on R
induces a multiplication

R/I × R/I → R/I

on R/I, which sends ([a], [b]) to [ab]. Moreover, show that with this multiplication R/I becomes
a ring, and the map

R → R/I

is a ring homomorphism with kernel I.
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3-6 Tangent spaces

In this section we shall introduce the tangent space of an analytic manifold. We start by
studying the tangent vectors to curves in Kn in order to motivate the definitions.

3-6.1. Let γ : U → Kn be an analytic map on a ball U of K. The image of such a map is
a curve (see Definition 2-5.1). Let c ∈ U . Then the curve passes through y = γ(c). The
tangent to the curve at c is the derivative γ′(c) of γ at c (see Definition 2-4.11 and Remark
2-4.14). Each vector v of V n

K
is the derivative of the curve γ : K → Kn through y, defined

by γ(t) = y + tv.
Given a curve γ : U → Kn, with tangent v = γ′(c) at c. We obtain a map

Dv : OKn,y → K

which send an element [(V, f)] to the derivative (fγ)′(c) at c of the composite map fγ : U∩
γ−1(V ) → K. If follows from the Formula 2-4.14.1 that

Dv(f) = f ′(y)γ′(c) =
n
∑

i=1

∂f

∂xi
(y)γ′i(c).

In particular, the function Dv depends only on the tangent vector v = γ′(c). Let [(W, g)] be
another element of OKn,y. From the derivation rules for analytic functions in one variable,
applied to fγ|V ∩W and gγ|V ∩W , we obtain that the function Dv is a K-linear map and that

Dv(fg) = f(y)Dvg + g(y)Dvf.

Definition 3-6.2. Let K be any field, and let R and S be K-algebras. Given a ring
homomorphism ϕ : S → R, which is the identity on K. Such a map is called a K-algebra
homomorphism. A linear map

D : S → R

such that
D(ab) = ϕ(a)Db+ ϕ(b)Da,

for all elements a and b of S, is called a derivation with respect to ϕ.

3-6.3. With this terminology Dv is a derivation on OKn,y, with respect to the augmentation
map.

Conversely, given a K-linear map

D : OKn,y → K,

which is a derivation for the augmentation map. There is a unique vector v such that
D = Dv. Indeed, let xi be the coordinate functions in OKn,y defined by (Kn, xi), where
xi(a1, . . . , an) = ai − yi. Given [(U, f)] in OKn,y it follows from Remark 2-4.14 that

f(x) = f(y) +
n
∑

i=1

∂f

∂xi
(y)xi(x) +

n
∑

i=1

n
∑

j=1

xi(x)xj(x)gij(x), for all x in U ,
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where the gij are analytic functions on U . Since D is a derivation with respect to the
augmentation map, we obtatin that D(1) = D(1 · 1) = 1D(1) + 1D(1), which implies that
D(1) = 0. Moreover, D(xixjgij) = xj(y)gij(y)D(xi)+xi(y)gij(y)D(xj)+xi(y)xj(y)D(gij) =
0. Thus we get that

Df =

n
∑

i=1

∂f

∂xi
(y)D(xi) = Dvf,

where v = (D(x1), D(x2), . . . , D(xn)) is the tangent vector of the curve γ : K → Kn,
defined by γ(t) = y + tv.

From the above considerations it is natural to make the following definition:

Definition 3-6.4. Let M be a manifold, and x a point of M . The tangent space Tx(M)
of M at x is the space of derivation OM,x → K, with respect to the augmentation map.

Example 3-6.5. Let y be a point of Kn. Then it follows from Paragraph 3-6.3 that Ty(K
n)

is a vector space of dimension n and a basis is given by the derivations D1, D2, . . . , Dn

defined by
Di(xj) = δij , for 1 ≤ i, j ≤ n,

where x1, x2, . . . , xn are the coordinate functions in OKn,y with respect to the standard
basis of Kn. We sometimes write Di = ∂/∂xi.

Example 3-6.6. Let N be a manifold and U an open subset with the induced topology.
Then clearly U is a manifold and OU,x = OM,x, for all x in U . Hence we have that
Tx(U) = Tx(N).

3-6.7. The advantage of Definition 3-6.4 to that of Section 2-5 is that it is independent of
choice of charts. On the other hand, the advantage of the considerations of Section 2-5 is
that they give an explicit description of the tangent space as vectors in the space Kn. In
particular, it follows from the above description that Tx(M) is a vector space of dimension
equal to dimM . To be more precise, let Φ : V → M be a chart with V open in Kn and let
U = Φ(V ). Then, for y = Φ−1(x) ∈ V , we have an isomorphism of rings

Φ∗
x : OM,x → OV,Φ−1(x),

(see Example 3-5.4), and consequently an isomorphism

TΦ−1(x)(V ) → Tx(M)

of tangent spaces. We have a basis of Tx(M) consisting of the derivations Di, which are
the images of the derivations ∂/∂xi : OKn,y → K. Hence, for [(W, f)] in OM,x we get that
Di(f) = ∂fΦ/∂xi(y). Note that the basis D1, D2, . . . , Dn depends on the chart (V, Φ).
On the other hand, when we have chosen one chart, it will give a natural basis for the
tangent space in all points of this chart. We often write Di = ∂/∂xi, as mentioned in
Example 3-6.5, when having specified a chart.
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3-6.8. Given an analytic map Φ : N → M of manifolds. For each x in N we have a ring
homomorphism

Φ∗
x : OM,Φ(x) → ON,x,

(see Example 3-5.4). Hence we obtain a map

TxΦ : Tx(N) → TΦ(x)(M),

that sends a derivative D of ON,x, with respect to the augmentation map on ON,x, to the
derivative DΦ∗

x of OM,Φ(x), with respect to the augmentation on OM,Φ(x). Clearly, the map
TxΦ is a K-linear map. Moreover, if Ψ : P → N is an analytic map and x is a point of P ,
we have that TΨ(x)ΦTxΨ = TxΦΨ .

Definition 3-6.9. A curve in a manifold M is an analytic map γ : B(a, r) →M , for a ball
in K. The tangent γ′(a) of the curve in γ(a) is the image Taγ(d/dt) of the standard basis
d/dt of Ta(K) = V 1

K
by the map Taγ : Ta(K) → Tγ(a)(M).

Remark 3-6.10. It follows from the definition of Paragraph 3-6.8 that, give a chart Φ : U →
M such that γ(a) ∈ Φ(U), and Φ−1γ(t) = (γ1(t), . . . , γn(t)) in a neighborhood of a, then

TΦ−1(γ(a))γΦ(γ′1(a), . . . , γ
′
n(a)) = γ′(a).

Consequently, the definition of the tangent to a curve of a manifold corresponds, via a
chart, to the tangent to the corresponding curve of Kn, as given in Paragraph 3-6.1 and
Definition 2-5.1.

Definition 3-6.11. Let M and N be manifolds, where N is a subset of M . We say that
N is a submanifold of M if the inclusion map of N in M is analytic and if the resulting
map TxN → TxM of Paragraph 3-6.8 is injective, for all x in N .

Example 3-6.12. It follows from Example 3-4.13 that the groups Gln(K), Sln(K), GS(K),
and SGS(K), and thus On(K), SOn(K), Spn(K) are submanifolds of Mn(K).

Example 3-6.13. Let M and N be manifolds. Then M × N with the product topology
is a manifold (see Example 3-4.7). For each point y in N we have a closed subset M ×{y}
of M ×N , and we have an isomorphism Φy : M →M × {y} that sends a point x of M to
(x, y). This map defines a structure of manifold on M ×{y}, and it is clear that, with this
structure, we have that M × {y} is a submanifold of M ×N .

The inclusion Φy induces a map TxΦy : TxM → T(x,y)(M×N). Moreover, the composite
map of Φy with the projection π1 : M ×N → M onto the second factor is the identity on
M . The map T(x,y)π1 is therefore the inverse map to TxΦy. Let Ψx : N → M × N be the
map defined by Ψx(y) = (x, y) for all y in N . We obtain a map:

TxΦy × TyΨx : TxM ⊕ TyN → T(x,y)(M ×N),

from the direct sum of the spaces TxM and TyN (see Example 1-6.4) and a reverse map:

T(x,y)π1 × T(x,y)π2 : T(x,y)(M ×N) → TxM ⊕ TyN,
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which sends (D,D′) to T(x,y)π1(D)+T(x,y)π2(D
′). It is clear that the two maps are inverses

to each other. Consequently, there is a canonical isomorphism

T(x,y)(M ×N)
∼−→ TxM ⊕ TyN

of vector spaces.

Example 3-6.14. Let N be the subset {(a2, a3) : a ∈ K} of K2, and let N have the
topology induced by the metric topology on K2. The map f : K → N defined by f(a) =
(a2, a3) defines a chart, and atlas on N . Hence N is a manifold. The inclusion map is
clearly analytic. However, N is not a submanifold, because the map on tangent spaces
Tai : Ta(K) → T(a2,a3)(K

2), sends the basis vector D to the vector (2aD1, 3a
2D2), where

{D}, {D1, D2} are the bases on the tangent spaces corresponding to the standard bases
on K and K2. However, this map is zero at a = 0.

Lemma 3-6.15. Let M and N be manifolds of dimenssions m and n. Suppose that N ⊆M
and that the inclusion map is analytic. Then N is a submanifold of M if and only if around
each point x of N , there is a chart Φ : U → M such that Φ−1(N) is the intersection of U
by a linear subspace W ∈ Km of dimension n and Φ|W : W ∩ U → N is a chart of N .

Proof. It is clear that, if the condition of the lemma holds, then the map of tangent spaces
is injective, indeed the map is equal to the inclusion map of W into Km.

Conversely, assume that N is a submanifold of M . Fix x in N and choose charts
ψ : V ′ → N and ϕ : U ′ → M , such that V ′ ⊆ U ′. It follows from Paragraph 3-6.7 that
we have isomorphisms Tψ−1(x)V → TxN and Tψ−1(x)U → TxM . Consequently the map
ϕ−1ψ : V → U gives an injective map Tψ−1(x)V → Tϕψ−1(x)U . The latter map is the same
as (ϕ−1ψ)′(x). It follows from Theorem 3-1.2 that the condition of the lemma holds.

Proposition 3-6.16. Let N be a submanifold of M , then N is locally closed in M , that
is, for each x in N there is a neighborhood U of x in M such that N ∩ U is closed in M .

Proof. Since a linear subspace W of Km is closed in Km, it follows from Lemma 3-6.15
that N is locally closed in M .

Proposition 3-6.17. Let N be a submanifold of M , then the map OM,x → ON,x is sur-
jective, for all points x in N .

Proof. Let x be a point of N . Since N is a submanifold of M , it follows from Lemma 3-6.15
that we can find a chart Φ : U →M around x such that Φ−1(N) ∩ U is the intersection of
a linear space W with U and such that Φ|W is a chart for N around x. Thus it suffices
to show that any analytic function f defined on W ∩ U can be extended to an analytic
function on all of U . This can be done by composing f with some linear projection of Km

onto W . Since all linear maps are analytic, this compsition will be analytic on U .
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3-7 The tangent spaces of zeroes of analytic functions

We shall, in this section, give an easy method to compute the tangent spaces of subsets of
Kn defined as the zeroes of analytic functions, and use the method to compute the tangent
spaces of the matrix groups.

Let Z be a submanifold of Kn which is the set of zeroes of analytic functions {fi}i∈I .
Since Z is a submanifold we know that in each point x of Z, there is an injective map
TxZ → TxK

n. We want to explore in what way the linear space TxZ is a subspace of
TxK

n.
Let D : OKn,x → K be an element of TxK

n which is also an element of TxZ. For any f
in I(Z) we have that f 7→ 0 via the map OKn,z → OZ,x and we must have that Df = 0.
Thus we get

TxZ ⊆ {D ∈ TxK
n
∣

∣ Df = 0, for all f ∈ I(Z)}. (3-7.0.1)

We know from Example 3-6.5 that TxK
n is the set of derivations

∑n

i=1 ai∂/∂xi, where
a1, a2, . . . , an ∈ K. Thus the set {D ∈ TxK

n
∣

∣ Df = 0, for all f ∈ I(Z)} can be written
as

{

n
∑

i=1

ai
∂

∂xi

∣

∣

∣

∣

n
∑

i=1

ai
∂f

∂xi
= 0, for all f ∈ I(Z)

}

,

which we can also describe as Nx(Z)⊥. On the other hand, we know from Theorem 3-2.3
that the dimension of Z is n − dimKNx(Z). Thus dimK Tx(Z) = dimKNx(Z)⊥, which
proves that the inclusion of (3-7.0.1) is an equality.

The observation that the tangent space of a manifold N , defined as the zeroes of
analytic functions, depends on the the linear terms of the analytic functions only, can
be conveniently expressed by the, so called, epsilon calculus. This calculus disregards,
in a natural way, all terms of degree higher than 1. To explain the calculus we notice
that the ring of dual numbers of K (see Example 1-3.15), has a norm, which makes it
possible for us to talk about analytic functions f : U → K[ε] defined on open subsets U
of K[ε]n. Let f : U → K be an analytic function defined in a neighborhood U of a point
x ∈ Kn. Then we can extend f to an analytic function f̄ : V → K[ε], where V is open in
K[ε]n, by using the same power series. Suppose f is given by f(x + h) =

∑

i∈I cih
i, for

small h. Then we define f̄ by f̄(x + h1 + h2ε) =
∑

i∈I ci(h1 + h2ε)
i. Since we have that

(h1 + h2ε)
i = hi1 +

∑

|j|=1 h
i−j
1 hj2ε is a sum with n+ 1 terms for each i, we can change the

order of summation to get

f̄(x+ h1 + h2ε) =
∑

i∈I

cih
i
1 + ε

∑

|j|=1

∑

i∈I

(

i

j

)

hi−j1 hj2

= f(x+ h1) + ε
∑

|j|=1

Djf(x+ h1)h
j
2.

Equality 3-7.0.1 can now be expressed as

Ty(Z) = {v ∈ Kn
∣

∣ f̄(y + εv) − f̄(y) = 0, for all f ∈ I(Z)}.
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3-7.1 The tangent spaces of the complex matrix groups

A disadvantage of the formula 3-7.0.1 is that we need full knowledge of I(Z), the ideal of
analytic functions vanishing on Z, which is not so easily acquired. In most cases Z is given
by a set of analytic functions {fi}i∈I and we do not know whether these functions actually
generate I(Z) or not.

We will now show how we in the complex analytic case can compute the tangent spaces
of our matrix groups by the method described above. The treatment will not be self-
contained, since we need results from the theory of several complex variables which would
take too much space here. We refer to Griffiths–Harris [4] for these reults.

First we need some concepts from algebra, which also will be utterly important in the
study of algebraic varieties in Chapter 5.

Definition 3-7.1. A ring R where no non-zero element is a zero-divisor is called an integral
domain or sometimes just domain. In an integral domain, we say that an element f is
irreducible if in any factorization f = gh, either g or h is invertible. An integral domain
R is a unique factorization domain if every non-zero element f can be uniquely – up to
invertible elements – written as a product of irreducible elements.

Example 3-7.2. The integers Z is the standard model of a domain. The irreducible
elements are ±1 and ±p, where p is prime number. It is also a unique factorization
domain, since we have unique prime factorization of all positive integers. An example of a
domain which does not have unique factorization has to be somewhat more complicated;
R = {a+ bi

√
5 | a, b ∈ Z} is an example, since 6 have two different factorizations, 2 · 3 and

(1 + i
√

5)(1 − i
√

5), into irreducible elements. (It is a domain, since it is a subring of the
complex numbers.)

We will now quote two results from the theory of several complex variables without
proof.

Theorem 3-7.3. The local ring OCn,x of analytic functions defined in neighborhood of a
point x is a unique factorization domain.

Theorem 3-7.4. (Weak Nullstellensatz) If h ∈ OCn,x vanishes on the zeroes of an irre-
ducible function f ∈ OCn,x, then h = fg for some g ∈ OCn,x.

Remark 3-7.5. Observe that this is not true for real analytic functions, since for example
x2 + y2 is an irreducible analytic function defined around the origin in R2, while neither x
nor y is divisible by x2 + y2, though they both vanish at the origin, which is the zero set
of x2 + y2.

From these two theorems, we can prove the following fundamental theorem for the
zeroes of analytic functions which basically states that the set of zeroes of an analytic
function on Cn cannot have dimension less than n − 1. This is not true for real analytic
functions, as the remark above shows.
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Theorem 3-7.6. (Dimension Theorem) Let f : Cn → C be an analytic function and let
Z be the set of zeroes of f . Then we have that

dimCNxZ ≤ 1, for all points x in Z.

Proof. By Theorem 3-7.3 there is a factorization of f as a product of irreducible functions
f = f1f2 · · ·fm. Since the zero set of a power of an analytic function equals the zero set
of the function itself, we may assume that the functions f1, f2, . . . , fm are distinct and do
not divide each other. Let h be any function in I(Z). Since h vanishes on the zero set
of f1f2 · · · fm, it must vanish on the zero set of each fi. Thus Theorem 3-7.4 says that fi
divides h for i = 1, 2, . . . , m, but since the fi’s does not divide each other, we conclude
that h = f1f2 · · · fng = fg, for some analytic function g. Now if D ∈ TxC

n is a derivation,
where x ∈ Z, we have that

Dh = f(x)Dg + g(x)Df = g(x)Df.

Thus the vector (∂f/∂x1, ∂f/∂x2, . . . , ∂f/∂xn) spans NxZ, whose dimension thereby is at
most 1.

Corollary 3-7.7. Let f1, f2, . . . , fN be analytic functions on Cn and let Z be the subset of
Cn where they vanish. Then we have that dimCNxZ ≤ N , for any point x in Z.

Proof. Let Z1 be the zero set of f1. By the theorem we have that dimCNxZ1 ≤ 1, for
x ∈ Z. By Theorem 3-2.3, we can parametrize the Z1 around any point x ∈ Z where
dimCNxZ is maximal, by an open subset of Cn or Cn−1. The analytic functions f2, . . . , fN
define analytic functions on this set and the corollary follows by induction.

If the maximum in the corollary is attained, we say that Z is a complete intersection.
In particular, if we have that

{D ∈ TxC
n
∣

∣ Dfi = 0, for i = 1, 2, . . . , N} (3-7.7.1)

has dimension n−N , we get that dimC TxZ ≤ n−N , while by the corollary, dimCNxZ ≤
N . These two inequalities together imply that we have equality, and Z is a complete
intersection. Thus 3-7.7.1 gives an expression for the tangent space TxZ.

We shall now see that the ordinary complex matrix groups are complete intersections
in the affine space of matrices.

Example 3-7.8. The group Sln(C) is a subset of Mn(C) ∼= Cn2
, defined by the polynomial

equation f(xij) = det(xij) − 1 = 0. We now consider the space of derivations D ∈
TIn Mn(C) such that Df = 0, which by the epsilon calculus equals

{(A ∈ Mn(C)
∣

∣ det(In + εA) − det In = 0}.

A short calculation shows that det(In + εA) = 1 + ε trA, where trA is the trace of A, i.e.,
the sum of the diagonal elements of A (see Exercise 3-7.2). Since the trace is a non-zero
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linear equation in the entries of A, the subspace of matrices of trace zero has dimension
n2 − 1. Thus we have that Sln(C) is a complete intersection in Mn(C). Consequently, we
have that

TIn(Sln(C)) = {(ai,j) ∈ Mn(C)
∣

∣ trA = 0}.
That is, TIn(Sln(C)) consists of all matrices whose trace is equal to zero. In particular we
have that the tangent space, and hence Slm(C) both have dimension n2 − 1 (see Exercise
2-5.4).

Example 3-7.9. The group On(C) is the subset of Mn(C) ∼= Cn2
defined by the n2

polynomials, in n2 variables, that are the coefficients in the matrix tXX − In However,
these polynomials are not independent, since tXX − In is a symmetric matrix. Thus there
are only n(n + 1)/2 different entries, fij(X), for 1 ≤ i ≤ j ≤ n. The space of derivations
D ∈ TIn On(C) such that Dfij = 0, for all 1 ≤ i ≤ j ≤ n can by epsilon calculus be written
as

{A ∈ Mn(C)
∣

∣

t(In + Aε)(In + Aε) − In = 0}.
We have that t(In + Aε)(In +Aε)− In = (tIn + tAε)(In +Aε)− In = In + tAε+Aε− In =
(tA+ A)ε. Consequently, the space we are looking at is

TIn(On(C)) = {A ∈ Mn(C)
∣

∣

tA+ A = 0}.

That is, the set of all skew-symmetric matrices. This space has dimension n(n− 1)/2 (see
Exercise 2-5.5). In particular, we have that n(n − 1)/2 + n(n + 1)/2 = n2, and On(C)
is a complete intersection in Mn(C). The tangent space, TIn On(C) is equal to the set of
skew-symmetric matrices.

The subspace SOn(C) is defined in Mn(C) by the same equations as On(C) plus the
equation det(xi,j)−1 = 0. This is not a complete intersection, since at any point of On(C),
the determinant is either 1 or −1. Thus, if x ∈ SOn(C), then all points in a neighborhood
of x in On(C) is in SOn(C), and the new equation will not contribute Nx SOn(C). Thus the
tangent space of SOn(C) is equal to the tangent space of On(C) at any point of SOn(C).

Example 3-7.10. The symplectic group Spn(C) is the subset of Mn(C) of common zeroes
of the n2 polynomials in n2 variables that are the coefficients in the matrix XStX − S.
These are not independent, since XStX − S is skew-symmetric and we have, in fact, only
n(n − 1)/2 different equations fij(X), for 1 ≤ i < j ≤ n. We consider the space of
derivations D ∈ TInC

n2
such that Dfij = 0, for all 1 ≤ i < j ≤ n, and obtain by epsilon

calculus the form
{A ∈ Mn(C)

∣

∣

t(In + Aε)S(In + Aε) = S}.
We have that t(In + Aε)S(In + Aε) − S = S + tASε + SAε − S. Consequently, we have
that this space is equal to

{A ∈ Mn(C))
∣

∣

tAS + SA = 0}.

However tAS + SA = SA− tAtS = SA− t(SA). Consequently, the isomorphism of vector
spaces Mn(C) → Mn(C), which sends a matrix A to SA (see Exercise 2-5.6), maps this
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space isomorphically onto the subspace of Mn(C) consisting of symmetric matrices. In
particular, this space has dimension n(n + 1)/2 = n2 − n(n − 1)/2, which shows that
Spn(C) is a complete intersection in Mn(C). The tangent space TIn Spn(C) has dimension
n(n + 1)/2 (see Exercise 2-5.7).

Exercises

3-7.1. Prove that for any integer d, the set Z[
√

d] = {a + b
√

d | a, b ∈ Z} is an integral domain.

3-7.2. Show that det(In + εA) = 1 +
∑n

i=1 Aiiε.

3-8 Connectedness

As we observed in Sections 1-10 and 3-6 we can not yet distinguish On(K) from SOn(K).
There is however, an important topological invariant, connectedness, that distinguishes
On(K) from the other matrix groups.

Definition 3-8.1. Let X be a topological space. An arch in X is a continuous map
γ : [0, 1] → X from the closed unit interval, with the metric topology, to X. We call γ(0)
and γ(1) the beginning, respectively end, of the arch.

Remark 3-8.2. If we have two arches, given by, γ : [0, 1] → X and δ[0, 1] → X such that
γ(1) = δ(0), then the map ε : [0, 1] → X defined by ε(a) = γ(2a), when a ∈ [0, 1

2
], and

ε(a) = δ(2a − 1), when a ∈ [1
2
, 1], gives an arch which begins in γ(0) and ends in δ(1).

Thus the property that x and y can be connected by an arch yields an equivalence relation
on X.

Definition 3-8.3. A topological space X is archwise connected if, for every pair of points
x, y of X, there is an arch which begins in x and ends in y.

The space X is connected if it can not be written as the union of two disjoint non-empty
open sets. That is, there does not exist open sets U and V of X such that X = U ∪V and
U ∩ V = ∅.

A subset Y of X which is connected in the induced topology, and not contained in any
other connected subset is called a connected component (see Exercise 3-8.4).

Remark 3-8.4. The assertion that X is connected can be expressed in many different ways,
like X is not the union of two disjoint non-empty closed sets, the complement of an non-
empty open set can not be open, or, the complement of a non-empty closed set can not be
closed.

Example 3-8.5. The unit interval [0, 1] is connected (see Exercise 3-8.1).

Example 3-8.6. The space Kn is archwise connected in the metric topology. Indeed, any
two points can be joined by a straight line.
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Example 3-8.7. When the field K is infinite, the space Kn is connected in the Zariski
topology (see Exercise 3-3.1). On the other hand, when K is finite, all subsets are open,
and Kn is not connected.

Lemma 3-8.8. Let X be a topological space. Then X can be written uniquely as a union
X = {Xi}i∈I , where the Xi are the connected components. We have that Xi ∩ Xj = ∅,
when i 6= j.

Proof. Let {Yj}j∈J be an ordered set of connected subsets in X, that is Yj ⊆ Yj′ or Yj′ ⊆ Yj
for all j, j′ in J . Then we have that

⋂

j∈J Yj is connected, because a disjoint presentation
of the union must give a disjoint presentation of at least one of the Yj. Given a point x in
X, and let {Yj}j∈J be the family of all connected subsets of X that contain x. We obtain
that every point is contained in a connected component of X. Consequently we have that
X is the union of connected components. Two components can not intersect, because
then the union would be connected. Similarly, we see that a composition into connected
components is unique.

Lemma 3-8.9. An archwise connected topological space is connected.

Proof. Assume that X is archwise connected. If X = U ∪ V , where U and V are open,
non-empty, disjoint sets such that X = U ∪ V we choose points x and y in U respectively
V . There is an arch given by γ : [0, 1] → X, beginning in x and ending in y. Then [0, 1]
is the union of the two non-empty open sets γ−1(U) and γ−1(V ), and γ−1(U) ∩ γ−1(V ) =
γ−1(U ∩ V ) = ∅. However, this is impossible, since [0, 1] is connected (see Example 3-8.5).
Hence X is connected.

Lemma 3-8.10. A connected manifold is archwise connected.

Proof. Let M be a connected manifold. For each point x of M , denote by Ux the set of
points that are the ends of arches in M that begin at x. We have that Ux is open, because,
if y is in Ux, then there is a chart f : B(0, r) →M , from a ball in Km, such that f(0) = y.
Clearly the ball is archwise connected. Consequently we have that f(B(0, r)) is archwise
connected (see Remark 3-8.2), and hence is contained in Ux. Hence Ux is open. Fix x in
M . If Ux is not all of M , then, for every point y in M outside of Ux, the set Uy is disjoint
from Ux by Remark 3-8.2. Consequently the complement of Ux is open, which contradicts
the connectivity of M . We thus have that M = Ux, and hence is archwise connected.

Lemma 3-8.11. Let f : X → Y be a continuous map of topological spaces. If X is con-
nected, then f(X) is connected.

Proof. Assume that Y can be written Y = U ∪V where U and V are non-empty open sets
such that f(X) ∩ f−1(U) and f(X) ∩ f−1(V ) are disjoint. Then X = f−1(U) ∪ f−1(V )
expresses X as a union of disjoint open sets. Since X is connected we must have that
f(X) ⊆ U or f(X) ⊆ V . Consequently f(X) is connected, and we have proved the
lemma.
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Proposition 3-8.12. The groups Gln(C), Sln(C) and Sln(R) are connected in the metric
topologies, whereas Gln(R) consists of two connected components.

Proof. If follows from Proposition 1-5.2 that every element A of Gln(K) can be written in
the form A = Ei1,j1(a1) · · ·Ein,jn(an)E(a), where E(a) is the matrix 1-5.2.1 and a = detA.
Thus we can construct an arch γ : [0, 1] → Gln(K) from E(a) to A by

γ(t) = Ei1,j1(ta1) · · ·Ein,jn(tan)E(a), for t ∈ [0, 1].

If A ∈ Sln(K), we have that a = 1, which proves that any point of Sln(K) can be connected
by an arch to In and Sln(K) is connected. If K = C, we can find an arch γ : [0, 1] → Gln(C)
from E(a) to In, since C \ {0} is connected. Thus Gln(C) is connected. For Gln(R), we
can connect E(a) by an arch to E(−1) or In = E(1), depending on the sign of detA. On
the other hand det−1(1) and det−1(−1) are disjoint open sets of Gln(R) whose union is
Gln(R). Thus Gln(R) consists of two connected components.

Proposition 3-8.13. The group SOn(K) is connected and On(K) is not connected with
respect to the metric topology.

Proof. We have that det−1(1)∪det−1(−1) gives a partition of On(K) into two disjoint open
sets. Hence On(K) is not connected.

It follows from Proposition 1-9.4 that SOn(K) is generated by products of two reflections
of the form sx, where 〈x, x〉 6= 0. Let A =

∏

sxi
syi

be an element of SOn(K). If we can show
that the set {x ∈ V n(K)

∣

∣ 〈x, x〉 6= 0} is connected, we can find archs γi : [0, 1] → V n(K)
from xi to yi, for all i. Thus we can define an arch γ : [0, 1] → SOn(K) by γ(t) =

∏

sγi(t)syi
,

which goes from A to In and SOn(K) is connected.
It remains to prove that X = {x ∈ V n(K)

∣

∣ 〈x, x〉 6= 0} is connected. For K = R, we
have that X = V n(R) \ {0}, which is connected for n > 1. The case n = 1 is trivial, since
SO1(K) = {1}. For K = C, we can take a complex line through any two points x, y ∈ X.
On this line, there are at most two points not in X, but the complex line minus two points
is still connected. Hence we can find an arch between x and y in X.

Proposition 3-8.14. The group Spn(K) is connected.

Proof. It follows from Proposition 1-9.9 that every element of Spn(K) can be written as
a product of transvections τ(x, a), where τ(x, a)(y) = y + a〈x, y〉x. From Remark 3-8.2 it
follows that it suffices to find an arch γ : [0, 1] → Spn(K) such that γ(0) = In and γ(1) = τ .
However, we can define such an arch by γ(t) = τ(x, ta), for t ∈ [0, 1].

Example 3-8.15. We collect the information we have about the matrix groups in the
Table 2:

As we observed in Section 1-10 the size of the center alone suffices to distinguish Gln(C)
from the remaining groups. Moreover, for n > 2, the same is true for Sln(C), and, when n
is odd for SOn(C). Hence none of these sets are isomorphic as groups. The group On(C)
is the only one that is not connected and can not be homeomorphic, as topological space,
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Group n Center Dimension Connected

Gln(C) arb. K∗ n2 yes

Sln(C) arb. Z/nZ n2 − 1 yes

On(C) arb. {±1} n(n−1)
2

no

SOn(C) even {±1} n(n−1)
2

yes

SOn(C) odd 1 n(n−1)
2

yes

Spn(C) arb. {±1} n(n+1)
2

yes

Table 2: The classical groups over the complex numbers

to any of the other groups. Finally, SOn(C), for n even can not be equal to Spn(C) as
manifolds for n even, since then they must have the same dimension and then we must have
that n(2n+1) = m(2m−1), for some integers m and n. This implies that 2(m−n) = −1,
which is impossible. Consequently we can distinguish the matrix groups over C. We see
that we have used notions from group theory, topology, and from the theory of manifolds
to separate the groups. It is therefore natural to introduce structures that take both the
algebraic and geometric structures into account. We shall do this in Chapter 4.

In the case when the field K is the real numbers, the center of Sln(R) is also ±In.
In this case we can, as above distinguish all groups except Sln(R) and Sp2m(R), when

n2 − 1 = 2m(2m+1)
2

, and Sln(R) and SO2m(R), when n2 − 1 = 2m(2m−1)
2

(see Exercise 3-8.3).
The possibility that Sln(R) can be isomorphic to SOn(R) can be ruled out by introducing
compactness, which is a topological invariant. We shall see how this is done in the Section 3-
9.

Exercises

3-8.1. Show that the unit interval [0, 1] is connected.

3-8.2. Let SO2(R, S) be the special orthogonal group with respect to the form S =
(

1 0
0 −1

)

. Show
that SO2(R, S) =

{(

a b
b a

)

: a, b ∈ R, a2 − b2 = 1
}

, and that SO2(R, S) is not connected.

3-8.3. Determine all positive integers m and n such that

n2 − 1 =
2m(2m + 1)

2
.

3-8.4. Prove that X is connected if and only if X is not the union of two disjoint non-empty
closed sets, or, if and only if the complement of an non-empty open set can not be open, or, if
and only if the complement of a non-empty closed set can not be closed.

83



3-9 Compact topological spaces

Definition 3-9.1. Let X be a topological space. A subset S of X is compact if, for every
family of open sets {Ui}i∈I that cover S, that is, such that S =

⋃

i∈I Ui, there is a finite
subset Ui1 , . . . , Uin , for some n, that cover S.

Proposition 3-9.2. A subset of Rn is compact if and only if it is closed and bounded.

Proof. Assume that S is compact. First we show that S is bounded. Every point x in S
is contained in a ball B(x, 1) of radius 1. We have that the family

⋃

x∈S B(x, 1) covers S.
Hence, there is a finite subcover B(x1, 1), . . . , B(xn, 1). The union of this finite family of
bounded sets is clearly bounded. Hence S is bounded. We next show that S is closed.
Let y be a point of Rn not in S. For every x ∈ S there are balls B(y, εx) and B(x, εx)
such that B(y, εx) ∩ B(x, εx) = ∅. The sets {B(x, εx)}x∈S cover S. Hence there is a finite
subcover B(x1, εx1), . . . , B(xm, εxm

). We have that U =
⋂m

i=1B(y, ǫxi
) is an open subset

containing y such that U ∩B(xi, ǫxi
) = ∅, for i = 1, . . . , m. Consequently U ∩S = ∅. Since

every point of Rn that is not in S has a neighborhood that does not intersect S, we have
that S is closed.

Assume that S is a closed and bounded subset of Rn. Let {Ui}i∈I be an open covering
of S. Assume that S can not be covered by a finite subfamily of this covering. Since S
is bounded we have that S is contained in a box of the form B0 = {x ∈ Rn : |xi| ≤ a

2
} of

side-length a, for some a. Divide B0 into 2n boxes, B11, B12n of side-length a
2
. Since S can

not be covered by a finite number of the Ui the same is true for at least one of the sets,
say B1 = B1j ∩ S. We subdivide B1 into 2n boxes B21, . . . , B22n of side-length a

22 . Since
B1 ∩ S can not be covered by a finite number of the open sets Ui the same is true for at
least one of the, say B2 = B2j2 . We continue this reasoning and obtain a sequence of boxes
B0 ⊃ B1 ⊃ B2 ⊃ · · · , where Bi has side-length a

2i , and such that Bi∩S can not be covered
by a finite number of the Ui.

Let, for j = 1, . . . , m, the j’th side of Bi be [aij , bij]. Then a1j ≤ a2j ≤ · · · ≤ b2j ≤ b1j ,
and bij − aij = a

2i . Let bj be the greatest lower bound for the set b1j ≥ b2j ≥ · · · . Then
aij ≤ bj ≤ bij , for all i. Consequently, the point (b1, . . . , bn) is in ∩∞

i=1Bi. We have
that b ∈ Ul, for some l. Since the side of Bi is a

2i , we can find a j such that Bj ⊆ Ul. In
particular Bj can be covered by a finite number, in fact one, of the sets Ui. This contradicts
the assumption that S can not be covered by a finite number of the Ui, and we have finished
the proof.

Example 3-9.3. The groups Gln(R) and Sln(R) are not compact, for n > 1. Indeed, they
contain the matrices Ei,j(a) for all i 6= j, and consequently are not bounded.

Example 3-9.4. Both of the groups On(R) and SOn(R) are compact. Indeed, they are
defined as the zeroes of the n2 polynomials that are the coefficients of the matrix identity
X tX = 1, and SOn(R) is the zero also of the polynomial detX − 1. Hence the groups are
closed. However, the relations x2

i1 + · · · + x2
in = 1, for i = 1, . . . , n, which are obtained by

considering the diagonal entries of the matrix relation, show that the points of On(R), and
thus those of SOn(R), are contained in the unit cube in Rn.
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Group n Center Dimension Connected Compact

Gln(R) arb. K∗ n2 no no

Sln(R) arb. {±1} n2 − 1 yes no

On(R) arb. {±1} n(n−1)
2

no yes

SOn(R) even {±1} n(n−1)
2

yes yes

SOn(R) odd {1} n(n−1)
2

yes yes

Spn(R) arb. {±1} n(n+1)
2

yes no

Table 3: The classical groups over the real numbers

Example 3-9.5. The group Spn(R) is not compact. Indeed, it contains the element
Ei,n+1−j(a), for all i, and hence is not bounded.

Example 3-9.6. We can now return to the case of matrix groups over the real numbers
as we mentioned in Example 3-8.15. Over the real numbers we get a table:

In this case we can, as above distinguish all groups except Sln(R) and Sp2m(R), when

n2 − 1 = 2m(2m+1)
2

(see Exercise 3-8.3).

Exercises

3-9.1. Let O2(R, 〈, 〉) be the orthogonal group over the real numbers with respect to the form

defined by the matrix
(

1 0
0 −1

)

. Show that O2(R, 〈, 〉) contains the matrices

(

1
2
(t+ 1

t
) 1

2
(t− 1

t
)

− 1
2
(t− 1

t
) 1

2
(t+ 1

t
)

)

,

and that O2(R, 〈, 〉) is not compact.
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4 Lie groups

4-1 Lie groups

We used matrix groups to motivate the definition of groups in Chapter 1 and the definition
of manifolds in Chapter 3. In our attempts to distinguish the matrix groups we were led
to introduce algebraic invariants, like the center of a group and the dimension of a vector
space, and geometric invariants, like connectedness and compactness of topological spaces,
and the dimension of manifolds. The most natural and powerful approach is obtained when
the algebraic and geometric viewpoints are put together. In this chapter we shall show
how this is done.

Definition 4-1.1. Let G be a manifold which is also a group and let G×G be the product
manifold (see Example3-4.7). We say that G is a Lie group when the product map

G×G→ G,

which sends (a, b) to ab, and the inverse map

G→ G,

which sends a to a−1, are analytic.

Remark 4-1.2. We note that the inverse map is an analytic isomorphism. In fact, it is its
own inverse.

Example 4-1.3. The manifolds Gln(K), Sln(K), GS(K), and SLS(K), and hence, in
particular, On(K), SOn(K), Spn(K) are all Lie groups (see Example 3-4.5). Indeed the
multiplication map is given by polynomials, and the inverse is given by a rational function
with denominator the determinant det(Xij) of a n×n matrix with variables as coefficients.

Example 4-1.4. The manifold K with addition as group operation is a Lie group.

Example 4-1.5. Let H be a Lie group, and G a submanifold ofH , which is also a subgroup
of H . Then G is also a Lie group. Indeed, the multiplication map G × G → G and the
inverse map G→ G of G are the composite of the inclusions G×G ⊆ H ×H and G ⊆ H ,
with the multiplication, respectively inverse, on H . Since the inclusion maps are analytic,
by the definition of submanifolds, the multiplication and inverse on G are analytic.

Definition 4-1.6. Let G and H be Lie groups. We say that G is a Lie subgroup of H if
it is a submanifold, and the inclusion map is also a group homomorphism.

The most remarkable feature of a Lie group is that the structure is the same in the
neighborhood of each of its points. To make this precise we introduce the left translations.

Definition 4-1.7. Let G be a group and a an element of G. The map

λa : G→ G

defined by λa(b) = ab is called a left translation by a.

86



Remark 4-1.8. When G is a Lie group the left translations are analytic. Indeed λa is the
composite of the inclusion a×G→ G×G with the multiplication G×G→ G, and both the
latter maps are analytic. The map λa is also an isomorphism of the manifold G, because
it has the analytic inverse λa−1 .

Given two points a and b of a Lie group G. Then the map λba−1 is an isomorphism of
the manifold G, which sends a to b. We obtain, for each open set U of G, an isomorphism
of rings

(λ∗ba−1
)U : OG(λba−1(U)) → OG(U)

which sends an analytic function f : λba−1(U) → K to the function fλba−1 : U → K, which
sends c to f(ba−1c). In particular, we obtain an isomorphism

(λba−1)b : OG,b → OG,a

of rings. Consequently, we have an isomorphism of vector spaces

Taλba−1 : TaG→ TbG,

sending a derivation D in TaG to the derivation in TbG which maps a function f of OG,b

to D(fλba−1).

Definition 4-1.9. Let G and H be Lie groups. A homomorphism of Lie groups is a map
Φ : G→ H which is an analytic map of manifolds and a homomorphism of groups. We say
that a homomorphism of Lie groups is an isomorphism if it has an inverse map, which is
a homomorphism of Lie groups.

Example 4-1.10. The maps of Examples 1-2.10, 1-2.11, 1-2.12, and the inclusion of all the
groups Gln(K), Sln(K), GS(K), and SGS(K), and hence, in particular, On(K), SOn(K),
Spn(K) into Gln(K), are all homomorphisms of Lie groups.

Remark 4-1.11. Let a and b be two points of a Lie group G. Then we have that λab = λaλb.
Moreover, given a map Φ : G → H of Lie groups. For each point a of G we have that
Φλa = λΦ(a)Φ, i.e., the diagram

G
λa−−−→ G

Φ





y





y
Φ

H −−−→
λΦ(a)

H

(4-1.11.1)

is commutative.

4-2 Lie algebras

We noticed in Example 2-6.2 that the tangent spaces of the matrix groups Gln(K), Sln(K),
GS(K), and SGS(K), and hence, in particular On(K), SOn(K), Spn(K) are Lie subalgebras
of Mn(K) in the sense defined in Remark 2-6.1. In this section we give the general Definition
of Lie algebras and in section 4-4 we show that the tangent space of any Lie group has a
natural structure as a Lie algebra.
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Definition 4-2.1. Let v be a vector space with a bilinear form

[·, ·] : v × v → v

(see 1-7.1). We say that v is a Lie algebra if the following two conditions hold for all
vectors X, Y and Z of v:

(i) [X,X] = 0,

(ii) [X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0.

A subalgebra v of a Lie algebra w is a subspace such that [X, Y ] is in v, for all X and
Y of v.

Remark 4-2.2. Let v be a Lie subalgebra of w. Then the product [, ] on w induces, by
definition, a product [, ] on v. With this product we have that v is a Lie algebra. Indeed,
this product is bilinear and satisfies the two properties of the definition 4-2.1 of Lie algebras
because it does so for all elements of w.

Example 4-2.3. The spaces gln(K), sln(K), son(K), and spn(K) of example 2-6.2 are all
Lie subalgebras of the Lie algebra gln(K) of remark 2-6.1.

Example 4-2.4. Let A be an algebra over K, and denote by DerK(A,A) the vector space
of K derivation on A (see definition 3-6.2). Given derivations X and Y , we let [X, Y ] denote
the map (XY −Y X) : A→ A. We have that [X, Y ] is, in fact, a K derivation. Indeed, for
all a and b in A, we have thatXY (ab)−Y X(ab) = X(aY b+bY a)−Y (aXb+bXa) = XaY b+
aXY b+XbY a+bXY a−Y aXb−aY Xb−Y bXa−bY Xa = (a(XY −Y X)b+b(XY −Y X)a).
With this product DerK(A,A) becomes a Lie algebra. Indeed the first axiom is obvious,
and the second a long, but easy, calculation.

Definition 4-2.5. Let g and h be Lie algebras and ϕ : g → h a linear map. We say that
ϕ is a Lie algebra homomorphism if ϕ[X, Y ] = [ϕX,ϕY ], for all X and Y of g.

4-3 Vector fields

In order to define a structure of Lie algebra on the tangent space of a Lie group we shall
introduce vector fields on manifolds. Intuitively a vector field on a manifold M consists of
a tangent vector X(x) for every point x of M , such that the vectors depend analytically
on the points. More precisely, for every analytic function f : U → K defined on an open
set U , the function on U sending x to X(x)f should be analytic.

Definition 4-3.1. A vector field on a manifold M consists of a derivation

XU : OM (U) → OM(U),

on the ring OM(U), for all open subsets U of M , such that, if V is an open subset of U ,
then

ρU,VXU = XV ρU,V ,

where the ρU,V are the restriction maps of Remark 3-4.9.
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Remark 4-3.2. A collection of maps ϕU : OM (U) → OM(U), one for each open subset U of
M , such that ρU,VϕU = ϕV ρU,V , for all open subsets V of U , is called a map of the sheaf
OM .

4-3.3. Given two vector fields X and Y on a manifold M . We define the sum X + Y of
X and Y by (X + Y )U = XU + YU , and the product aX of a scalar a of K with X by
(aX)U = aXU , for all open sets U of M . It is clear that the vector fields on M , with these
operations, become a vector space over K.

4-3.4. Fix a point x of M , and let X be a vector field on M . The maps XU : OM(U) →
OM(U), for all open subsets U of M that contain x, define a K derivation

Xx : OM,x → OM,x

on the ring OM,x. The composite of Xx with the augmentation map OM,x → K is a K

derivation
X(x) : OM,x → K,

for the augmentation map. We consequently obtain, for each point x in M , a map

ǫM,x : v(M) → TxM,

which clearly is a K linear map. By the definition of X(x) we have that

X(x)f = Xf(x),

for all functions f that are analytic in a neighborhood of x.

4-3.5. Given two vector fields X and Y on a manifold M . For all open subsets U of M
the composite (XY )U = XUYU of XU and YU defines a linear map OM(U) → OM(U),
such that ρU,V (XY )U = (XY )V ρU,V , for all open subsets V of U . That is, we obtain a
map XY of sheaves. This map is however, not a derivation. On the other hand the map
(XY − Y X)U : OM(U) → OM(U) is a derivation. Indeed, we saw in Example 4-2.4 that
DerK(OM(U),OM (U)) is a Lie algebra under the operation [A,B] = AB − BA, and XU

and YU lie in DerK(OM(U),OM (U)). Hence, the maps (XY − Y X)U , for all open sets U
of M , define a vector field. We shall denote this vector field by [X, Y ]. Since the subset
of DerK(OM(U),OM (U)) consisting of derivations of the form XU , where X is a vector
field on M , form a Lie subalgebra, it follows that the space of vector fields on M is a Lie
algebra with product [, ].

Definition 4-3.6. We denote the Lie algebra of vector fields on a manifold M by v(M).

Remark 4-3.7. Given a homomorphism Φ : M → N of analytic manifolds. For each point
x of M we have maps

ǫM,x : v(M) → TxM, TxΦ : TxM → TΦ(x)N, and ǫN,Φ(x) : v(N) → TΦ(x)N.

There is no natural map from v(M) to v(N). However, we can relate vector fields on M
and N in the following way:

Let X and Y be vector fields on M respectively N and let let f be a function which is
analytic in an open subset V of N . Then the following is equivalent:
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(i) TxΦǫM,xX = ǫN,Φ(x)Y , for x in Φ−1(V ),

(ii) ǫM,xX(gΦ) = ǫN,Φ(x)Y f , for x in Φ−1(V ),

(iii) X(fΦ) = (Y f)Φ on Φ−1(V ),

(iv) X(x)fΦ = Y (Φ(x))f , for all x in Φ−1(V ).

Lemma 4-3.8. Let Φ : M → N be an analytic map of manifolds. Given vector fields Xi

on M , and Yi on N , for i = 1, 2. Assume that TxΦǫM,xXi = ǫN,Φ(x)Yi, for all x in M , and
for i =, 1, 2. Then we have that

TxΦǫM,x[X1, X2] = ǫN,Φ(x)[Y1, Y2].

Proof. It follows from Remark 4-3.7 that the condition of the lemma is equivalent to
asserting that we, for every function f that is analytic in a neighborhood of a point Φ(x),
have that X(fΦ) = (Y f)Φ, in a neighborhood of x. The proof now consists in unraveling
the definitions involved as follows:

TxΦǫM,x[X1, X2]f = [X1, X2]fΦ(x) = (X1X2)(fΦ)(x) − (X2X1)(fΦ)(x)
= X1(X2(fΦ))(x) −X2(X1(fΦ))(x)
= X1((Y2f)Φ)(x) −X2((Y1f)Φ))(x)
= Y1Y2f(Φ(x)) − Y2Y1f(Φ(x)) = [Y1, Y2]f(Φ(x)) = ǫN,Φ(x)[Y1, Y2].

(4-3.8.1)

4-4 The Lie algebra of a Lie group

In this section we shall show that the tangent space of a Lie group has a structure of a Lie
algebra, and that a homomorphism of Lie groups induces a homomorphism of Lie algebras.

Definition 4-4.1. Let G be a Lie group. We shall say that a vector field X on G is left
invariant if, for every point a of G and every analytic function f : U → K on an open
subset U of G, we have that

(Xf)λa = X(fλa)

on the open subset a−1U of G. That is, for all b in G such that ab ∈ U , we have that
(Xf)(ab) = X(fλa)(b). Here λa is the left translation of Definition 4-1.7.

4-4.2. The left invariant vector fields on a Lie group G form a Lie subalgebra of v(G).
Indeed, if X and Y are left invariant vector fields on G, we have that

[X, Y ]f(ab) = XY f(ab) − Y Xf(ab) = X((Y f)λa)(b) − Y ((Xf)λa)(b)
= X(Y (fλa))(b) − Y (X(fλa))(b) = [X, Y ](fλa)(b).

(4-4.2.1)

Hence we have that [X, Y ] is left invariant.
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Definition 4-4.3. The Lie algebra of left invariant vector fields on G is called the Lie
algebra of G and is denoted by g. The map ǫG,e : v(G) → Te(G) of Paragraph 4-3.4 induces
a map

λG : g → Te(G).

Remark 4-4.4. Let G be a Lie group and let ϕ : U → G be a chart. The multiplication map
G×G → G is continuous. Consequently, we can choose charts ψ : V → G and χ : W →W ,
such that χ(0) = e, and such that the multiplication induces as map

µ : V ×W → U.

Choose coordinates x = (x1, . . . , xn), y = (y1, . . . , yn), and z = (z1, . . . , zn) in U , V , and
W respectively. We write µ(x, y) = (µ1(x, y), . . . , µn(x, y)).

Given a tangent D in Te(G), we can write

D = Toχ(c1
∂

∂z1
+ · · ·+ cn

∂

∂zn
),

for some c1, . . . , cn in K. For each analytic function f : U → K and a in V we obtain
equations

D(fµ(a, z)) =
n
∑

i=1

ci
∂(fϕ)µ(a, z)

∂zi
(a, 0) =

n
∑

i=1

n
∑

j=1

ci
∂(fϕ)

∂xj
µ(a, 0)

∂µj
∂zi

(a, 0).

The map µ(y, z) is analytic in y and z. Consequently, we have that Ψij(y) =
∂µj

∂zi
(y, 0) is

analytic, and we have an expression

D(fλa) =
n
∑

i=1

n
∑

j=1

ciΨij(a)
∂(fϕ)

∂xj
(a), (4-4.4.1)

with Ψij(y) analytic.

Lemma 4-4.5. Let G be a Lie group and D a tangent vector in TeG. For each analytic
map f : U → K, on an open subset U of G, the function XU : U → K, defined by XU(a) =
D(fλa), is analytic. The map

XU : OG(U) → OG(U),

obtained in this way, for each open subset U of G, define a left invariant vector field on G.

Proof. We have that D(fλa) depends only on the value of the function fλa near the unit e
of G. Choose charts and coordinates as in Remark 4-4.4. We obtain from Equation 4-4.4.1

Xf(a) = D(fλa) = D(fµ(a, z)) =
n
∑

i=1

n
∑

j=1

ciΨij(a)
∂(fϕ)

∂xj
(a),
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with the Ψij(a) analytic in a. We obtain that D(fµ(a, z)) = D(fλa) is an analytic function
of a and we have proved the first part of the lemma.

It is clear, from the definition of the functions XU and the restriction functions ρU,V ,
that ρU,VXU = XV ρU,V . Consequently, the second assertion of the lemma holds.

It remains to prove that X is left invariant. Let f : U → K be analytic and let a be
in G. We must prove that (Xf)λa = X(fλa) on a−1U . Let b be in a−1U . We have that
(Xf)λa(b) = (Xf)(ab) = D(fλab) = D(fλaλb) = D((fλa)λb) = X(fλa)(b). Hence, X is
left invariant.

Remark 4-4.6. Lemma 4-4.5 asserts that, to a derivation D in TeG, we can associate a left
invariant vector field X. In this way we obtain a map δG : TeG → g. This map is clearly
linear.

Choose charts and coordinates as in Remark 4-4.4. Let X be the left invariant vector
field associated to D = T0χ(c1

∂
∂z1

+ · · · + cn
∂
∂zn

). In particular, we have that Xf(a) =
D(fλa), for all analytic functions f : U → K, and all a ∈ V . The Equation 4-4.4.1 can be
rewritten as

X =
n
∑

i=1

n
∑

j=1

ciΨij(a)
∂

∂xj
,

where this expression means that Xf(ϕ(a)) =
∑n

i=1

∑n

j=1 ciΨ (a)∂(fϕ)
∂xj

, for all analytic

functions f : U → G and all a ∈ U .

Proposition 4-4.7. The map ǫG,e : v(G) → Te(G) of Paragraph 4-3.4 induces an isomor-
phism of K vector spaces

ǫG : g → Te(G).

The inverse of ǫG is the map δG : Te(G) → g defined in Remark 4-4.6.

Proof. It suffices to show that ǫG and the map δG defined in Remark 4-4.6 are inverse
maps.

Let D be a vector in TeG, and let X be the vector field associated to D in remark 4-4.6.
For f in OG,x we have that X(e)f = Xf(e) = D(fλe) = Df .

Conversely, let X be a vector field on G, and let D = X(e). Let Y be the vector field
associated to D in remark 4-4.6. For all analytic functions f : U → K defined on an open
subset U of G, and for all points a of G we have that Xf(a) = (Xf)λa(e) = X(fλa)(e) =
X(e)(fλa) = D(fλa) = Y f(a). Hence, we have proved the proposition.

Remark 4-4.8. It follows from Proposition 4-4.7 that we can use the map δG : v(G) → TeG
to give the space TeG a structure as a Lie group.

Definition 4-4.9. Let G and H be Lie groups with Lie algebras g and h. Moreover, let
Φ : G→ H be a homomorphism of Lie groups. Then we have a map

l(Φ) : g → h

defined by l(Φ) = δ−1
H TeΦδG. If Ψ : F → G is another map of Lie groups we clearly have

that l(ΨΦ) = l(Ψ )l(Φ).
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Proposition 4-4.10. Let Φ : G→ H be a homomorphism of Lie groups. The map

l(Φ) : g → h

of the corresponding Lie algebras is a Lie algebra homomorphism.

Proof. It is clear that l(Φ) is a map of vector spaces. To show that it is a map of Lie
algebras, let Xi, for i = 1, 2, be left invariant vector fields on G and let Yi = l(Φ)Xi.
Since the maps δG and δH are induced by the maps ǫG,e and ǫH,e of Paragraph 4-3.4 and
Remark 4-3.7, we have that the proposition follows from Lemma 4-3.8, once we can show
that TeΦδGXi = δHYi. However, we have that TeΦδGXi = δH l(Φ)Xi = δHYi, and we have
finished the proof.

4-5 One parameter subgroups of Lie groups

In this section we shall construct one parameter subgroups of any Lie group and thus
generalize the construction of one parameter subgroups of the matrix groups given in
Section 2-7. For the construction we need a well known result about differential equations,
which is proved for differentiable functions in any beginning course in differential equations,
or in advanced calculus courses. We shall start by giving a proof of the result because we
shall use it in the less frequently presented case of analytic functions.

Proposition 4-5.1. For p = 1, . . . , n, we give analytic functions fp : U → K defined on
an open subset U of Kn. The differential equation

g′p(t) = fp(g1(t), . . . , gn(t))

in the functions g1, . . . , gn in the variable t, with initial conditions gp(0) = ap, for p =
1, . . . , n, with ap ∈ K, has a unique solution g1(t), . . . , gn(t), for t in a neighborhood V of
0 in K, and the functions gp are analytic on V .

Proof. Write

fp(x) =
∑

i∈I

cpix
i, for p = 1, . . . , n.

Let

gp(t) =

∞
∑

q=0

dpqt
q, for p = 1, . . . , n

be formal power series. If they shall satisfy the differential equation of the proposition, we
must have that

∞
∑

q=1

qdpqt
q−1 =

∑

i∈I

cpi

(

∞
∑

q=0

d1qt
q

)i1

· · ·
(

∞
∑

q=0

dnqt
q

)in

.
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Hence there are unique polynomials Qm(cpi, d1q, . . . , dnq), for |i| < m and q < m, with
positive integers as coefficients, such that

dpm =
1

m
Qm(cpi, d1q, . . . , dnq), for p = 1, . . . , n.

By induction on m, starting with the initial condition dp0 = ap, we obtain that the dpm
are uniquely determined such that the formal series g1(t), . . . , gn(t) satisfy the differential
equation of the proposition.

It remains to prove that the formal series g1, . . . , gn define analytic functions.
Assume that we have real numbers c̄pi, for p = 1, . . . , n and i ∈ I, such that

|cpi| ≤ c̄pi,

for all p and i, and such that the functions

f̄p(x) =
∑

i∈I

c̄pix
i, for p = 1, . . . , n

are analytic. As we saw above, we can find unique formal series

ḡp(t) =

∞
∑

q=o

d̄pqt
q

that solve the differential equation

ḡ′p(t) = f̄p(ḡ1(t), . . . , ḡn(t)). (4-5.1.1)

If the functions ḡ1, . . . , ḡn were analytic, the same would be true for g1, . . . , gn. Indeed, we
have inequalities

|dpm| =
1

n
|Qm(cpi, d1q, . . . , dnq)|

≤ 1

n
Qm(|cpi|, |d1q|, . . . , |dnq|) ≤

1

n
Qm(c̄pi, d̄1q, . . . , d̄nq) = d̄pm.

Hence, to prove the proposition, it suffices to construct analytic functions

f̄p(x) =
∑

i∈I

c̄pix
i

such that |cpi| ≤ c̄pi, for all p and i, and such that the corresponding solutions ḡ1, . . . , ḡn
of Equation 4-5.1.1 are analytic.

To construct the f̄p we note that the functions fp are analytic on some neighborhood
of 0 in Kn. Consequently there are positive constants C and r such that

∑

i∈I

|cpi|r|i| < C.
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Let

c̄pi =
C

r|i|
.

We have that |cpi|r|i| ≤
∑

i∈I |cpi|r|i| < C = c̄pir
|i|. Consequently, we have that |cpi| ≤ c̄pi,

for all p and i. Moreover, we have that

f̄p(x) =
∑

i∈I

c̄pix
i = C

∑

i∈I

(x

r

)i

=
C

∏m
q=1

(

1 − xq

r

) .

Hence f̄1, . . . , f̄n are anlytic. Moreover, the power series

ḡp(t) = ḡ(t) = r

(

1 −
(

1 − (n + 1)C
t

r

)
1

n+1

)

,

is analytic and satifies the differential equation 4-5.1.1, that is

ḡ′(t) =
C

(

1 − ḡ(t)
r

)n .

Indeed, we have that

ḡ′(t) = C

(

1 − (n+ 1)C
t

r

)− n
n+1

,

and
(

1 − (n+ 1)C
t

r

)
n

n+1

=

(

1 − ḡ(t)

r

)n

.

Definition 4-5.2. A one parameter subgroup of a Lie group G is an analytic mapping
γ : K → G, which is also a group homomorphism. The tangent of a one parameter subgroup
is the tangent γ′(0) of the corresponding curve at the unit element, as defined in 3-6.9.

Remark 4-5.3. Let G be a Lie group and let γ : T → G be an analytic map from an open
subset T of K containing 0. Choose a chart ϕ : U → G such that γ(T ) ⊆ ϕ(U). As in
Remark 4-4.4 we choose charts ψ : V → G and χ : W → W , such that χ(0) = e, and such
that the multiplication induces as map

µ : V ×W → U.

Moreover, we let x = (x1, . . . , xn), y = (y1, . . . , yn), and z = (z1, . . . , zn) be coordinates
in U, V , and W respectively. Write µ(x, y) = (µ1(x, y), . . . , µn(x, y)) and let ϕ−1γ =
(γ1, . . . , γn).
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Assume that we have γ(s + t) = γ(s)γ(t), for all s and t in T , that is, we have
µj(γ1(s), . . . , γn(s), γ1(t), . . . , γn(t)) = γj(s + t). We differentiate the latter equation with
respect to t at t = 0, and obtain

dγj
dt

(s) =

n
∑

i=1

∂µj
∂yi

(γ1(s), . . . , γn(s), 0)
dγi
dt

(0) =

n
∑

i=1

Ψij(γ(s))ci, (4-5.3.1)

with ci =
dγj

dt
(0).

Fix a basis for Te(G). It follows from Proposition 4-5.1 that, given c1, . . . , cn, the curve
γ : T → G is determined uniquely neighborhood 0 in K by the condition that γ′(0) =
(c1, . . . , cn) in the fixed basis of Te(G).

Proposition 4-5.4. Let G be a Lie group and D a tangent of G at the identity e. Then
there is a unique one parameter subgroup γ : K → G of G whose tangent γ′(0) at 0 is equal
to D.

Proof. It follows from Remark 4-5.3 that a one parameter subgroup of G, with derivative
D at 0, is uniquely determined in a neighborhood of 0 in K.

Choose charts and coordinates ofG as in Remark 4-5.3. Let γ1(t), . . . , γn(t) be solutions,
in a neighborhood T of 0 in K, of the differential equation 4-5.3.1 with derivative (c1, . . . , cn)
at 0. Let γ(t) = ϕ(γ1(t), . . . , γn(t)).

We shall show that the curve uniquely can be extended to a one parameter subgroup
of G.

First we shall show that γ(s + t) = γ(s)γ(t), for s and t in some neighborhood of 0
in K. We have an equation µj(xy, z) = µj(x, yz). Differentiating the latter equation with
respect to zj at z = 0 we get

Φij(xy) =
∂µj
∂zi

(xy, 0) =

n
∑

k=1

∂µj
∂yk

(x, y)
∂µk
∂zi

(y, 0) =

n
∑

k=1

Φik(y)
∂µj
∂yk

(x, y). (4-5.4.1)

On the other hand, differentiating µj(γ(s), γ(t)) with respect to t, we obtain

dµj
dt

(γ(s), γ(t)) =

n
∑

k=1

∂µj
∂yk

(γ(s), γ(t))
dγk
dt

(γ(t)) =

n
∑

k=1

n
∑

i=1

∂µj
∂yk

(γ(s), γ(t))Φik(γ(t))ci.

It follows from the latter equation and Equation 4-5.4.1, with x = γ(s) and y = γ(t), that

dµj
dt

(γ(s), γ(t)) =
n
∑

i=1

Φij(γ(s)γ(t))ci =
n
∑

i=1

Φij(µ(γ(s), γ(t)))ci.

We also have that
dγj
dt

(s+ t) =

n
∑

i=1

Φij(γ(s+ t))ci,
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since γ(t) and thus γ(s + t) satisfies the differential equation 4-5.3.1. Hence we have
thatµj(γ(s), γ(t)) and γj(s+ t) satisfy the same differential equation 4-5.3.1, and for t = 0
we have that µ(γ(s), γ(0)) = γ(s). It follows from the uniqueness part of Proposition 4-5.1
that we must have that γ(s)γ(t) = γ(s+ t), for s and t in some neighborhood S of 0 in K.

We can now extend the curve γ : S → G uniquely to a one parameter subgroup γ : K →
G of G. First we note that any extension is unique. Indeed, given t in K. Then 1

m
t is in

S for some positive integer m. Then we have that γ(t) = γ(n
n
t) = γ( 1

n
t)n, such that γ( 1

n
t)

determines γ(t). To extend γ to K we use the same method. Given t in K, we choose a
positive integer p such that 1

p
t is in S. If q is another such integer we obtain that

γ

(

1

p
t

)p

= γ

(

q

pq
t

)p

= γ

(

1

pq
t

)

pq = γ

(

q

pq
t

)

q = γ

(

1

q
t

)q

,

since p 1
pq
t and q 1

pq
t both are in S. It follows that we can define uniquely γ(t) by γ(t) =

γ(1
p
t)p, for any positive integer p such that 1

p
t is in S. We can thus extend the curve to a

curve γ : K → G and the extension is analytic because division by p is analytic in K, and
taking p’th power is analytic in G.

Finally, we have that γ is a group homomorphism because, for any s and t in K, we
choose a positive integer p such that 1

p
s, 1

p
t and 1

p
(s+ t) are in S. Then we have that

γ(s+ t) = γ

(

1

p
(s+ t)

)p

= γ

(

1

p
s

)p

γ

(

1

p
t

)p

= γ(s)γ(t).

We have proved that γ is a one parameter subgroup of G and that the condition that
γ′(0) = (c1, . . . , cn) in the given coordinates of Te(G) determines γ uniquely. Thus we have
proved the proposition.

Example 4-5.5. Let G be one of the matrix groups Gln(K), Sln(K), GS(K), or SGS(K).
Then we have identified, in 2-5, the tangent space of G with a subspace g of Mn(K). Given
D in g, it follows from assertion (ii) of 2-2.8 and from 2-4.8 and that γ(t) = exp(tD) is
an one parameter subgroup of G, and from Example 2-4.15 that the tangent γ′(0) is D.
Consequently, exp(tD) is the unique one parameter subgroup of G with tangent D.

4-6 The exponential function for Lie groups

We shall next construct an exponential function for Lie groups, generalizing the exponential
function for matrix groups defined in Section 2-2.

4-6.1. For Lie groups there is a Taylor expansion of analytic functions generalizing the
usual Taylor expansion in analysis. We shall in this paragraph deduce the expansion on
Lie groups from that of analysis.

Let G be a Lie group and X a vector field on G. To X there correspond a unique one
parameter subgroup γ : K → G og G with tangent X(e), that is γ′(0) = X(e). Choose a
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chart ϕ : U → G of G such that ϕ(0) = e and choose coordinates x = (x1, . . . , xn) in U . In
this chart we can write

X(e) = T0ϕ

(

c1
∂

∂x1
+ · · · cn

∂

∂xn

)

,

for some elements c1, . . . , cn of K. Given an analytic function f : ϕ(U) → K. For each
point x of U it follows from Remark 4-4.6that

Xf(ϕ(x)) =

n
∑

i=1

n
∑

j=1

ciΨij(x)
∂(fϕ)

∂xj
(x), (4-6.1.1)

where Ψij(x) =
∂µj

∂yi
(x, 0), and where (µ1, . . . , µn) represent the multiplication of G in the

chart. Write
ϕ−1γ(t) = (γ1(t), . . . , γn(t))

in a neighborhood of 0 in K. We have that γj(s + t) = µj(γ(s), γ(t)) for s and t in a
neighborhood of 0 in K. Differentiation of the latter expression with respect to t, at 0,
gives

dγj
dt

(s) =
n
∑

i=1

∂µj
∂yi

(ϕ−1γ(x), 0)
dγi
dt

(0) =
n
∑

i=1

Ψij(ϕ
−1γ(s))ci.

Consequently, we have that

d(fγ)

dt
(t) =

n
∑

j=1

∂(fϕ)

∂xj
(ϕ−1γ(t) =

n
∑

i=1

n
∑

j=1

∂(fϕ)

∂xj
(ϕ−1γ(t))Ψij(ϕ

−1γ(s))ci.

Comparing the latter formula with Formula 4-6.1.1 we get that

d(fγ)

dt
(t) = Xf(γ(t)). (4-6.1.2)

We obtain that
d2(fγ)

dt2
(t)]

d(Xf)

dt
(γ(t)) = X2f(γ(t)),

where the first equality is obtained by differentiation Equation 4-6.1.2 and the second by
applying Equation 4-6.1.2 to Xf . Iterating we obtain that

di(fγ)

dti
(t) = X if(γ(t)), for i = 1, 2, . . . .

Taylor expansion of the function fγ : V → K in one variable defined in a neighborhood of
0 in K gives

fγ(t) = fγ(0) +
1

1!

d(fγ)

dt
(o) +

1

2!

d2(fγ)

dt2
(0) + · · · .

We obtain that

fγ(t) = f(e) +
1

1!
Xf(e)t+

1

2!
X2f(e)t2 + · · · ,=

(

+
1

1!
tX +

1

2!
t2X2 + · · ·

)

f(e),

which is the Taylor expansion of f on G, and converges in a neighborhood of 0 in K.
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Definition 4-6.2. To every left invariant vector field X on a Lie group G we have asso-
ciated, in Proposition 4-5.4, a unique one parameter subgroup γ : K → G of G. We write
γ(t) = exp(tX) and define a map exp: g → G for the space of left invariant vector fields
by exp(X) = γ(1). The map exp is called the exponential function of G.

Example 4-6.3. Let G be one of the matrix groups Gln(K), Sln(K), GS(K), or SGS(K).
It follows from 4-5.5 that that the exponential function sends a vector D in the tangent
space g og G to exp(D), where exp is the exponential function of Section 2-2. Hence, in
the case of the matrix groups the exponential function, as defined in this section, is the
same as the exponential map as defined in 2-2.

Example 4-6.4. Let V be a vector space. We choose a basis v1, . . . , vn of V and consider
V as a normed space, isomorphic to Kn, via this basis (see 2-1.7). Then V is a Lie group
with respect to the addition of V , and the isomorphism ϕ : Kn → V , defined by the basis is
a chart. The tangent space of V at 0 is has, via this chart, a basis δ1, . . . , δn corresponding
to ∂

∂x1
, . . . , ∂

∂xn
, where x1, . . . , xn are coordinates on Kn. Let D = a1δ1+· · ·+anδn The map

γ : K → V that sends t to (ta1v1+· · ·+tanvn) is a one parameter subgroup whose derivative
at 0 is a1v1+· · ·+anvn. Consequently, we have that exp(a1δ1+· · ·+anδn) = a1v1+· · ·+anvn,
and we can identify V with its tangent space at 0, via the exponential map.

4-6.5. By the Taylor expansion we obtain, for each analytic function f : U → K, an ex-
pression

f exp(tX) =

(

(1 +
1

1!
tX +

1

2!
t2X2 + · · · )f

)

(e).

4-6.6. Choose, as in Paragraph 4-6.1, a chart ϕ : U → G of G and coordinates x1, . . . , xn of
U . We define a norm on the space Te(G) via the basis ∂

∂x1
, . . . , ∂

∂xn
of T0(U) (see Example

2-1.7). Denote the coordinates of T0(U) with respect to this basis by u1, . . . , un. The space
g obtains a norm via the isomorphism ǫG : g → Te(G) of Proposition 4-4.7. It follows from
Example 2-1.7 that the analytic structure on g is independent of the choice of basis. we
shall next show that the map exp: g → G is analytic with respect to this analytic structure
of g.

Proposition 4-6.7. The exponential map defines an analytic map

exp : g → G.

Moreover, the map T0 exp : T0(g) → Te(G) is an isomorphism. More precisely, if we identify
the tangent space of g at 0 with g, as in Example 4-6.4, we have that the map of left
invariant vector fields associated to exp is the identity map.

Proof. We shall use the same notation as in Paragraph 4-6.1. We have that the vector

T0ϕ
(

u1
∂
∂x1

+ · · ·+ un
∂
∂xn

)

of Te(G) corresponds to the left invariant vecotr field

X =
n
∑

i=1

n
∑

j=1

uiΨij(x)
∂

∂xj
.
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Taylors formula applied to the analytic functions xjϕ
−1 gives

γj(t) =
1

1!
(Xxjϕ

−1)(e)t+
1

2!
(X2xjϕ

−1)t2 + · · · .

We obtain formulas

(Xxj)ϕ
−1(ϕ(x)) =

n
∑

i=1

uiΨij(x),

and

X2(xjϕ
−1)(ϕ(x)) = X(Xxjϕ

−1(ϕ(x)) =

n
∑

i=1

n
∑

j=1

uiΨik(x)
∂XxPjϕ−1

∂xk

=
n
∑

i=1

n
∑

k=1

uiΨik(x)
∑

l = 1nulΨjl(x) =
n
∑

i=1

n
∑

k=1

n
∑

l=1

uiulΨik(x)Ψjl(x).

Iterating these calculations to obtain expressions for X i(xjϕ
−1)(ϕ(x)), we see that γj(t) is

a power series in tu1, . . . , tun, and we have that it converges in a neighborhood of 0 in K,
for fixed u1, . . . , un.

Fix c = (c1, . . . , cn) such that the series γj(t) converges for |t|Cc for some positive
constant Cc. Let ǫ be the smallest nonzero |ci|, for i = 1, . . . , n. We shall show that
there is an open neighborhood Uc of c in T0(U) such that, for all u ∈ Uc, we have that
γ(t) converges of t ≤ 1

2
. To show this we may, by changing the coordinate system, which

does not affect the analytic structure of T0(U), assume that all the ci are nonzero. Let
ǫ = mini |ci|). Then, for u in Uc = B(c, ǫ), we have that |ui| ≤ |ui − ci| + |ci| < 2|ci|.
Consequently, we have that |tui| < |2tci| and γ(t) converges at 2tc, when |t| < 1

2
Cc.

Let X = {u ∈ T0(U)||ui| ≤ 1}. Then X is closed and bounded and thus compact by
Proposition 3-9.2. The sets Uc for c ∈ X cover X and we can find a finite subcover
Uc1 , . . . , Ucm . for each i = 1, . . . , m there is a corresponding positive constant Ci such that
γj(t) converges for u ∈ Uc and for |t| < Ci. Let C = mini{Ci}. then we have that γj(t)
converges for all u ∈ B(0, 1

2
) and all t such that |t| < C. Consequently γj(t) is an analytic

function of u = (u1, . . . , un) in some neighborhood of 0 in U . The same argument applied
to γ1, . . . , γn shows that γ is analytic in a neighborhood of 0 in g.

To prove the last assertion of the Proposition we differentiate γj(1), with respect to
u1, . . . , un at 0. Since X i(xjϕ

−1(ϕ(x)) is a polynomial of degree i in u1, . . . , un, we have
that

∂γj
∂ui

(0) =
∂Xxjϕ

−1(ϕ−1(e))

∂ui
(0) =

(

∂

∂ui

∑

l

ulΨlj

)

(e) = uiΦij(0).

However, we have that Φ(0) =
∂µj

∂vj
(0, 0), where the vj are the variables corresponding to

the second coordinate of the µj, and the maps µ1(0, v), . . . , µn(0, v) correspond to multipli-
cation by e and is thus the identity map. Consequently, we have that (Ψij(0)) is the n× n
identity matrix. We obtain that

∂γj
∂ui

(0) = In,
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as we wanted to prove.
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5 Algebraic varieties

In this chapter we shall show that there is a beautiful geometric theory for matrix groups
over an arbitrary field, that is similar to the one for analytic manifolds presented in Chapter
3. To compensate for the lack of a norm on the fields, and the ensuing lack of exponential
function, the inverse function theorem, and other techniques depending on the access to
analytic functions, we shall make extensive use of the machinery of commutative algebra.

5-1 Affine varieties

We saw in Section 3-2 that the matrix groups are the zeroes of polynomials in some space
Mn(K). The central objects of study of algebraic geometry are the zeroes of polynomials.
It is therefore natural to consider the matrix groups from the point of view of algebraic ge-
ometry. In this section we shall introduce algebraic sets that form the underlying geometric
objects of the theory.

5-1.1. We fix a field K, and an inclusion K ⊂ K into an algebraically closed field K, that
is, a field such that every polynomial amx

m + am−1x
m−1 + · · · + a0 in a variable x with

coefficients in K has a zero in K (see Exercise 5-1.3).

Remark 5-1.2. The reason why we introduce a second field is that we want to assure that
all polynomials have zeroes. For example the polynomial x2 +1 does not have a zero in the
real numbers R, but it has zeroes in the algebraically closed field of complex numbers C,
containing R. The question of zeroes of analytic function never came up in the analytic
theory of Chapter 3, where the underlying sets are manifolds, and thus locally look like
Kn. Given a field K we can always find an algebraically closed field containing K (see
Exercises ).

Definition 5-1.3. We denote by K[x1, . . . , xn] the polynomial ring in the independent
variables x1, x2, . . . , xn with coefficients in K. The cartesian product K

n
we denote by

An
K

, and we call An
K

the n dimensional affine space over K, or simply the affine n space.
We say that a subset X of An

K
is an affine variety if there exists an ideal I in

K[z1, . . . , zn], such that X is the set of common zeroes of the polynomials f of I. That is

X = V(I) = {(a1, . . . , an) ∈ An
K
|f(a1, . . . , an) = 0 for all f ∈ I}.

We do not need all the polynomials in an ideal to define an affine variety. It suffices
to consider certain families of polynomials that generate the ideal in a sense that we shall
explain next. Later, in Corollary 5-1.17, we shall see that it suffices to consider a finite
number of polynomials.

Definition 5-1.4. Let R be a ring and I and ideal in R. A subset {ai}i∈I is called a set of
generators for I if I is the smallest ideal containing the elements ai, for i ∈ I. Equivalently,
I is generated by the set {ai}i∈I if I consists of the sums b1ai1 + · · ·+ bmaim , for all finite
subsets {i1, . . . , im} of I, and elements b1, . . . , bm in R (see Exercise 5-1.7).
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Remark 5-1.5. Let I be an ideal in K[x1, . . . , xn] generated by polynomials {fi}i∈I . Then
X = V(I) is the common zeroes V({fi}i∈I) of the polynomials fi, for i ∈ I. Indeed, if a
point x is a common zero for the polynomials in I, then it is a zero for the polynomials fi.
Conversely, if x is a common zero for the polynomials fi, for all i ∈ I, then x is a zero for
all polynomials in I, because all polynomials in I are of the form g1fi1 + · · · + gmfim , for
some indices i1, . . . , im of I, and polynomials g1, . . . , gm of K[x1, . . . , xn].

Example 5-1.6. As we remarked in Section 3-2 the set Sln(K) is the affine variety of
Mn(K) = An2

K
where the polynomial det(xij) − 1 is zero. The set GS(K) is the zeroes of

the n2 quadratic equations in the variables xij obtained by equating the n2 coordinates
on both sides of (xij)S

t(xij) = S. Finally, SGS(K) is the subset of Gln(K) which is the
intersection of GS(K) with the matrices where the polynomial det(xij) − 1 vanishes. On
the other hand we have that Gln(K) itself can be considered as the zeroes of polynomials

in the affine space A
(n+1)2

K
. Indeed, we saw in Example 1-2.11 that we have an injection

ϕ : Gln(K) → Sln+1(K). As we just saw Sln+1(K) is the zeroes of a polynomial of degree
n+1 in the variables xij , for i, j = 1, . . . , n+1, and clearly imϕ is given in Sln+1(K) by the
relations x1i = xi1 = 0, for i = 2, . . . , n + 1. Hence all the matrix groups Gln(K), Sln(K)
or GS(K), for some invertible matrix S, are affine varieties.

Example 5-1.7. Let X and Y be affine varieties in An
K

respectively Am
K

. Then the subset
X × Y is an affine variety in An

K
× Am

K
. Indeed, let I and J , be ideals in the rings

K[x1, . . . , xn] respectively K[y1, . . . , ym] such that X = V(I) respectively Y = V(J) in
An

K
respectively Am

K
. Then X × Y is the affine variety in Am+n

K
= An

K
× Am

K
defined

by the smallest ideal in K[x1, . . . , xn, y1, . . . , ym] containing I and J . This ideal consists
of all polynomials of the form af + bg, where f and g are in I respectively J , and a
and b are in K[x1, . . . , xn, y1, . . . , ym]. Indeed, it is clear that all the polynomials of this
form are zero on X × Y . Conversely, if (a1, . . . , an, b1, . . . , bm) in Am+n

K
is not in X × Y ,

then there is a polynomial f in I, or a polynomial g in J , such that f(a1, . . . , an) 6= 0 or
g(b1, . . . , bm) 6= 0. Consequently, the point (a1, . . . , an, b1, . . . , bm) is not in the common
zeroes of the polynomials of the form af + bg.

Lemma 5-1.8. The affine varieties in An
K

have the following three properties:

(i) The empty set and An
K

are affine varieties.

(ii) Given a family {Xi}i∈I of affine varieties. Then the intersection ∩i∈IXi is an affine
variety.

(iii) Given a finite family X1, . . . , Xm of affine varieties. Then the union X1 ∪ · · · ∪Xm

is an affine variety.

Proof. To prove the first assertion is suffices to observe that the common zeroes of the
polynomials 1 and 0 is ∅ respectively An

K
.

Let Xi = V(Ii), for i ∈ I, where Ii is an ideal of K[x1, . . . , xn]. Moreover, let I be the
smallest ideal in K[x1, . . . , xn] that contains all the ideals Ii. That is, I is the ideal generated
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by the polynomials in the ideals Ii, and hence consists of all sums fi1 +· · ·+fim, for all finite
subset {i1, . . . , im} of I, and with fij ∈ Iij . It is clear that V(I) = ∩i∈IV(Ii) = ∩i∈IXi.
We have proved the second assertion.

To prove the third assertion we let Xi = V(Ii) for some ideal Ii in K[x1, . . . , xn].
Let I be the ideal in K[x1, . . . , xn] generated by the elements in the set {f1 · · · fm|fi ∈
Ii, for i = 1, . . . , m}. We have an inclusion ∪mi=1Xi = ∪mi=1V(Ii) ⊆ V(I). To prove the
opposite inclusion we take a point x in An

K
\∪mi=1V(Ii) Then there exists, for i = 1, . . . , m a

polynomial fi ∈ Ii such that fi(x) 6= 0. We have that (f1 · · ·fm)(x) = f1(x) · · · fm(x) 6= 0,
and thus x /∈ V(I). Hence we that V(I) ⊆ ∪mi=1Xi, and we have proved the third assertion
of the lemma.

Remark 5-1.9. The properties of Lemma 5-1.8 can be interpreted as stating that the affine
variety of An

K
form the closed sets of a topology (see Definition 3-3.1).

Definition 5-1.10. The topology on An
K

whose open sets are the complements of the affine
varieties is called the Zariski topology. For each subset X of An

K
the topology induced on

X is called the Zariski topology on X.
When X is an affine variety in An

K
we call the open subsets of X in the Zariski topology,

quasi affine varieties.

Example 5-1.11. The closed sets for the Zariski topology on A1
K

= K consists of the
common zeroes of polynomials in one variable with coefficients in the field K. In the ring
K[x] all ideals can be generated by one element (see Exercise 5-1.2) In particular, every
closed set different from K is finite, and consists of the zeroes of one polynomial in K[x].

Take K and K to be R respectively C. Then i is not a closed subset of C because every
polynomial in R[x] that has i as a root also has −i as a root. However, the set {i,−i} is
closed in C, beeing the zeroes of the polynomial x2 + 1.

Example 5-1.12. In the Zariski topology on Am
K
×An

K
the sets of the form U ×V , where

U and V are open in Am
K

respectively An
K

are open in Am
K
× An

K
. Indeed, it suffices to

show that the sets U ×An
K

and Am
K
× V are open since U × V is the intersection of these

two sets. Let X be the complements of U in Am
K

. Then X × An
K

is the zero of the ideal
I in K[x1, . . . , xn, y1, . . . , ym], consisting of elements of the form g1f+ · · · + gpfp with fp in
I(X). Indeed, on the one hand X × An

K
is a subsets of the zeroes of I, and on the other

had if (x, y) is not in X × An
K

, then x is not in X and there is an fi such that fi(x) 6= 0,
and where V(I) is contained in X × An

K
. Hence X × An

K
is closed in Am

K
× An

K
, and the

complement U ×An
K

is open. Similarly we show that Am
K
× V is open. It follows that the

open sets in the product topology are open in the topology on Am
K
× An

K
.

The Zariski topology on the product Am
K
× An

K
is however, not the product topology

of the topologies on Am
K

and An
K

as defined in Example 3-3.3. Indeed, for example when
m = n = 1 the diagonal of A1

K
×A1

K
is closed. However, the closed sets on A1

K
are finite,

or the whole space (see Exercise 5-1.11). Hence the proper closed sets can only contain a
finite number of points of one of the coordinates.
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Some open sets, often called principal, are particularly important for the Zariski topol-
ogy.

Definition 5-1.13. Let f be a polynomial in K[x1, . . . , xn]. The set V(f) = {x ∈
An

K
|f(x) = 0}, where f vanishes, is a closed subset of An

K
. For each affine variety X

of An
K

we denote by Xf the open subset X \ V(f) of X.

Lemma 5-1.14. Let X be an affine variety in An
K

and let U be an open subset of X. For
each point x of U there is a polynomial f in K[x1, . . . , xn] such that x ∈ Xf , and Xf ⊆ U .

Proof. We have that X \ U is a closed subset of An
K

. Consequently there is an ideal I of
K[x1, . . . , xn] such that X \ U = V(I). Since x ∈ U there is a polynomial f in I such that
f(x) 6= 0. Then x ∈ Xf , by the definition of Xf . Since f ∈ I, we have that V(I) ⊆ V(f).
Hence X \ U ⊆ X ∩ V(f), or equivalently, Xf ⊆ U

It is interesting, and useful, to notice that every affine variety is the common zeroes
of a finite number of polynomials. Before we prove this important fact we shall introduce
some terminology.

Definition 5-1.15. We say that a ring R is noetherian if every ideal in R is finitely
generated. That is, given an ideal I of R, then there is a finite set of elements a1, . . . , am
such that I is the smallest ideal of R containing a1, . . . , am. Equivalently, the elements of
I consists of all elements of the form a1b1 + · · · + ambm, for all elements b1, . . . , bm of R.

Proposition 5-1.16. Let R be a noetherian ring. Then the ring R[x] of polynomials in
the variable x with coefficients in R is also noetherian.

Proof. Let J be an ideal of R[x], and let I be the subset of R consisting of all elements a
in R, such that axm + am−1x

m−1 + · · · + a0 is in J , for some nonnegative integer m and
some elements a0, . . . , am−1 in R. We have that I is an ideal of R. Indeed, if a ∈ I, then
ba ∈ I, for all b ∈ R, because there is a polynomial f(x) = axp + ap−1x

p−1 + · · · + a0 in
J , and then bf(x) = baxp + bap−1x

p−1 + · · ·+ ba0 is in J . Moreover, if b is in I then a+ b
is in I because some g(x) = bxp + bp−1x

p−1 + · · · + b0 is in J . Assume that q ≥ p. Then
f(x)−xq−pg(x) = (a+b)xq+(ap−1+bq−1)x

q−1+· · ·+(a0+bq−p)x
q−p+bq−p−1x

q−p−1+· · ·+b0
is in J , and thus a+ b ∈ I. A similar argument shows that a+ b is in I when p ≤ q.

In a similar way we show that the sets Ii consisting of the coefficient of xi of all
polynomials of J of degree at most i, is an ideal, for i = 0, 1, . . . .

We have that R is noetherian, by assumption, so all the ideals I, and Ii are finitely
generated. Choose generators a1, . . . , am for I, and bi1, . . . , bimi

for Ii, for i = 0, 1, . . . .
Moreover, we choose polynomials in R[x] whose highest nonzero coefficient is a1, . . . , am,
respectively. Multiplying with an appropriate power of x we can assume that all the
polynomials have the same degree. Hence we can choose polynomials fi(x) = aix

p +
ai(p−1)x

p−1 + · · ·+ ai0, for i = 1, . . . , m. Moreover, we choose polynomials fij(x) = bijx
i +

bij(i−1)x
i−1 + · · ·+ bij0 in J , for i = 0, 1, . . . and j = 1, . . . , mi.

We shall show that the polynomials S = {f1, . . . , fm}∪{fi1, . . . , fimi
, |i = 0, . . . , p−1},

generate J . It is clear that all polynomials in J of degree 0 is in the ideal generated by
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the polynomials in S. We proceed by induction on the degree of the polynomials of J .
Assume that all polynomials of degree strictly less than q in J lie in the ideal generated
by the elements of S. Let f(x) = bxq + bq−1x

q−1 + · · · + b0 be in J . Assume that q ≥ p.
We have that b ∈ I. Hence b = c1a1 + · · · + cmam, for some c1, . . . , cm in R. Then
g(x) = f(x) − c1x

q−pf1(x) − · · · − cmx
q−pfm(x) is in J and is of degree strictly less than

q. Hence g(x) is in the ideal generated by the elements of S by the induction assumption.
Since f(x) = c1f1(x)+ · · ·+ cmfm(x)+ g(x), we have proved that all polynomials of degree
at least equal to p are in the ideal generated by the elements in S.

When q < p we reason in a similar way, using bq1, . . . , bqmq
and fq1, . . . , fqmq

, to write
f(x) as a sum of an element in J of degree strictly less than p and an element that is in
the ideal generated by the elements {fij}. By induction we obtain, in this case, that all
polynomials in J of degree less than p are in the ideal generated by S, and we have proved
the proposition.

Corollary 5-1.17. (The Hilbert basis theorem)The ring K[x1, . . . , xn] is noetherian.

Proof. The field K has only the ideals (0) and K (see Exercise 1-3.2), and consequently
is noetherian. It follows from the Proposition, by induction on n, that K[x1, . . . , xn] is
noetherian.

5-1.18. The Zariski topology is different, in many important respects, from metric topolo-
gies. We shall next show that the quasi affine varieties are compact and that they have a
unique decomposition into particular, irreducible, closed sets.

Proposition 5-1.19. All quasi affine varieties are compact topological spaces.

Proof. Let X be an algebraic subset of An
K

, and let U be an open subset of X, and
choose an open subset V of An

K
such that V ∩ X = U . Given a covering U = ∪i∈IUi

of U by open subsets Ui. Choose open subsets Vi of An
K

such that Ui = X ∩ Vi. Then
V = (V \X) ∪ ∪i∈I(Vi ∩ V ) is a covering of V by open sets of An

K
. If we can find a finite

subcover Vi1 ∩V, . . . , Vim ∩V, V \X, then Ui1 , . . . , Uim is an open cover of U . Consequently
it suffices to show that every open subset V of An

K
is compact.

It follows from Lemma 5-1.14 that it suffices to prove that every covering

V =
⋃

i∈I

(An
K

)fi

of V by principal open sets (An
K

)fi
has a finite subcover. Let I be the ideal generated by

the the elements fi, for i ∈ I. It follows from Corollary 5-1.17 that I is generated by a
finite number of elements g1, . . . , gm. Since (An

K
)fi

⊆ V , we have that V(fi) ⊇ An
K
\ V , for

all i ∈ I. Consequently, we have, for all g ∈ I, that V(g) ⊇ X \ U , that is (An
K

)g ⊆ V .
Moreover, since the (An

K
)fi

cover V , we have that for each x ∈ V there is an fi such that
fi(x) 6= 0. Consequently, there is a gj such that gj(x) 6= 0. Hence we have that the sets
(An

K
)gi

, for i = 1, . . . , m, cover V , and we have proved the proposition.
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Corollary 5-1.20. Every sequence U ⊇ X1 ⊇ X2 ⊇ · · · of closed subsets of a quasi affine
variety U is stationary, that is, for some positive integer m we have that Xm = Xm+1 = · · · .
Proof. Let X = ∩∞

i=1Xi. Then X is a closed subset of U and V = U \ X is a quasi
affine variety. Let Ui = U \ Xi. Then we have a covering V = ∪ni=1Ui of V by open
sets Ui, where U1 ⊆ U2 ⊆ · · · ⊆ V . By Proposition 5-1.19 we can find a finite subcover
Ui1 , . . . , Uir . Let m = max{i1, . . . , ir}. Then Um = Um+1 = · · · = V , and we have that
Xm = Xm+1 = · · · = X.

Definition 5-1.21. A topological space X is called noetherian if every sequence of closed
subspaces X ⊇ X1 ⊇ X2 ⊇ · · · is stationary, that is, for some positive integer m we have
that Xm = Xm+1 = · · · . We say that a topological space X is irreducible if it can not be
written as a union of two proper closed subsets.

Remark 5-1.22. A topological space is noetherian if and only if every family {Xi}i∈I of
closed sets has a minimal element, that is, an element that is not properly contained in
any other member of the family. Indeed, if every family has a minimal element, a chain
X ⊇ X1 ⊇ X2 ⊇ · · · has a minimal element Xm. Then Xm = Xm+1 = · · · . Conversely, if
X is noetherian and {Xi}i∈I , then we can construct, by induction on m, a sequence of sets
Xi1 ⊃ Xi2 ⊃ · · · ⊃ Xim , by taking Xi1 arbitrary, and given Xim , we choose Xim+1 to be a
proper subset contained in the family, if Xim is not minimal. Since the space is assumed
to be noetherian we must end up with a minimal element of the family.

Remark 5-1.23. A space X is clearly irreducible if and only if two nonempty open sets
of X always intersect. Consequently, if X is irreducible, then all open subsets of X are
irreducible.

Lemma 5-1.24. Let X be a noetherian topological space. Then we can write X as a union
X = X1 ∪ · · · ∪Xm, where X1, . . . , Xm are irreducible closed subsets of X, and no two of
these sets are contained in each other. The sets X1, . . . , Xm are unique, up to order.

Proof. We shall show that the family {Yi}i∈I of closed subsets of X for which the lemma
does not hold is empty. If not, it has a minimal element Yj since X is noetherian. Then Yj
can not be irreducible and hence must be the union of two proper closed subsets. Each of
these can, by the minimality of Yj, be written as a finite union of irreducible closed subsets,
and hence, so can Yj, which is impossible. Hence the family must be empty, and hence
X can be written as a finite union of closed irreducible subsets. Cancelling the biggest
of the sets when two of the ireeducible sets are contained in each other we arrive at a
decomposition of the type described in the first part of the lemma.

We shall show that the decomposition is unique. Assume that we have two decomposi-
tions X = X1 ∪ · · · ∪Xp = Y1 ∪ · · · ∪ Yq. Then Xi = (Xi ∩ Y1)∪ · · · ∪ (Xi ∩ Yq). Since Xi is
irreducible we have that, either the intersection Xi ∩ Yj is equal to Xi, or it is empty. At
least one of the intersections must be equal to Xi. Then we have that Xi ⊆ Yσ(i), for some
index σ(i). Reasoning in a similar way for Yσ(i), we obtain that Yσ(i) ⊆ Xj, for some index
j. But then we have that Xi ⊆ Yσ(i) ⊆ Xk. Consequently i = k and Xi = Yσ(i). Since the
latter relation must hold for all i, the second part of the lemma has been proved.
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Definition 5-1.25. Let R be a ring. an ideal I of R is prime if, given two elements a and
b of R, not in I, then the product ab is not in I.

Proposition 5-1.26. Let X be an affine variety in An
K
. Then X is irreducible if and only

if the ideal

I(X) = {f ∈ K[x1, . . . , xn]|f(a1, . . . , an) = 0, for all (a1, . . . , an) ∈ X}

(see 5-3.2) of polynomials vanishing on X is a prime ideal in K[x1, . . . , xn].

Proof. It follows from Lemma 5-1.14 that it suffices to prove that any two open principal
subsets intersect. Note that for f in K[x1, . . . , xn] we have that Xf ∩ X 6= ∅ if and only
if f is not in I(X), because, for (a1, . . . , an) in Xf ∩ X, we have that f(a1, . . . , an) 6= 0
and g(a1, . . . , an) = 0, for all g in I(X). Given polynomials f and g in K[x1, . . . , xn], not
in I(X), we have that fg is not in I(X) if and only if Xfg∩ 6= ∅. Clearly, we have that
Xfg = Xf ∩Xg, so Xfg ∩X 6= ∅ if and only if (Xf ∩X)∩ (Xg ∩X) 6= ∅. Consequently, we
have that fg is not in I(X) if and only if (Xf ∩X) and (Xg ∩X) meet. We have proved
the proposition.

Example 5-1.27. Since K is infinte (see Excercise 5-1.5) the only polynomial that vanishes
on An

K
is the zero polynomial. Consequently, we have that I(X) = 0, and An

K
is irreducible.

Remark 5-1.28. The above results illustrate the difference between the Zariski topology
and the metric topology on An

R
and An

C
. In the Zariski topology all open sets are compact

and two open subsets always meet. In the metric topology, no open sets are compact (see
Proposition 3-9.2), and the space is Hausdorff (see Exercise 3-3.1), so two distinct points
always have open neighbourhoods that do not intersect.

Exercises

5-1.1. Let K[x] be the ring of polynomials in the variable x with coefficients in K. Given
two polynomials f(x) and g(x) in K[x]. Show that there are polynomials q(x) and r(x) with
deg r(x) < deg f(x), such that g(x) = q(x)f(x) + r(x).

5-1.2. Show that every ideal I in the ring K[x] of polynomials in the variable x with coefficients
in K can be generated by one element. Hint: Use Exercise 5-1.1 to prove that every polynomial
of lowest degree in I will generate I.

5-1.3. Let K[x] be the ring of polynomials in the variable x with coefficients in K. Given a
polynomial f(x). Show that an element a of K is a root of f(x), that is f(a) = 0, if and only if
f(x) = (x − a)g(x).

5-1.4. Let K[x] be the ring of polynomials in one variable x with coefficients in K. We say that a
polynomial f(x) divides a polynomial g(x) if there is a polynomial q(x) such that g(x) = q(x)f(x).
A polynomial is irreducible if it can not be divided by a nonconstant polynomial of lower degree
than itself. Two polynomials are relatively prime if they have no common divisors except the
constants, that is, the elements of K.
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(i) Use Exercise 5-1.2 to show that if f(x) and g(x) are relatively prime polynomials in K[x],
then K[x] is the smallest ideal that contains f(x) and g(x).

(ii) Show that if f(x) and g(x) are polynomials, and f(x) is irreducible, then, either f(x) and
g(x) are relatively prime, or f(x) divides g(x).

(iii) Let f(x), g(x), and h(x) be polynomials in K[x], with f(x) irreducible. Use assertion (i)
and (ii) to show that, if f(x) divides g(x)h(x), but does not divide g(x), then f(x) divides
h(x).

(iv) Show that every polynomial f(x) can be written as a product f(x) = f1(x) · · · fm(x), where
the polynomials fi(x) are irreducible (not necessarily disinct), and use (iv) to show that
the fi(x) are unique, up to order and multiplication with a constant.

(v) Show that there are infinitely many irreducible polynomials in K[x] that can not be obtained
from each other by multiplication by elements of K. Hint: Assume that there is a finite
number of irreducible polynomials f1(x), . . . , fm(x) up to multiplication by constants. Show
that each irreducible factor of (f1(x) · · · fm(x)) + 1 is relatively prime to f1(x), . . . , fm(x).

5-1.5. (i) Show that a field K is algebraically closed if and only if all irreducible polynomials
(see Exercise 5-1.4) in one variable x with coefficients in K are of degree 1.

(ii) Use Exercise 5-1.4 (v) to show that an algebraically closed field has infinitely many elements.

5-1.6. Let K[x] be the ring of polynomials in one variable x with coefficients in K. Let f(x) be
a polynomial and I = (f(x)) the smallest ideal in K[x] containing f(x). Show that the residue
ring K[x]/I is a field, if and only if f(x) is irreducible. Hint: Use Exercise 5-1.4 (i).

5-1.7. Let R be a ring and I and ideal in R. Show that a subset {ai}i∈I of R generates I if
and only if I consists of the sums b1ai1 + · · · + bmaim , for all finite subsets {i1, . . . , im} of I, and
elements b1, . . . , bm in R.

5-2 Irreducibility of the matrix groups

Recall that a topological space is irreducible if two nonempty open subsets always intersect
(see Remark 5-1.23). Hence irreducible spaces are connected. For prevarieties it is therefore
more interesting to check irreducibility than to check connectedness. In this section we
shall determine which of the matrix groups that are irreducible.

Lemma 5-2.1. Let Y be a topological space. Assume that for every pair of points x and
y of Y there is an irreducible topological space X and a continous map f : X → Y , such
that f(X) contains x and y. Then Y is irreducible.

Proof. To prove the lemma, let U and V be open subsets of Y such that U∩V = ∅. Choose
x in U and y in V , and let f : X → Y be a map such that x and y are in f(X). We then
have that f−1(U) and f−1(V ) are nonempty open sets of X that do not intersect. This
contradicts the irreducibility of X. Consequently we have that Y is connected.
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Proposition 5-2.2. We have that Gln(K) and Sln(K) are irreducible.

Proof. If follows from Proposition 1-5.2 that every element A of Gln(K) can be written in
the form A = Ei1,j1(a1) · · ·E(a) · · ·Ein,jn(an), where E(a) is the matrix 1-5.2.1. We obtain
a continous map f : Kn× (K \ 0) → Gln(K) sending the point (a1, . . . , an, a) to the matrix
Ei1,j1(a1) · · ·E(a) · · ·Ein,jn(an). Clearly f(0) = In and f(a1, . . . , an, a) = A. We have that
Kn×K\0 is an open subset see 5-1.12) of an irreducible set (see 5-1.27. Hence Kn×K\0
is irreducible (see 5-1.23). It follows from Lemma 5-2.1 that Gln(K) is open. In the case of
the groups Sln(K) we have that a = 1 and we can use the map f : Kn → Sln(K) sending
the point (a1, . . . , an) to the matrix Ei1,j1(a1) · · ·Ein,jn(an). We conclude, as above, that
Sln(K) is irreducible.

Proposition 5-2.3. Let K be a field such that 2 6= 0 we have that SOn(K) is irreducible
and On(K) is not irreducible.

Proof. The determinant gives a surjective map det On(K) → {±1}. Since {±1} is not
irreducible it follows from Lemma 5-2.1 that On(K) is not irreducible.

Every element A in SOn(K) can be written in the form A = sx1sy1 · · · sxm
sym

, for some
m, with 〈xi, xk〉 6= 0 6= 〈yi, yi〉. Consider Kmn as the space consisting of m vectors in
Kn, that is as points (a1,1, . . . , a1,n, . . . , am,1, . . . , amn). Let Ui be the open set in Kmn

consisting of points x = (ai,1, . . . , ai,n) such that 〈x, x〉 6= 0. Then ∩mi=1Ui is open and it is
nonempty because K has infinitely many elements (see Problem 3-3.1). We define a map
γ : ∩mi=1 Ui → SOn(K) by γ(z1, . . . , zm) = sx1sz1 · · · sxm

szm
. Clearly the map is continuous

and we have that γ(x1, . . . , xm) = In and γ(y1, . . . , ym) = A. Since ∩mi=1Ui is an open
subset of Kmn it is follows from Problem 5-1.27 and Remark 5-1.23 that it is irreducible.
It follows from Lemma 5-2.1 that SOn(K) is irreducible.

Proposition 5-2.4. We have that Spn(K) is irreducible.

Proof. We can write every element A in Spn(K) as A = τ(x1, a1) · · · τ(xm, am), for some
m. The map f : Kn → Spn(K) which is defined by f(b1, . . . , bm) = τ(x1, b1) . . . τ(xm, bm)
maps (0, . . . , 0) to In and (a1, . . . , am) to A. It follows from Lemma 5-2.1 that Spn(K) is
irreducible.

5-3 Regular functions

The only natural functions on affine varieties are functions induced by polynomials or
quotients of polynomials. We shall, in this section, define polynomial functions on affine
varieties and their quotients.

Definition 5-3.1. Let X be an affine variety in An
K

. Denote by

I(X) = {f ∈ K[x1, . . . , xn]|f(x) = 0, for all x ∈ X},

the set of polynomials in K[x1, . . . , xn] that vanish on X.
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5-3.2. Since the sum of two polynomials that both vanish on X, and the product of a
polynomial that vanish on X with an arbitrary polynomial, vanish on X, we have that
I(X) is an ideal. This ideal has the property that, if f is a polynomial in K[x1, . . . , xn]
such that fm is in I(X), for some positive integer m, then f is in K[x1, . . . , xn]. Indeed,
if f(x)m = 0, for all x in X, then f(x) = 0, for all x in X. We say that the ideal I(X) is
radical.

Definition 5-3.3. Let R be a ring. For each ideal I of R we let
√
I = {a ∈ R|am ∈

I, for some positive integer m}. We call
√
I the radical of I, and we say that the ideal I

is radical if
√
I = I.

Remark 5-3.4. The radical of an ideal I contains I, and is itself an ideal. Indeed, if a
is in

√
I, then am is in I for some positive integer m. Hence, for all b in I, we have

that bmam = (ba)m is in I. Consequently ba is in
√
I. Moreover, if a and b are in

√
I,

then ap and bq are in I for some positive integers p and q. Let m = p + q − 1. Then
(a+ b)m =

∑m

i=0

(

m

i

)

aibm−1. For i = 0, . . . , m, we have that, either i ≥ p or m− i ≥ q, and
consequently each term

(

m

i

)

aibm−i is in I. Hence (a + b)m is in I, and we have that a + b

is in
√
I.

We note that if I is a proper ideal of R, that is, if it is different from R, then
√
I is

proper. Indeed, the element 1 can not be in
√
I.

5-3.5. Given a polynomial f in K[x1, . . . , xn]. We obtain a function

ϕf : K[x1, . . . , xn] → K,

given by ϕf(x) = f(x). By restriction we obtain a function

ϕf |X : X → L.

Given another polynomial g in K[x1, . . . , xn]. By the definition of the ideal I(X), we have
that ϕf |X = ϕg|X if and only if f − g is in I(X). It is therefore natural to consider the
residue ring K[x1, . . . , xn]/I(X) of K[x1, . . . , xn] by the ideal I(X) (see Example 3-5.2) to
be the ring of polynomial functions on X.

Definition 5-3.6. Let X be an algebraic variety in An
K

. We denote the residue ring
K[x1, . . . , xn]/I(X) by K[X] , and call K[X] the coordinate ring of X. Given an element
f of K[X]. We saw in Paragraph 5-3.5 that all the polynomials F in K[x1, . . . , xn] whose
residue is f take the same value F (x) at each point x of X. The common value we
denote by f(x). We say that f is the function induced by F , and define Xf to be the set
{x ∈ X|f(x) 6= 0}, or equivalently Xf = XF .

Example 5-3.7. The coordinate ring K[An
K

] of the affine variety An
K

is equal to the
polynomial ring K[x1, . . . , xn]. Indeed, the only polynomial that is zero on An

K
is 0 (see

Excercise 5-1.27).
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Definition 5-3.8. Let U be a quasi affine variety in An
K

. A function

ϕ : U → K

is regular if there, for every point x in U , exists a neighbourhood V of x contained in U and
polynomials f(x1, . . . , xm) and g(x1, . . . , xn) in K[x1, . . . , xn] such that g(a1, . . . , an) 6= 0

and ϕ(a1, . . . , an) = f(a1,...,an)
g(a1,...,an)

, for all (a1, . . . , an) in V .
Let V be a quasi affine variety in Am

K
. A map

Φ : U → V

is a regular map if there are regular functions ϕ1, . . . , ϕm on U such that

Φ(a1, . . . , an) = (ϕ1(a1, . . . , an), . . . , ϕm(a1, . . . , an)),

for all (a1, . . . , an) in U .

Example 5-3.9. Let U and V be quasi affine varieties in Am
K

respectively An
K

, and let
f1(x1, . . . , xn), . . . , fm(x1, . . . , xn) be polynomials in K[x1, . . . , xn]. The map

Φ : U → Am
K

defined by
Φ(a1, . . . , an) = (ϕ1(a1, . . . , an), . . . , ϕm(a1, . . . , an))

is regular. If Φ(a1, . . . , an) is in V , for all (a1, . . . , an) in U , we have that Φ induces a
regular map

Φ|U : U → V.

Since the multiplication map Gln(K) × Gln(K) → Gln(K), is given by polynomials, it is
a regular map. Here Gln(K) × Gln(K) is the product quasi affine variety in An2

K
× An2

K
,

given in Example 5-1.12. It follows that the product maps of all the matrix groups Gln(K),
Sln(K), GS(K), or SGS(K), for some invertible matrix S, are regular maps.

Example 5-3.10. The inverse map Gln(K) → Gln(K) which sends a matrix A to A−1 is
regular. Indeed, we have that A−1 = 1

detA
B, where B is the adjoint matrix (see Section 1-4

and Exercise 1-4.2). Every coordinate of A−1 is a polynomial in the variables xij divided
by the polynomial det(xij), which is nonzero on all points of Gln(K). Consequently, the
inverse map on Gln(K) is regular. It follows that the inverse map is regular for the matrix
groups Gln(K), Sln(K), GS(K), or SGS(K), for some invertible matrix S.

Example 5-3.11. Given an element f(x1, . . . , xn) in the polynomial ring K[x1, . . . , xn],
and let X be an affine algebraic variety in An

K
. The map

Φ : Xf → V(1 − xn+1f(x1, . . . , xn)),
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defined by Φ(a1, . . . , an) = (a1, . . . , an,
1

f(a1,...,an)
), from the principal set Xf to the zeroes

in An+1
K

of the polynomial 1 − xn+1f(x1, . . . , xn) in K[x1, . . . , xn+1], is regular, and given

by the polynomials x1, . . . , xn,
1

f(x1,...,xn)
. The map

Ψ : V(1 − xn+1f(x1, . . . , xn)) → Xf ,

given by Ψ (a1, . . . , an+1) = (a1, . . . , an) is also regular. The regular maps Φ and Ψ are
inverses.

Lemma 5-3.12. A regular map between quasi affine varieties is continous.

Proof. Let U and V be quasi affine varieties in An
K

respectively Am
K

, where V is an open
subset of an affine variety Y , and let Φ : U → V be a regular map. It follows from
Lemma 5-1.14 that it suffices to prove that Φ−1(Yg) is open in U , for all polynomials
g(y1, . . . , ym) in the m variables y1, . . . , ym with coordinates in K, such that Yg is contained
in U . Let x be a point of Yg. Since Φ is regular there are open neighbourhoods Ui of x
in U and polynomials fi, gi in K[x1, . . . , xn], such that gi(a1, . . . , an) 6= 0, and such that

Φ(a1, . . . , an) =
(

f(a1,...,an)
g1(a1,...,an)

, . . . , fm(a1,...,an)
gm(a1,...,an)

)

, for all (a1, . . . , an) in Wx = ∩mi=1Ui. Write

f(x1, . . . , xn) = g
(

f1(x1,...,xn)
g1(x1,...,xn)

, . . . , fm(x1,...,xn)
gm(x1,...,xm)

)

. For a sufficiently big integer d we have that

h(x1, . . . , xn) = (g1(x1, . . . xn) · · · gm(x1, . . . , xn))
d f(x1, . . . , xn)

is a polynomial in x1, . . . , xn. We have that

(Φ|Wx
)−1(Yg) = Wx ∩ {(a1, . . . , an)|f(a1, . . . , an) 6= 0}

= Wx ∩ {(a1, . . . , an)|h(a1, . . . , an) 6= 0} = Wx ∩Xh.

Hence Φ−1(Yg) contains an open subset Wx ∩Xh of each x, and hence it is open.

The most fundamental result about regular functions is that the ring of regular functions
on an affine algebraic set is canonically isomorphic to the coordinate ring. In order to prove
this result we shall need the Hilbert Nullstellensatz. The algebraic prerequisites that we
need to prove the Hilbert Nullstellensatz are quite extensive, and we have devoted the
next section to the prerequisites, and to a proof of a generalized version of the Hilbert
Nullstellensatz.

5-4 The Hilbert Nullstellensatz

5-4.1. In Section 5-1 we associated an affine variety V(I) of An
K

to every ideal I in
K[x1, . . . , xn], and in Section 5-3 we saw how we, conversely, can associate a radical ideal
I(X) to every affine variety of An

K
. For every affine variety we have that

VI(X) = X.
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Indeed, the inclusion X ⊆ VI(X) is clear. To prove the opposite inclusion we take a
point x of X. Since X is an affine variety there is an ideal I of K[x1, . . . , xn] such that
X = V(I). Clearly, we have that I ⊆ I(X) and since x /∈ X, there is a polynomial
f in K[x1, . . . , xn] such that f(x) 6= 0. Hence there is a polynomial f in I(X) such
that f(x) 6= 0. Consequently, x is not in VI(X), and we have proved that the inclusion
VI(X) ⊆ X holds.

For every ideal I of K[x1, . . . , xn] it is clear that we have an inclusion

√
I ⊆ IV(I).

The Hilbert Nullstellensats asserts that the opposite inclusion holds. In particular we must
have that, if I is a proper ideal in K[x1, . . . , xn], then V(I) is not empty. Indeed, if V(I)
were empty, then IV(I) must be the whole of K[x1, . . . , xn]. However, if I is a proper
ideal, then so is

√
I (see Remark 5-3.4).

The Hilbert Nullstellensats states that, if f(x1, . . . , xn) is a polynomial in the ring
K[x1, . . . , xn] which vanishes on the common zeroes of a finite family of polynomials

f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn), . . . , fm(x1, x2, . . . , xn),

then there is a positive integer d and polynomials g1, . . . , gm such that

fd = g1f1 + · · ·+ gmfm.

Indeed, let the ideal I of the original statement of the Hilbert Nullstellensatz be generated
by the polynomials f1, . . . , fm.

The Hilbert Nullstellensats is a fundamental result in algebraic geometry and has many
uses. We shall therefore present a proof of a very useful generalization. Before we start
the proof we need some algebraic preliminaries.

Definition 5-4.2. Let R be a ring. We say that a ring S is an R algebra if R is a subring
of S. A homomorphism Φ : S → T of R algebras is a ring homomorphism which is the
identity on R.

Given an R algebra S and elements a1, . . . , an of S. Then there is a unique R algebra
homomorphism

Φ : R[x1, . . . , xn] → S,

from the ring of polynomials in the variables x1, . . . , xn with coefficients in R, such that
Φ(xi) = ai, for i = 1, . . . , n. We have that Φ(f(x1, . . . , xn)) = f(a1, . . . , an), for all polyno-
mials f(x1, . . . , xn) of R[x1, . . . , xn].

The image of Φ is an R subalgebra of S that we denote by R[a1, . . . , an]. We call
R[a1, . . . , an] the R algebra generated by the elements a1, . . . , an. When S = R[a1, . . . , an],
we say that S is finitely generated, and that the elements a1, . . . , an are generators of the
R algebra S. By definition R[a1, . . . , an] consists of all elements of the form f(a1, . . . , an),
where f is a polynomial in R[x1, . . . , xn], and it is clearly the smallest R subalgebra of S
containing the elements a1, . . . , an.
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Let S be an R algebra which is an integral domain (see Definition 5-5.13). We say that
an element a of S is algebraic over R if there is a nonzero polynomial f(x) = amx

m+· · ·+a0,
in the variable x with coefficients in R, such that f(a) = 0. An element of S which is not
algebraic is called transcendental.

Remark 5-4.3. We note that an element a of an R algebra S which is an integral domain
is trancendental if and only if the surjection Φ : R[x] → R[a] is an isomorphism. Indeed,
the nonzero elements of the kernel of Φ consists of the nonzero polynomials f(x) such that
f(a) = 0. To determine the kernel of Φ when a is algebraic we choose a nonzero polynomial
f(x) = bxm + bm−1x

m−1 + · · ·+ b0 of smallest possible degree m such that f(a) = 0. Then
the kernel of Φ is equal to

{g(x) ∈ R[x]|bdg(x) = q(x)f(x),where d ∈ Z,with d > 0, and q(x) ∈ R[x]}.

Indeed, if bdg(x) = q(x)f(x) we have that bdg(a) = q(a)f(a) = 0, and hence that g(a) =
0. Conversely, assume that g(a) = 0. It follows from the following Lemma 5-4.4 that
bdg(x) = q(x)f(x) + r(x), for some nonnegative integer d and polynomials q(x) and r(x)
with deg r(x) < deg f(x). We obtain that r(a) = bdg(a)− q(a)f(a) = 0. However, we have
chosen f to be a nonzero polynomial of lowest degree such that f(a) = 0. It follows that
r(x) = 0 in R[x], and consequently bdg(x) = q(x)f(x).

Lemma 5-4.4. Let R be an integral domain and R[x] the ring of polynomials in one
variable x with coefficients in R. Let f(x) = bxm+bm−1x

m−1+ · · ·+b0 be a polynomial with
b 6= 0. For every polynomial g(x) of R[x] there is a nonnegative integer d and polynomials
q(x) and r(x), with deg r < deg f , such that

bdg(x) = q(x)f(x) + r(x).

Proof. The assertion of the Lemma holds for all polynomials g such that deg g < deg f .
Indeed, we can then take d = 0, q = 0 and r = g. We shall prove the lemma by induction on
the degree of g. Assume that the assertion of the lemma holds for all polynomials of degree
strictly less than p for some integer p ≥ deg f = m. Let g(x) = cxp+cp−1x

p−1+· · ·+c0. We
have that h(x) = bg(x)− cxp−mf(x) is of degree less than p. By the induction assumption,
we can find an integer d and polynomials q1 and r such that bdh(x) = q1(x)f(x) + r(x),
with deg r < deg f . Consequently we have that bd+1g(x) = bdh(x) + cbdxp−mf(x) =
(q1(x) + cbdxp−m)f(x) + r(x), and we have proved that the assertion of the lemma holds
for g(x).

Proposition 5-4.5. Let R be a ring and S an R algebra which is an integral domain, and
let a be an element of S. Moreover, let T be an integral domain and ϕ : R → T a ring
homomorphism. Finally, let c be an element of T . The following two assertions hold:

(i) Assume that a is transcendental over R. Then there exists a unique ring homomor-
phism ψ : R[a] → T such that ψ(a) = c, and ψ|R = ϕ.
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(ii) Assume that a is algebraic and let f(x) = bxm + bm−1x
m−1 + · · ·+ b0 be a polynomial

of lowest possible degree in the variable x with coefficients in R such that f(a) = 0.
If ϕ(b) 6= 0 and ϕ(b)cm + ϕ(bm−1)c

m−1 + · · · + ϕ(b0) = 0, there exists a unique
homomorphism ψ : R[a] → T such that ψ(a) = c and ψ|R = ϕ.

Proof. Let ψ : R[a] → T be a ring homomorphism such that ψ(a) = c, and ψ|R = ϕ. For
every element g(a) = cpx

p + · · · + c0 of R[a] we have that ψ(g(a)) = ψ(cpa
p + · · · + c0) =

ψ(cpa
p) + · · · + ψ(c0) = ψ(cp)ψ(a)p + · · · + ψ(c0) = ϕ(cp)ψ(a)p + · · · + ϕ(c0) = ϕ(cp)c

p +
· · ·+ϕ(c0). Hence ψ is uniquely determined by the conditions that ψ(a) = c, and ψ|R = ϕ.

Assume that a is transcendental. Then every element of R[a] has an expression g(a) =
cpa

p+ · · ·+c0, where p, and c0, . . . , cp are uniquely determined. Hence we can define a map
ψ : R[a] → T by ψ(g(a)) = ϕ(cp)c

p + · · ·+ ϕ(c0). Clearly, ψ is a ring homomorphism such
that ψ(a) = c, and ψ|R = ϕ. Hence we have proved the first assertion of the proposition
when a is trancendental.

Assume that a is algebraic. Then every element of R[a] can be written in the form
g(a) = cpa

p + · · · + c0, for some polynomial g(x) = cpx
p + · · · + c0 in the variable x

with coefficients in R. Let h(x) = dqx
q + · · · + d0. It follows from Remark 5-4.3 that

g(a) = h(a) if and only if bd(g(x)− h(x)) = q(x)f(x), for some nonnegative integer d, and
some polynomial q(x) in R[x]. Hence, if be(erx

r+ · · ·+e0) = p(x)f(x), for some nonegative
integer e and some polynomial p(x) = fsx

s+ · · ·+f0 implies that ϕ(er)c
r+ · · ·+ϕ(e0) = 0,

we can define a map ψ : R[a] → T by ψ(era
r + · · · + e0) = ϕ(er)c

r + · · · + ϕ(e0). Assume
that be(erx

r + · · ·+e0) = s(x)f(x). We use ϕ on the coefficients of the monomials xi in the
latter expression, and substitute e for x. Then we obtain that ϕ(b)e(ϕ(er)c

r+· · ·+ϕ(e0)) =
(ϕ(fs)c

s + · · ·+ ϕ(f0))(ϕ(b)cm + ϕ(bm−1)c
m−1 + · · ·+ ϕ(b0)) = 0. Since ϕ(b) 6= 0, and T is

an integral domain by assumption, we obtain that ϕ(er)c
r + · · ·+ϕ(e0) = 0. Thus we have

proved that we can define a map ψ : R[a] → T by ψ(era
r+ · · ·+e0) = ϕ(er)c

r+ · · ·+ϕ(e0).
We clearly have that ψ is a ring homomorphism, that ψ(a) = c, and that ψ|R = ϕ.

Lemma 5-4.6. Let S be an R algebra which is an integral domain. Given an element a of
S which is algebraic over R and let f(x) = bxm + bm−1x

m−1 + · · · + b0 be a polynomial of
smallest possible degree m such that f(a) = 0. For all polynomials g(x) such that g(a) 6= 0
there exists polynomials p(x) and q(x) such that

p(x)f(x) + q(x)g(x) = c,

where c is a non zero element c of R.

Proof. Let r(x) be a nonzero polynomial of the lowest possible degree such that p(x)f(x)+
q(x)g(x) = r(x) for some polynomials p(x) and q(x), and such that r(a) 6= 0. Such a
polynomial exists since it follows from Lemma 5-4.4 that we can find a non negative integer
d, and polynomials s(x) and q(x) such that deg s < deg f and such that −q(x)f(x) +
adg(x) = s(x). Here s(a) = −q(a)f(a) + adg(a) = adg(a) 6= 0.

We shall show that r(x), in fact, has degree 0. Assume that deg r > 1, and write
r(x) = cxq + cq−1x

q−1 + · · · + c0, with c 6= 0 and q > 1. It follows from Lemma 5-4.4 that
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we can write cdf(x) = q1(x)r(x) + r1(x), for some nonnegative integer d and polynomials
q1(x) and r1(x), with deg r1 < deg r. We have that r1(a) 6= 0 because, if r1(a) = 0, then
0 = cdf(a) = q1(a)r(a) + r1(a) = q1(a)r(a), and hence either q1(a) = 0 or r(a) = 0.
However, since deg f > deg r ≥ 1, both q1(x) and r(x) have lower degree than f and can
not be zero at a because f(x) is chosen of mininal degree such that f(a) = 0. We have
that

r1(x) = cdf(x) − q1(x)r(x) = cdf(x) − q1(x)p(x)f(x) − q1(x)q(x)g(x)

=
(

cd − q1(x)p(x)
)

f(x) − q1(x)q(x)g(x).

The last equation, together with the observation that r1(a) 6= 0 contradicts the minimality
of the degree of r(x). Hence we can not have that deg r > 1, and we have proved the
lemma.

Theorem 5-4.7. Let R be a ring and S an R algebra which is an integral domain. More-
over let a1, . . . , an be elements in S, and b be a nonzero element of R[a1, . . . , an]. Then
there is an element a in R such that, for every ring homomorphism ϕ : R → K such that
ϕ(a) 6= 0 there is a ring homomorphism ψ : R[a1, . . . , an] → K such that ψ(b) 6= 0, and
such that ψ|R = ϕ.

Proof. We shall prove the theorem by induction on the number n of generators a1, . . . , an
of R[a1, . . . , an−1]. Let R′ = R[a1, . . . , an]. Then R′[an] = R[a1, . . . , an]. We shall first
prove the theorem with R′ and R′[an], for R and S. In particular we prove the theorem
for the case n = 1.

Assume first that an is transcentdental over R′. Then b = a′apn + fp−1a
p−1
n + · · · + f0,

for some elements a′, fp−1, . . . , f0 of R′. For every homorphism ϕ′ : R′ → K such that
ϕ′(a′) 6= 0, we choose an element c of K such that ϕ′(a′)cp+ϕ′(fp−1)c

p−1 + · · ·+ϕ′(f0) 6= 0.
This is possible because K is infinite (see Exercise 5-1.5), so that there are elements of
K that are not roots in the polynomial ϕ′(a′)xp + ϕ′(fp−1)x

p−1 + · · · + ϕ′(f0). It follows
from the first assertion of Proposition 5-4.5 that there is a unique ring homomorphism
ψ : R′[an] → K such that ψ(an) = c. We have that ψ(b) = ψ(a′apn + fp−1a

p−1
n + · · ·+ f0) =

ϕ′(a′)ψ(an)
p+ϕ′(fp−1)ψ(an)

p−1+· · ·+ϕ′(f0) = ϕ′(a′)cp+ϕ′(fp−1)c
p−1+· · ·+ϕ′(f0) 6= 0, and

ψ|R′ = ϕ′, and we have proved the case n = 1 of the theorem when an is transcentdental.
Assume that an is algebraic over R′. Let f(x) = cxm+bm−1x

n−1+· · ·+b0 be a polynomial
in x with coefficients in R′ of lowest degree m such that f(am) = 0. There is a polynomial
g(x) = cpx

p+· · ·+c0 such that b = g(an) 6= 0. It follows from Lemma 5-4.6 that we can find
polynomials p(x) and q(x) in R′[x] such that p(x)f(x)+ q(x)g(x) = d is a nonzero element
of R′. Let a′ = cd, and let ϕ′ : R′ → K be a ring homomorphism such that ϕ′(a′) 6= 0.
Then ϕ′(c) 6= 0. Since K is algebraically closed we can find a root e in K of the polynomial
ϕ′(c)xm + ϕ′(bm−1)x

m−1 + · · · + ϕ′(b0). It follows from part two of Proposition 5-4.5 that
there is a ring homomorphism ψ : R′[an] → R′ such that ψ(an) = e, and ψ|R′ = ϕ′. We
have that ψ(q(an))ψ(g(an)) = ψ(q(an)g(an)) = ψ(q(an)g(an)+p(an)f(an)) = ψ(d) = ϕ′(d),
which is not zero because ϕ′(a′) = ϕ′(cd) 6= 0. Hence we have that ψ(g(an)) 6= 0 and we
have proved the case n = 1 of the theorem when an is algebraic.
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We have proved the theorem in the case n = 1 and proceed by induction on n. Assume
that the theorem holds for an algebra with n − 1 generators. We use the induction as-
sumption on the R algebra R′ = R[a1, . . . , an−1] and the element a′ of R[a1, . . . , an−1], used
above. By the theorem we can find an element a of R such that every ring homomorphism
ϕ : R → K such that ϕ(a) 6= 0 can be extended to a ring homomorphsim ϕ′ : R′ → K such
that ϕ′(a′) 6= 0, and such that ϕ′|R′ = ϕ. However, we have from the case n = 1 above
that there is a ring homorphism ψ : R[a1, . . . , an] → R such that ψ(b) 6= 0, and such that
ψ|R′ = ϕ′. We have that ψ|R = ϕ′|R = ϕ, and we have proved the theorem.

The Hilbert Nullstellensatz is a direct consequence of Theorem 5-4.7. In order to deduce
the Hilbert Nullstellensatz from the Theorem it is however, convenient to use another
characterization of the radical of an ideal, that illustrates why the radical is an ideal.

Lemma 5-4.8. Let R be a ring and let I be an ideal of R. The radical of I is the
intersection of all prime ideals in R that contain I.

Proof. Let P be a prime ideal containing I. If a is in
√
I we have that am is in I, and

hence in P , for some positive integer m. Since P is prime it follows that either a or am−1

is in P . By descending induction on m it follows that a is in P . Consequently, the radical
of I is contained in the intersection of the primes containing I.

Conversely, let a be an element of R that is not contained in the radical of I. We shall
show that there is a prime ideal containing I, but not a. Let {Ii}i∈I be the family of ideals
in R that contain I and that do not contain any power 1, a, a2, . . . of a. Given any chain
of ideals {Ii}i∈J , that is a subset of the family {Ii}i∈I , such that Ii ⊆ Ij or Ij ⊆ Ii for all i
and j in J . We have that ∪i∈J Ii is an ideal that contain I and does not contain any power
of a. Since every chain contains a maximal element the family {Ii}i∈I contains a maximal
element J (see Remark 5-4.9). We shall show that J is a prime ideal. Given elements b
and c of R that are not in J . The smallest ideals (b, J) and (c, J) that contain b and J ,
respectively c and J must contain a power of a, by the maximality of J . Consequently,
bb′ + i = ap and cc′ + j = aq, for some elements b′ and c′ of R and i and j of J . We take
the product of these expressions and obtain that b′c′bc + cc′i + bb′j + ij = ap+q. Since
cc′i + bb′j + ij is in J , we obtain that, if bc were in J , then ap+q would be in J , contrary
to the assumption. Consequently, we have that bc is not in J , and J is prime. Thus, for
every element a in R not contained in the radical of I we have a prime ideal J containing
I, but not a. Hence the intersection of all prime ideals containing I is contained in the
radical.

Remark 5-4.9. In the proof or Lemma 5-4.8 we used Zorn’s Lemma stating that, if every
chain in a family {Ii}i∈I of sets has a maximal element, then the family itself has maximal
elements. For noetherian rings we can avoid the use of Zorn’s Lemma by noting that a ring
R is noetherian, if and only if, every sequence I1,⊆ I2 ⊆ · · · of ideals is stationary, that is
Im = Im+1 = · · · , for some positive integer m. To prove this equvialence we first assume
that R is noetherian and consider a sequence I1 ⊆ I2 ⊆ · · · of ideals. Let I = ∪∞

i=1. Then I
is an ideal, and thus generated by a finite number of elements a1, . . . , ap. Clearly we must
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have that all the generators must be in one of the ideals in the sequence, say Im. Then we
have that Im = Im+1 = · · · = I, and the sequence is stationary. Conversely, assume that
every sequence is stationary. Given an ideal I of R and let {ai}i∈I be a set of generators.
Choose ideals I1 ⊂ I2 ⊂ · · · , where Ip is generated by ai1 , . . . , aip , by induction as follows.
We take I1 to be the ideal generated by one of the generators ai1 . Assume that we have
chosen Ip, then, if Ip 6= I, we choose a generator aip+1 that is not in Ip, and let Ip+1 be the
ideal generate by ai1 , · · · , aip+1 . Since, the chain must stop, by assumption, we must have
that I = Im, for some m, and thus I is generated by ai1 , . . . , aim .

Theorem 5-4.10. (The Hilbert Nullstellensatz)Let I be a proper ideal in the polynomial
ring K[x1, . . . , xn]. Then

√
I = IV(I).

Proof. We observed in Paragraph 5-4.1 that
√
I ⊆ IV(I). To prove that the opposite

inclusion holds, we take an element a not in
√
I and shall find a point x in V(I) such that

a(x) 6= 0. From the alternative description of the radical of Lemma 5-4.8 we can find a
prime ideal P of K[x1, . . . , xn] which contains I and does not contain a. We have that
the K algebra S = K[x1, . . . , xn]/P is an integral domain (see Exercise 5-5.1). Let g be
the image of a in S by the residue map χ : K[x1, . . . , xn] → S. Then g 6= 0. It follows
from Theorem 5-4.7 with K = R and ϕ being the inclusion K ⊆ K, that there is a K

algebra homomorphism ψ : S → K such that ψ(g) 6= 0. Let ai be the image of xi by
the composite ζ : K[x1, . . . , xn] → K of the residue map χ and ψ, for i = 1, . . . , n. Then
(a1, . . . , an) is a point in An

K
. For each polynomial f(x1, . . . , xn) =

∑

i1,...,in
ai1,...,inx

i1
1 · · ·xinn

in K[x1, . . . , xn] we have that ϕf(x1, . . . , xn) =
∑

(i1,...,in
ai1...ina

i1
1 · · ·ainn = f(a1, . . . , an).

When f(x1, . . . , xn) is in I we have that it is in P , and hence that χ(f(x1, . . . , xn)) = 0.
Consequently we have that ζ(f) = 0, that is f(a1, . . . , an) = 0, or equivalently, (a1, . . . , an)
is a zero for f . Hence we have that (a1, . . . , an) is in V(I). However, ψ(g) 6= 0, so
a(a1, . . . , an) = ζ(a(x1, . . . , xn)) = ψχ(a(x1, . . . , xn)) = ψ(g) 6= 0. Hence, we have found a
point x = (a1, . . . , an) in An

K
which is a zero for I, and such that a(x) 6= 0, and we have

proved the theorem.

5-5 Prevarieties

A manifold is a topological space that locally looks like an open subset of Kn, for some n.
Analogously we define, in this section, prevarieties as topological spaces that locally look
like quasi affine varieties.

Definition 5-5.1. Let X be a topological space. An algebraic chart of X consists of an
open set U of X, an open quasi affine variety V in some affine space An

K
, and a homeomor-

phism ϕ : V → U of topological spaces. A family of algebraic charts {(ϕi, Vi, Ui)}i∈I is called
an algebraic atlas if the open sets {Ui}i∈I cover X and if the map ϕ−1

j ϕi : ϕ
−1
i (Ui ∩ Uj) →

ϕj(Ui ∩Uj) is regular, when Ui ∩Uj is nonempty, for all indices i and j in I. Here, and in
the following, we write, for simplicity, ϕ−1

j ϕi for the map (ϕj|(Ui ∩ Uj)−1ϕi|ϕ−1
i (Ui ∩ Uj).

The set where ϕ−1
j ϕi is defined will be clear from the context.
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A compact topological space X together with an algebraic atlas is called an algebraic
prevariety, or simply a prevariety. It is often convenient to include in the atlas all the
homeomorphisms ϕ : V → U , from an open quasi affine set in some An

K
to an open subset

in X, such that, for all x ∈ U and some Ui in the chart that contain x, the homeomorphism
ϕ−1
i ϕ is regular on ϕ−1(U ∩Ui). The condition then holds for all charts containing x. Such

a maximal chart is called an algebraic structure.
For each open subset U of X the charts ϕi : ϕ

−1
i (U ∩ Ui) → U ∩ Ui define a structure

as an algebraic prevariety on U , called the induced structure.

Example 5-5.2. The quasi affine varieties are themselves algebraic prevarieties with the
identity map as a chart. In particular, all the matrix groups Gln(K), Sln(K), GS(K), or
SGS(K) for some invertible matrix S, are algebraic prevarieties (see Example 5-1.6).

Example 5-5.3. Let S = Kn+1 \ (0). Defining (a0, . . . , an) and (b0, . . . , bn) to be related,
if there is an a of K such that ai = abi, for i = 0, . . . , n, we obtain a relation on S. This
relation clearly is an equivalence relation. The set (Kn+1 \ (0))/ ≡ is denoted Pn(K), and
is called the projective space of dimension n over K. We have a canonical map

Φ : Kn+1 → Pn(K).

The sets U in Pn(K) such that Φ−1(U) is open in the Zariski topology on Kn+1, are
the open sets in a topology on Pn(K). By definition, the map Φ is continuous with respect
to this topology and the Zariski topology on Kn.

For i = 0, . . . , n we denote by Hi the subset of Pn(K) consisting of points of the form
[(a0, . . . , ai−1, 0, ai+1, . . . , an)]. Then Hi is closed in the topology. Let Ui = Pn(K) \ Hi.
Then the sets Ui, for i = 0, . . . n, form an open covering of Pn(K). Let

ϕi : Kn → Pn(K)

be the map defined by ϕi(a1, . . . , an) = [(a1, . . . , ai−1, 1, ai, . . . , an)]. Then ϕi is a homeo-
morphism of Kn onto the open subset Ui of Pn(K). We have that the map ϕ−1

j ϕi is defined

on the set ϕ−1
i (Ui ∩ Uj) and is given by ϕ−1

j ϕi(a1, . . . , an) = (a1
aj
, . . . ,

aj−1

aj
,
aj+1

aj
, . . . , an

aj
),

where aj 6= 0 because ϕi(a1, . . . , an) is in Ui ∩ Uj . Hence the map is regular. We see that
(Ui, ϕi), for i = 0, . . . , n, define an algebraic chart on Pn(K), which makes Pn(K) into a
prevariety.

Remark 5-5.4. Since every quasi affine variety is compact by Paragraph 5-1.19, we have
that X is a prevariety if and only if there is an atlas consisting of a finite number of charts.
Hence the condition that a prevariety is compact is not a serious restriction.

Note that an algebraic variety is covered by quasi affine subsets of some space An
K

.
Such a quasi algebraic subset will also be quasi algebraic in any space Am

K
such that An

K

is contained in Am
K

as a closed subset. Hence the numbers n that appear in the definition
of an algebraic variety are not determined by the algebraic variety. We shall later define
the dimension of an algebraic variety.
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Definition 5-5.5. Let X be an algebraic variety and U an open subset. A function
f : U → K is regular if for every x in U and some chart ϕi : Vi → Ui, where x is contained
in Ui, we have that the map ϕϕ−1

i is regular on ϕ−1
i (U ∩Ui). The condition then holds for

all such charts. We denote by OX(U) the set of all regular functions on U .

Remark 5-5.6. The set OX(U) is clearly a ring, and for an open subset V of X contained
in U there is a natural ring homomorphism ρU,V : OX(U) → OX(V ) sending a function f
to its restriction f |V . The following two fundamental properties hold:

(i) If f ∈ OX(U) and there is an open cover {Ui}i∈I of U such that ρU,Ui
(f) = 0, for all

i ∈ I, we have that f = 0.

(ii) If {Ui}i∈I is an open covering of U and {fi}i∈I is a collection of functions fi ∈ OX(Ui)
such that ρUi,Ui∩Uj

(fi) = ρUj ,Ui∩Uj
(fj), for all i and j, there is a function f ∈ OX(U)

such that ρU,Ui
(f) = fi, for all i ∈ I.

Consequently OX is a sheaf on X (see Remark 3-4.9).

Example 5-5.7. Let X be a prevariety and x a point of X. Let S be the set consisting
of pairs (U, f), where U is an open neighbourhood of x and f a regular function on U .
We give a relation on S by defining (U, f) to be related to (V, g) if there is an open
neighbourhood W of x, contained in U ∩ V such that f |W = g|W . Clearly this relation is
an equivalence relation. The residual set S/ ≡ is denoted by OX,x. The elements of OX,x

can be added and multiplied by the rules [(U, f)] + [(V, g)] = [(U ∩ V, (f + g)|U ∩ V )] and
[(U, f)][(V, g)] = [(U ∩V, (fg)|U ∩V )]. Clearly OX,x becomes a ring with this addition and
multiplication, zero being the element [(X, 0)] and the unity the element [(X, 1)].

For every open neighbourhood U of x we obtain a ring homomorphism

OX(U) → OX,x,

sending (U, f) to [(U, f)]. The ring OX,x is called the ring of germs of regular functions at
x. We also have a ring homomorphism

OX,x → K,

sending [(U, f)] to f(x). This map is called the augmentation map at x.

Remark 5-5.8. Let U be an open neighbourhood of x. Then we have that the natural
restriction map

OX,x → OU,x

is an isomorphism.

Given a map Φ : Y → X of prevarieties, we have a natural ring homomorphism

Φ∗
x : OX,f(x) → OY , x

definied by Φ∗
x[(U, g)] = [(Φ−1(U), gΦ)].
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Definition 5-5.9. Let X and Y be prevarieties and Φ : Y → X a continous map. We say
that Φ is a morphism if, for every open subset U of X and every regular function f : U → K

on U , we have that fΦ is analytic on Φ−1(U). When Φ has an inverse, which is also a
morphism, we say that Φ is an isomorphism of prevarieties.

Remark 5-5.10. It follows immediately from the definition that if Ψ : Z → Y is another
morphism of prevarieties, then ΦΨ : Z → X is also a morphism.

Let X be a topological space and U an open subset. We denote by CX(U) the ring og
all continous functions U → K. It follows from Lemma 5-3.12 that, if X is an prevariety,
the ring OX(U) is a subring of CX(U), for all open subsets U of X. A continous map
Φ : Y → X of topological spaces induces, for all open subsets U of X, a ring homomorphism
CX(U) → CY (Φ−1(U)), which sends a function g : U → K to the composite gΦ : Φ−1(U) →
K. When X and Y are prevarieties, this map is a morphism if and only if it induces a
map Φ∗(U) : OX(U) → OY (Φ−1(U)), on the subrings of regular functions. Clearly Φ∗(U)
is a ring homomorphism and, when V is an open subset of U , we have that Φ∗(V )ρU,V =
ρΦ−1(U),Φ−1(V )Φ

∗(U).

Remark 5-5.11. When U and V are quasi affine varieties a map Φ : V → U is a morphism if
and only if it is regular. Indeed, if Φ is regular, then, for every regular function f : V → K

we have that fΦ : U → K is regular. Consequently Φ is a morphism. Conversely, let
Φ : V → U be a morphism, and assume that V is a quasi affine variety in An

K
. Then

the restriction to U of the coordinate functions xi : An
K

→ K, that sends (a1, . . . , an) to

ai, is regular. Hence, the composite map xi|U : V → K is regular. Let fi = (xi|U)Φ, for
i = 1, . . . , n. We have that fi(b1, . . . , bn) = (xi|U)Φ(b1, . . . , bn). Consequently we have that
Φ(b1, . . . , bm) = (f1(b1, . . . , bn), . . . , fn(b1, . . . , bm)), and Φ is regular.

Example 5-5.12. Let X be an affine algebraic variety An
K

, and let f(x1, . . . , xn) be a
polynomial in K[x1, . . . , xn]. We saw in Example 5-3.11 that the map

Φ : Xf → V (1 − xn+1f(x1, . . . , xn))

defined by Φ(a1, . . . , an) = (a1, . . . , an,
1

f(a1,...,an)
) is an isomorphism of the quasi affine

variety Xf of An
K

, with the affine variety V(1 − xn+1f(x1, . . . , xn)) of An+1
K

.
In particular it follows from Lemma 5-1.14 that a prevariety can be covered by open

subsets that are affine varieties.

A fundamental result, that we shall prove next, is that there is a natural isomorphism
between the coordinate ring of an affine variety, and the ring of regular functions on the
variety. Although it is not necessary for the proof, or for the apparent generalization given
below, it is extremely convenient to introduce the language of localization of a ring with
respct to multiplicatively closed subsets.

Definition 5-5.13. Let R be a ring. We call a subset S multiplicatively closed, if ab is in
S, for all pairs of elements a, b in S. Let S be a multiplicatively closed subset and let R×S
be the set of pairs (a, b), with a in R and b in S. We say that two pairs (a, b) and (c, d)
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in R× S are related, if ead = ebc, for some element e of S. This relation is an equivalence
relation. Indeed, it is clearly reflexive and symmetric. To prove that it is transitive, let
(f, g) be an element related to (c, d). Then there is an element h of S such that hfd = hcg.
We obtain that hedag = hebcg = hedbf , where h, e and d, and thus hed, are contained
in S. Consequently, (a, b) is related to (f, g). We denote by S−1R the set of equivalence
classes. The class in S−1R of the pair (a, b) in R × S we denote by a

b
.

We define addition and multiplication of elements in S−1R by the formulas:

a

b
+
c

d
=
ad+ bc

bd
, and

a

b

c

d
=
ac

bd
.

It is easily checked that these operations are well defined, that is, they are independent of
the representative we chose of each equivalence class, and that S−1R, with these operations
become a ring with 0 and 1 given by 0

a
, respectively a

a
, for any a in S. Moreover, we have

a natural ring homomorphism
R → S−1R,

which sends a to ab
b
, for any b in S. The homomorphism is not always injective. For

example, if the zero element is in S, then S−1R = 0, because (a, b) is equivalent to (0, 0),
for all a in R and b in S. We call the ring S−1R the localization of R with respect to the
multiplicatively closed subset S.

Let a be an element of R, and let S = {1, a, a2, . . .}. Clearly S is multiplicatively
closed. In this case we let S−1R = Ra. The map R → Ra is injective if and only if there
does not exist a nozero element b in R such that amb = 0, for some positive integer m. It
follows, by descending induction on m, that the condition holds if and only if there is no
element b of R such that ab = 0.

Let P be a prime ideal of R. By the definition of a prime ideal, the set S = R \ P is
multiplicatively closed. We let S−1R = RP .

An element a of R is a zero divisor if there is a nonzero element b of R such that ab = 0.
A ring R such that 0 is the only zero divisor is called an integral domain.

Let S be the set of non zero divisors of R. Then S is multiplicatively closed. Indeed,
if a and b are not zero divisors, and c is a nonzero element such that abc = 0, then, either
bc = 0, in which case b is a zero divisor, or bc 6= 0, and then a(bc) = 0, in which case a is a
zero divisor. Hence ab is not a zero divisor. We denote the resulting ring S−1R by K(R)
and call K(R) the total quotient ring of R. The map

R → K(R)

is injective because, if a is an element that maps to a
1

= 0, then there is a nonzero divisor
b such that ba = 0. Consequently, a = 0. When R is an integral domain, then K(R) is a
field. Indeed, the inverse of a nonzero element a

b
of K(R) is b

a
.

Definition 5-5.14. Let X be an affine variety. For every nonzero element f in the coor-
dinate ring K[X] we have a natural map

K[X]f → OX(Xf),
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which sends a quotient g

fm in K[X]f to the function Xf → K, which sends the point x to
g(x)
f(x)n .

For each point x of X we have a K algebra homomorphism

K[X] → K,

which sends an element f to f(x). We call this map the augmentation at x. Let

MX,x = {f ∈ K[X]|f(x) = 0}

be the kernel of the augmentation at x. It is clear that MX,x is a prime ideal. It is also
maximal, because if I were an ideal strictly containing MX,x then it follows from Hilberts
Nullstellensatz that I has a zero, this zero must then be x. Thus I must be the radical of
MX,x, and thus I = MX,x, since MX,x is prime.

We have a natural map
K[X]MX,x

→ OX,x,

which sends a quotient f

g
in K[X]MX,x

, to the class of the function Xg → K that sends a

point x to f(x)
g(x)

.

Proposition 5-5.15. Let X be an affine variety. For every element f in K[X], and point
x of X the maps K[X]f → OX(Xf ), and K[X]MX,x

→ OX,x, are isomorphisms.

Proof. We first show that the map K[X]f → OX(Xf ) is injective. Assume that a quotient
g

fm maps to zero in OX(Xf). Then g(x) = 0 for x in Xf . However, then fg(x) = 0 for all x

in X. That is fg = 0 in K[X]. Hence g

f
= 0 in K[X]f . The proof that K[X]MX,x

→ OX,x

is injective is similar.
We next show that the map K[X]f → OX(Xf) is surjective. Let X be a closed subset

of An
K

, and let s be an element in OX(Xf ). By definition there is an open covering
Xf = ∪i∈IUi of Xf by open sets Ui, and polynomials fi and gi in K[x1, . . . , xn] such that

gi(x) 6= 0, and s(x) = fi(x)
gi(x)

, for x in Ui. It follows from Lemma 5-1.14 that, refining the

covering if necessary, we may assume that Ui = Xhi
, for some hi in K[x1, . . . , xn]. Since the

sets Ui = Xhi
cover Xf we have that, if f(x) 6= 0, for some x in X, there is an index i in I

such that hi(x) 6= 0, or equvalently gi(x)hi(x) 6= 0. That is, if (gihi)(x) = 0, for all i in I,
then f(x) = 0. It follows from the Hilbert Nullstellensatz, applied to the ideal generated
by the elements gihi, that there is a finite subset i1, . . . , ir of I, elements k1, . . . , kr of
K[x1, . . . , xn], and a nonnegative integer m, such that

fm = gi1hi1k1 + · · ·+ girhirkr.

Let
g = fi1hi1k1 + · · · + firhirkr.

For each point x in Xf there is an index j such that hij (x) 6= 0. We obtain that

g(x) =
fij (x)

gij(x)
gi1(x)hi1(x)k1(x) + · · ·+ fij (x)

gij(x)
gir(x)hir(x)kr(x).
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Indeed, on the one hand, if x is in Xhil
, then s(x) =

fij
(x)

gij
(x)

=
fik

(x)

gik
(x)

, such that

fij (x)

gij (x)
gil(x)hil(x)kl(x) = fil(x)hil(x)kl(x),

and, on the other hand, if x is not in Xgil
, then hil(x) = 0, such that

fil(x)hil(x)kl(x) = 0 =
fij (x)

gij(x)
gil(x)hil(x)kl(x).

Consequently we have that

g(x) =
fij (x)

gij(x)
(gi1(x)hi1(x)k1(x) + · · · + gir(x)hir(x)kr(x)) =

fij (x)

gij(x)
fm(x).

We have proved that f(x)
gm(x)

= s(x), for all x in X, and consequently, that the map K[X]f →
OX(Xf) is surjective.

To show that the map K[X]MX,x
→ OX,x is surjective it suffices to observe that an

element of OX,x, comes from an element of OX(Xf), for some neighbourhood Xf of x.
However, the latter element comes from an element of K[X]f , by what we just proved, and
the last element clearly maps onto the first by the map K[X]MX,x

→ OX,x.

Remark 5-5.16. We note that with f = 1 we obtain, from Proposition 5-5.15, a natural
isomorphism K[X] → OX(X), for all affine varieties X. Given a morphism Φ : Y → X, the
map OX(X) → OY (Y ) on regular functions, give a natural homomorphism Φ∗ : K[X] →
K[Y ] of K algebras.

The next result gives the fundamental connection between algebra and geometry on
which algebraic geometry rests.

Proposition 5-5.17. Let X be an affine variety and Y a variety. The correspondence
that to a morphism

Φ : Y → X

associates the K algebra homomorphism

Φ∗ : K[X] → OX(Y ),

obtained by composing the isomorphism K[X] → OX(X) of Proposition 5-5.15 with the
map OX(X) → OY (Y ), gives a bijection between the morphisms from Y to X and the K

algebra homomorhpisms from K[X] to OY (Y ).
In particular we have that X and Y are isomorphic affine varieties if and only if K[X]

and K[Y ] are isomorphic K algebras.
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Proof. Given a K algebra homomorphism

Ψ : K[X] → OY (Y ).

We shall define a morphism
Φ : Y → X,

such that Φ∗ = Ψ . To this end we cover Y by open affine varieties {Yi}i∈I . Assume that X
is an affine variety in An

K
and that Yi is an affine variety in Am

K
. Let ρx : K[x1, . . . , xn] →

K[X], and ρYi
: K[y1, . . . , ym] → K[Yi] be the residue maps. Moreover let ψi : K[X] →

K[Yi] be the composite of ψ with the map OY (Y ) → OY (Yi) = OYi
(Yi), and the inverse of

the isomorphism K[Yi] → OYi
(Yi).

Choose polynomials g1(y1, . . . , ym), . . . , gn(y1, . . . , ym) in K[y1, . . . , ym] such that

ψiρXxj = ρYi
gj(y1, . . . , ym),

for j = 1, . . . , n. Then we have an equality

ψjρX(xj)(b1, . . . , bm) = gj(b1, . . . , bm),

for j = 1, . . . , m, and all (b1, . . . , bm) in Yi. Since ψiρX is a K algebra homomorphism we
obtain that

ψiρX(f(x1, . . . , xn)) = f(ψρX(x1), . . . , ψρX(xn)),

for all polynomials f(x1, . . . , xn) in K[x1, . . . , xn]. Hence we have that

ψiρX(f)(b1, . . . , bn) = f(g1(b1, . . . , bm), . . . , gn(b1, . . . , bm)), (5-5.17.1)

for all (b1, . . . , bm) in Yi. In particular, for all f in I(X), and all (b1, . . . , bm) in Yi, we have

f(g1(b1, . . . , bm), . . . , gn(b1, . . . , bm)) = 0.

Hence (g1(b1, . . . , bm), . . . , gn(b1, . . . , bm)) is in X for all (b1, . . . , bm) in Yi. Consequently,
we can define a morphism

Φi : Yi → X

by Φi(b1, . . . , bm) = (g1, (b1, . . . , bm), . . . , gn(b1, . . . , bm)), for all (b1, . . . , bm) in Yi. It follows
from Equation 5-5.17.1 that, for all (b1, . . . , bm) in Yi, and f in K[x1, . . . , xn], we have

ψiρX(f)(b1, . . . , bm) = fψi(b1, . . . , bm) = Ψ ∗ρX(f).

Consequently, we have that Ψi = Φ∗
i . Moreover, the map associated to Φ∗

i is Φi.
Given two open affine varieties Yi and Yj of Y , and let W be an affine variety that is an

open subset of Yi∩Yj. The composite of the map ψ : K[X] → K[Yi] and ψj : K[X] → K[Yj]
with the map K[Yi] → K[W ], respectively K[Yj] → K[W ], obtained from OYi

→ OYi
(X) =

OX(X), respectively OYj
(Yj) → OYj

(X) = OW (W ), are the same. Consequently, the
construction gives maps Φi and Φj that conicide onW . It follows that the maps Φi : Yi → X,
for all i in I, induce a map Φ : Y → X, such that Φ|Yi

= Φi, for all i. It is clear that Φ∗ = Ψ
and that the map associated to Φ is Φ∗. Hence we have a natural bijection between the
algebraic maps from Y to X and the K algebra homomorphisms K[X] → OY (Y ), which
associates Φ∗ to Φ.
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Exercises

5-5.1. Let R be a ring. Show that an ideal I of R is prime if and only if the residue ring R/I is
an integral domain.

5-5.2. Show that the total quotient ring K(Z) of the integers is canonically isomorphic to the
rational numbers.

5-5.3. Show that the total quotient ring K(K[x1, . . . , xn]) of the polynomial ring K[x1, . . . , xn]

is the field of rational functions, that is, the field of all quotients f(x1,...,xn)
g(x1,...,xn) of polynomials in

K[x1, . . . , xn], with g 6= 0.

5-6 Subvarieties

In Sections 5-1 and 5-3 we defined affine varieties, coordinate rings and regular fuctions
with respect to a fixed imbedding into an affine space. We proved that the coordinate ring,
and regular functions, are independent of the imbedding. In this section we go one step
further to liberate the consepts from the ambient spaces.

Definition 5-6.1. Let X and Y be prevarieties and assume that Y is a closed subset of
X. We say that Y is a closed sub prevariety of X if the inclusion map is a morphism, and
if, for each point x of Y , we have that the map

OX,x → OY,x

of germs of regular functions at x, is surjective. When X is an affine variety we say that
Y is a subvariety.

Example 5-6.2. Let X be an affine variety in An
K

, and Y a closed subset of X. Then Y is
an affine variety as a closed subset of An

K
, and the inclusion map of Y in X is a morphism.

We have an inclusion I(X) ⊆ I(Y ) of ideals in K[x1, . . . , xn] and thus a surjection

ϕ : K[X] → K[Y ].

For each point x of Y we have a map

ϕy : K[X]MX,x
→ K[Y ]MY,x

defined by ϕy(
f

g
= ϕ(f)

ϕ(g)
. This map is well defined because, if g(x) = 6= 0, then ϕ(g)(x) =

g(x) 6= 0, and it is surjective because ϕ is surjective. It follows from Proposition 5-5.15
that the map OX,x → OY,x is surjective. Hence Y is a closed subvariety of X. It follows
from Example 5-1.6 that the matrix groups Sln(K), GS(K), and SGS(K), for all invertible
S, are closed subvarieties of the affine variety Gln(K).
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Example 5-6.3. Let Y be a closed subset of a prevariety X. For each open affine subva-
riety U of X we have, by Example 5-6.2 that U ∩ Y is a subvarity of X with coordinate
ring equal to K[U ]/I, where I is the ideal of elements f in K[U ] such that f(x) = 0, for
x in U ∩ Y . Hence we can cover Y by algebraic charts of the type U ∩ Y , where U is an
affine variety in X. These charts constitute an atlas on Y . Indeed, let ϕi : Vi → Ui, for
i = 1, 2, be two charts on X, and let W be an open affine subvariety of X, containing x and
contained in U1 ∩ U2. Then ϕ−1

2 ϕ1 defines an isomorphism ψ : ϕ−1
1 (W ) → ϕ−1

2 (W ) which
induces a homomorphism ϕ−1

1 (W ∩ Y ) → ϕ−1
2 (W ∩ Y ). Consequently, the homomorphism

ψ∗ : K[ϕ−1
2 (W )] → K[ϕ−1

1 (W )] induces a bijection between the ideal of functions vanishing
on the closed set ϕ−1

2 (W ∩ Y ) of ϕ−1
2 (W ) with the ideal of functions vanishing on the

closed subset ϕ−1
1 (W ∩ Y ) of ϕ−1

1 (W ). Hence ψ∗ induces an isomorphism of coordinate
rings K[ϕ−1

2 (W ∩ Y )] → K[ϕ−1
1 (W ∩ Y )]. It follows from Proposition 5-6.2 that the corre-

sponding morphism ϕ−1
1 (W ∩ Y ) → ϕ−1

2 (W ∩ Y ) is an isomorphism of affine varieties. It
follows that the map ϕ−1

1 (U1 ∩ Y ) → ϕ−1
2 (U2 ∩ Y ) is an ismomorphism. Consequently the

charts defined by ϕ1|U1∩Y and ϕ2|U2∩Y are part of an atlas. Hence the same is true for any
two of the charts we have defined on Y , and Y is a prevariety.

We saw in Example 5-6.2 that, for all affine subsets U of X, the map U ∩ Y → U is a
morphism and the map

OU,x → OU∩Y,x

of germs of regular functions at x is surjective for all points x of U ∩ Y . However, the
regular functions of a variety at a point is the same as that for an open neighbourhood of
the point. Hence the map

OX,x → OY,x

is also surjective, and Y is a closed sub prevariety of X.

Proposition 5-6.4. Let X and Y be prevarieties. Assume that Y is a closed subset of
X and that the inclusion makes Y into a closed sub prevariety of X. Then the inclusion
map induces an isomorphism between the prevariety Y and the prevariety induced, as in
Excercise 5-6.3, on the closed subset underlying Y .

Proof. Denote by Z the prevariety induced on the underlying closed set of Y in Excercise
5-6.3. It suffices to consider the structures on open subsets of X, so we may assume that
X is an affine variety. We then have a surjection K[X] → K[Z] of coordinate rings given
by the induced structure on Z as in Excample 5-6.3. Corresponding to the map Y → X
it follows from Proposition 5-5.17 that we have a map of rings K → OY (Y ). Since the
prevarieties Y and Z have the same underlying set the kernel of the maps K[X] → K[X]
and K[X] → OY (Y ) are the same, and equal the elements f of K[X] that vanish on Y = Z.
Consequently the map K[X] → K[Z] gives rise to an injective map

ψ : K[Z] → OY (Y ),

and hence it follows form Proposition 5-5.17 that the inclusion map ι : Y → Z is a mor-
phism of prevarieties. It follows from Proposition 5-5.17 that the inclusion map induces an
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isomorphism if and only if the map ψ is an isomorphism. Hence it suffices to prove that ψ
is surjective. The composite map

OX,x → OZ,x → OY,x

is surjective, for all x in Y = Z, by assumption. Hence the right hand map is also
surjective. This map is also an injection, for if a class [(U, f)] is mapped to zero, then
fι(x) = f(x) = 0, for all x in a nieghbourhood of x in Y , or, which is the same because ι
is a homeomorphism, in a neighbourhood of x in Z. The same reasoning shows that the
map OZ(W ) → OY (W ) is injective, for all open sets W of Y = Z.

Let g be an element of OY (Y ). for all x in Y there is a unique element sx in OZ,x that
maps to the class gx of g in OY,x. We have that sx is the class of a regular function fV
defined on a neighbourhood V of x in Z. The function fV ι on the neighbourhood V of x
considered in Y maps to gx in OY,x. Consequently, we have that g and fV ι are equel in a
neighbourhood W of x in Y . Hence fW = fV |W maps to g|W by the map

OZ(W ) → OY (W ).

Since the latter map is injective we have that fW is uniquely defined. Hence the elements
fW , for each point x in X, define a function f on OZ(Z) = K[Z], that maps to g, and we
have proved the proposition.

5-6.5. A topological space can have several structures as a prevariety. We shall show that
a morphism Φ : Y → X of prevarieties which is a homeomorphism of topological spaces is
not necessrily an isomorphism of prevarieties.

Example 5-6.6. Let K = K and assume that 2 = 0 in K. Let Φ : A1
K

→ A1
K

be the
map defined by Φ(a) = a2. This map is clearly a morphism. As the field K contains
square roots of all of its elements it is onto, and it is injective because, if Φ(a) = Φ(b),
then 0 = a2 − b2 = (a− b)2, since 2 = 0, and hence a = b. The map is a homeomorphism
because, it sends finite sets to finite sets, and the open sets are the complements of finite
sets (see Example 5-1.11. However, it is not an isomorphism because the corresponding
map of coordinate rings K[x1] → K[x1] sends x1 to x2

1, and therefore is not surjective.

5-7 The tangent space of prevarieties

The tangent spaces of prevarieties are introduced in analogy with those for manifolds.
They have similar properties and can be computed in the same way as those for manifolds.

Let X be a prevariety and x a point of X. We have an augmentation map from the
ring of germs of regular functions at x to K, that sends a class [(U, f)] to f(x). Similarly,
when X is an affine variety we have an augmentation map K[X] → K that sends f to
f(x).

Definition 5-7.1. The tangent space Tx(X) of the prevariety X at the point x is the space
of derivations

δ : OX,x → K,
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for the augmentation map at x.

Remark 5-7.2. The tangent space is a vector space over K, where addition δ + ε of two
derivations δ and ε is given by (δ + ε)f = δf + εf , and multiplication aδ with an element
a of K is given by (aδ)f = aδ(f).

Let U be an open subset of X containing x. The restriction OX,x → OU,x is an
isomorphism. Consequently we have an isomorphism Tx(U) → Tx(X).

Let Φ : Y → X be a morphism of prevarieties. From the natural map

Φ∗
y : OX,Φ(y) → OY,y

we obtain a map
TyΦ : Ty(Y ) → TΦ(y)(X),

for all y in Y , which sends the derivative δ : OY,y → K to the derivative δΦ : OX,Φ(y) → K.
When Y is a closed sub prevariety of X we have, by definition, that Φ∗

y is a surjection.
Hence, if δΦ = 0 we have that δ = 0, and thus TyΦ is injective.

Before we show how to compute the tangent spaces of prevarieties we shall give some
of the fundamental properties of derivations.

Recall (see 3-6.2) that given K algebras R and S, and a K algebra homomorphism
ϕ : R → S, we say that a K linear map

δ : R→ S

is a derivation with respect to ϕ if if

δ(ab) = ϕ(a)δb+ ϕ(b)δb, (5-7.2.1)

for all a and b in R. The set Derϕ(R, S) of all derivations is a vector over K, with addition
δ + ε of two derivatieves δ and ε given by (δ + ε)a = δa+ εa, and multiplication aδ by an
element a of K given by (aδ)f = aδf .

Let T be a third K algebra, and ψ : S → T another K algebra homomorphism. Then
we have a linear map

Derψ(S, T ) → Derψϕ(R, T ),

which send a derivative δ : S → T , for ϕ, to the derivative δϕ : R → T , for ψϕ. When ϕ is
surjective we have that the map

Derϕ : Derψ(S, T ) → Derψϕ(R, T )

is injective, because, if δϕ = 0, then δ = 0. Moreover, if ϕ is surjective, then

Derψ(S, T ) = {δ ∈ Derψϕ(R, T )|δa = 0, for all a ∈ kerϕ}.

Indeed, if δ in Derψ(S, T ) then δa = δϕ(a) = 0, for all a in kerϕ. Conversely, if δ in
Derψϕ(R, T ) and δa = 0, for all a in kerϕ, we can define a derivation ε : S → T for ψ by
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εb = δa, for any a such that ϕ(a) = b. Indeed, if ϕ(a1) = ϕ(a2) = b, then a1 − a2 is in
kerϕ, so δ(a1 − a2) = δa1 − δa2 = 0, and consequently δa1 = δa2.

If a1, . . . , am are generators for kerϕ we have that δai = 0, for i = 1, . . . , m. Conversely,
if δai = 0, for i = 1, . . . , m, and a = b1a1 + · · · + bmam is in kerϕ, we have that δa =
ϕ(a1)δb1 + · · · + ϕ(am)δbm + ϕ(b1)δa1 + · · · + ϕ(bm)δam = 0, since ϕ(ai) = 0 and δai = 0.
Consequently, we have that

Derψ(S, T ) = {δ ∈ Derψϕ(R, T )|δai = 0, for i = 1, . . . , m}.
Let K[a1, . . . , an] be the K algebra generated by the elements a1, . . . , an, and let

ϕ : K[a1, . . . , an] → R be a K algebra homomorphism, to a K algebra R. A derivation

δ : K[a1, . . . , an] → R

is uniquely determined by the elements δa1, . . . , δan. Indeed, since δ is K linear, we only
have to show that δ(ai11 · · ·ainn ) is determined by these elements for all monomials ai11 · · ·ainn .
However, by repeated use of the derivation rule 5-7.2.1 we obtain that

δ(ai11 · · ·ainn ) =
∑

ij≥1

ijϕ(a1)
i1 · · ·ϕ(aj)

ij−1 · · ·ϕ(an)
inδaj .

We denote by ∂
∂xi

the map
∂

∂xi
: K[x1, . . . , xn] → R,

defined by
∂

∂xj
(xi11 · · ·xinn ) = ijϕ(a1)

i1 · · ·ϕ(aj)
ij−1 · · ·ϕ(an)

in,

if ij ≥ 1, and 0 otherwise. The reference to ϕ is omitted because it will be clear from
the context. It is clear that ∂

∂xi
is a derivation. Moreover, we see that for any derivation

δ : K[a1, . . . , an] → R we have that

δψf =
n
∑

i=1

δai
∂f

∂xi
,

for all f in K[x1, . . . , xn], where ψ : K[x1, . . . , xn] → K[a1, . . . , an] is the surjective K

algebra homomorphism defined by ψ(xi) = ai, for i = 1, . . . , n.
For the polynomial ring K[x1, . . . , xn] we obtain that all derivations δ can be written

uniquely in the form

δ =
n
∑

i=1

δxi
∂

∂xi
.

Then ψ is surjective. We have that

Derϕ(K[a1, . . . , an], R) = {b1
∂

∂x1

+ · · ·+ bn
∂

∂xn

|bi ∈ R, and b1
∂f

∂x1
+ · · · bn

∂f

∂xn
, for all f ∈ kerϕ}.
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In particular, if (c1, . . . , cn) is a point of An
K

such that f(c1, . . . , cn) = 0, for all f in

kerϕψ, we have the augmentation map ϕψ : K[x1, . . . , xn] → K sending f(x1, . . . , xn)
to f(c1, . . . , cn), and a homomorphism η : K[a1, . . . , an] → K, which sends the element
ψf(x1, . . . , xn) to f(c1, . . . , cn). We obtain that

Der
K

(K[a1, . . . , an],K) = {b1
∂

∂x1
+ · · · + bn

∂

∂xn
|bi ∈ K, and

b1
∂f

∂x1
(c1, . . . , cn) + · · ·+ bn

∂f

∂xn
(c1, . . . , cn) = 0, for all f ∈ kerϕψ}.

Lemma 5-7.3. Let ϕ : R → K be a K algebra homomorphism, and S a multiplicatively
closed subset of R, such that ϕ(a) 6= 0, for all a in S. There exists a unique K algebra
homomorphism ψ : S−1R → K such that ψ(a

1
) = ϕ(a), for all a ∈ R.

Let δ : R → K be a derivation for ϕ. Then there is a unique derivation ε : S−1R → K,
for ψ such that ε(a

1
) = δ(a), for all a ∈ R.

Proof. We can define a map ψ : S−1R → K by ψ(a
b
) = ϕ(a)

ϕ(b)
, for all a ∈ R and b ∈ S.

Indeed, since b ∈ S, we have, by assumption, that ϕ(b) 6= 0, and, if a
b

= a′

b′
, there is a c ∈ S,

such that cab′ = ca′b. Hence ϕ(c)ϕ(a)ϕ(b′) = ϕ(c)ϕ(a′)ϕ(b) in K, with ϕ(c) 6= 0. Thus
ϕ(a)
ϕ(b)

= ϕ(a′)
ϕ(b′)

. Clearly we have that ψ is a K algebra homomorphism, and, by definition,

ψ(a
1
) = ϕ(a).

Similarly, we can define a derivation ε : S−1R → K by ε(a
b
) = δa

ϕ(b)
− ϕ(a)
ϕ(b)2

δb, for all a ∈ K,

and b ∈ S. Indeed, since b ∈ S we have that ϕ(b) 6= 0, by assumption, and if a
b

= a′

b′
,

there is a c ∈ S such that cab′ = ca′b. We obtain that ϕ(ca)δb′ + ϕ(cb′)δa + ϕ(ab′)δc =
ϕ(ca′)δb+ ϕ(cb)δa′ + ϕ(a′b)δc. We divide by ϕ(c)ϕ(b′)ϕ(b) and obtain

ϕ(a)

ϕ(b)

δb′

ϕ(b′)
+

δa

ϕ(b)
+

ϕ(a)δc

ϕ(b)ϕ(c)
=

ϕ(a′)δb

ϕ(b′)ϕ(b)
+

δa′

ϕ(b′)
+

ϕ(a′)δc

ϕ(b)ϕ(c)
.

Since ϕ(a)
ϕ(b)

= ϕ(a′)
ϕ(b′)

, we get ε(a
b
) = ε(a

′

b′
). It is clear that ε is a derivation.

Proposition 5-7.4. Let X be an affine variety and x a point of X. Denote by ϕx : K[X] →
K the augmentation map. Then we have a canonical isomorphism

Derϕx
(K[X],K) → Tx(X).

Proof. It follows from Proposition 5-5.15 that we have an isomorphism K[X]MX,x
→ OX,x,

where MX,x is the kernel of ϕx. The proposition is therefore a consequence of Lemma
5-7.3.

Example 5-7.5. It follows from Proposition 5-7.4 that, for x in An
K

, we have that Tx(A
n
K

)
is canonically isomophic to the n dimensional vector space of derivations K[x1, . . . , xn] →
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K, for the augmentation map ϕx : K[x1, . . . , xn] → K. As we saw in Remark 5-7.2 we have
a basis of this vector space consisting of the derivation

∂

∂xi
: K[x1, . . . , xn] → K, for i = 1, . . . n,

where
∂xj

∂xi
is 1 for i = j and 0 otherwise.

Example 5-7.6. Let X be the subvariety V(x2
2 − x2

1 − x3
1) of A2

K
. The kernel of the map

K[x1, x2] → K[X] is the ideal generated by f = x2
2 − x2

1 − x3
1. Indeed, the kernel I(X)

contains f , and since, by Hilberts Nullstellensatz, we have that every g in I(X) can be
written as gd = hf , for some positive integer d and polynomial h in K[x1, x2]. Since f can
not be written as a product of two polynomials of positive degree less than 3 it is possible
to show that we can take d = 1.

For x = (a1, a2) in A2
K

we have that Tx(X) is the subspace of the vector space with basis
∂
∂x1

and ∂
∂x2

consisting of derivations such that a1
∂
∂x1

+a2
∂
∂x2
f = 2a2

∂
∂x2

−2a1
∂
∂x1

−3a2
1
∂
∂x1

=

0. If x = (a1, a2) 6= (0, 0), this space has dimension one, spanned by ∂
∂x1

when a2 6= 0, and

by ∂
∂x2

if a2 = 0.
On the other hand, when x = (0, 0), we have that Tx(X) two dimensional and thus

equal to Tx(A
2
K

).

We see from Example 5-7.6 that the tangent space to a prevariety can have different
dimension in different points. A prevariety is therefore not a good analogue of manifolds.
We shall later introduce smooth manifolds that will have properties similar to those of
manifolds.

5-8 Tangent spaces for zeroes of polynomials

We shall in this section present the epsilon calculus for prevarieties. The treatment is
analogous to that for manifolds in Section 3-7.

Let X be an affine variety in An
K

. Choose generators f1, . . . , fm for the ideal I(X). We
saw in Section 5-7 that, for all points x in X, the tangent space Tx(X) is isomorphic to
the subspace of the n dimensional space Tx(A

n
K

) with basis

∂

∂xi
: K[x1, . . . , xn] → K, for i = 1, . . . , n,

consisting of vectors δ = a1
∂
∂x1

+ · · · + an
∂
∂xn

such that δ(fi) = 0 for i = 1, . . . , m.

Lemma 5-8.1. Let x be a point of an affine variety X, and let ϕx : K[X] → K be the
evaluation map. The map

ψ : Der
K

(K[X],K) → Homϕx
(K[X],K[ε]),

such that ϕ(δ)(f) = f(x)+ δfε is a bijection from the derivaties for the evaluation map, to
the K algebra homomorphisms ζ : K[X] → K[ε], into the ring K[ε] of dual numbers that
are of the form ζ(f) = f(x) + δζε, for some map δζ : K[X] → K.
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Proof. Given a derivation δ : K[X] → K, for the evaluation at x. The map ζ : K[X] → K[ε]
defined by ζ(f) = f(x) + δfε is clearly K linear, and it is a K algebra homomorphism
because ζ(gf) = (fg)(x) + δ(fg)ε = f(x)g(x) + (f(x)δg+ g(x)δf)ε = (f(x) + δfε)(g(x)+
δgε) = ζ(f)ζ(g).

Conversely, given a K algebra homomorphism ζ : K[X] → K[ε] such that ζ(f) =
f(x) + δζ(f)ε. Then the map δζ : K[X] → K is K linear and it is a derivation because
f(x)g(x) + δtζ(fg)ε = ζ(fg) = ζ(f)ζ(g) = (f(x) + δζfε)(g(x) + δζgε) = f(x)g(x) +
(f(x)δζg + g(x)δζgε) = f(x)g(x) + (f(x)δζg + g(x)δζf)ε, and thus δζ(fg) = f(x)δζg +
g(x)δζf .

A K algebra homomorphism ϕ : K[x1, . . . , xn] → K[ε] such that ϕ(f) = f(x) + δϕfε
is completely determined by the values ϕ(xi) = ai + biε, for i = 1, . . . , n, where x =
(a1, . . . , an) and v = (b1, . . . , bn) are in An

K
, as we have seen in Remark 5-7.2. Then

ϕ(f) = f(x+ εv). It follows from the binomial formula that

(a1 + εb1)
i1 · · · (an + εbn)

in

= ai11 · · ·ainn +
∑

ij 6=1

ija
i1
1 · · ·aij−1

j · · ·ainn bj = ai11 · · ·ainn +

n
∑

j=1

bj
∂(xi11 · · ·xinn )

∂xj
.

Hence we obtain, for all f in K[x1, . . . , xn] that

f(x+ εv) = f(x) +

n
∑

j=1

bj
∂f

∂xj
.

It follows from Remark 5-7.2 that

Tx(X) = {v ∈ An
K
|f(x+ εv) = f(x), for f ∈ I(X)}.

Example 5-8.2. We have that TIn(Gln(K)) = TIn(Mn(K)), and thus TIn(Gln(K)) = An2

K
.

Example 5-8.3. We have already seen, in Example 3-6.6, that the tangent space of Gln(K)
at In is equal to Mn(K). To find the tangent space of Sln(K) at In we use that Sln(K) is
the subset of Gln(K) defined by the polynomial det(xi,j) of degree n in the n2 variables
xi,j , for i, j = 1, . . . , n. Consequently, the tangent space TIn(Sln(K)) of Sln(K) at the unity
In is equal to

{A ∈ Mn(K) : det(In + εA) − det In = 0}.
A short calculation shows that det(In + εA) = 1 +

∑n
i=1 ai,iε (see Problem 3-7.2). Conse-

quently, we have that

TIn(Sln(K)) = {(ai,j) ∈ Mn(K) :

n
∑

i=1

ai,i = 0}.

That is, TIn(Sln(K)) consists of all matrices of trace equal to zero. In particular we have
that the tangent space, and hence Sln(K) both have dimension n2 −1 (see Problem 2-5.4).
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Example 5-8.4. Assume that 2 6= 0 in K. The group On(K) is the subset of Gln(K)
defined by the n2 polynomials, in n2 variables, that are the coefficients in the matrix
X tX − In. Consequently, the tangent space TIn(On(K)) is equal to

{A ∈ Mn(K) : (In + Aε)t(In + Aε) − In = 0}.

We have that (In +Aε)t(In + Aε)− In = (In +Aε)(tIn + tAε)− In = In +Aε+ tAε− In =
(A+ tA)ε. Consequently,

TIn(On(K)) = {A ∈ Mn(K) : A+ tA = 0}.

That is, TIn(On(K)) consists of all skewsymmetric matrices. In particular, we have that

the tangent space, and hence On(K) both have dimension n(n−1)
2

(see Exercise 2-5.5).
The subspace SOn(K) is defined in Mn(K) by the same equations as On(K) plus the

equation det(xi,j) − 1 = 0. As in Example 3-7.8 we see that this gives the condition that
the matrices of TIn(SOn(K)) have trace 0. Since 2 6= 0, we have that all antisymmetric
matrices have 0 on the diagonal. In particular they have trace zero. Consequently, we have
that TIn(SOn(K)) = TIn(On(K)), and the dimension of SOn(K) is n(n−1)

2
.

Example 5-8.5. The symplectic group Spn(K) is the subset of Mn(K) of common zeroes
of the n2 polynomials in n2 variables that are the coefficients in the matrix XStX−S. We
obtain that the tangent space TIn(Spn(K)) of Spn(K) in In is

{A ∈ Mn(K) : (In + Aε)St(In + Aε) = S}.

We have that (In+Aε)St(In + Aε)−S = S+ASε+StAε−S. Consequently, we have that

TIn(Spn(K)) = {A ∈ Mn(K)) : AS + StA = 0}.

However AS + StA = AS − tStA = AS − t(AS). Consequently, the isomorphism of vec-
tor spaces Mn(K) → Mn(K), which sends a matrix A to AS (see Problem 2-5.6), maps
TIn(Spn(K)) isomorphically onto the subspace of Mn(K) consisting of symmetric matrices.

In particular the tangent space, and the space Spn(K), both have dimension n(n+1)
2

(see
Problem 2-5.7).

In the above Examples 5-8.3, 5-8.4, and 5-8.5 we can only prove that the tangent spaces
of the matrix groups are contained in the corresponding Lie algebras. To prove that the
tangent spaces are equal to the Lie algebras we shall introduce the dimension of an affine
variety.
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root, 108
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abelian, 5
adjoint, 23
adjoint matrix, 12, 13
algebra, 10
algebra homomorphism, 72
algebraic variety, 63
alternating, 22, 24, 25
analytic, 39, 67
analytic function, 47, 48, 67
analytic isomorphism, 86
analytic manifold, 47, 52, 57, 66, 72
analytic set, 61
analytic structure, 66
anti-symmetric, 24
antidiagonal, 3, 13, 25
arch, 80
archwise connected, 80
Associativity, 4, 8
atlas, 66, 75
augmentation map, 71, 73
automorphism, 3

automorphisms of bilinear forms, 3

ball, 34
basis, 17
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continuous function, 64
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converges, 38, 48
cover, 69, 84
curve, 52, 72, 74
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derivative, 50
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differentiable function, 50
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direct sum, 16, 18
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finite topology, 65
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general linear group, 1, 12, 19
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group, 4
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inclusion map, 7

induced structure, 66
induced topology, 64
injective, 5
integral domain, 77
Inverse, 4
inverse, 1
Inverse Function Theorem, 57
inverse map, 86
invertible, 1
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Schwartz inequality, 37
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skew-symmetric, 53, 54, 79
special linear group, 2, 12, 20
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subalgebra, 10
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symmetric, 22, 24, 53
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symmetry, 69
symplectic, 26
symplectic basis, 26
symplectic group, 3, 13, 26, 28

tangent, 72, 74, 95
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tangent space, 52, 72, 73
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Taylor expansion, 97
topological space, 63
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transpose, 1
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uniform convergence, 42
unique factorization domain, 77
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vector field, 88
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