Homework nr 2

Handed out September 20, 2009
To be handed in October 15, 2007

Computations with the Haar filter using Matlab:

Given input signal A with 128 samples:
$A(1: 83)=(1: 83)$;
$A(84: 128)=40^{*}$ ones $(1,128-83)$;
plot(A);

1. Compute all lowpass and highpass coefficients in the wavelet filter tree of A using the Haar filter in 8 levels. Plot the highpass and the lowpass coefficients at each level..
2. What is the mean value of the signal A
3. How many wavelet coefficidents have absolut value greater than $0,1,2,5$ resp. 10?
4. Do an exact reconstruction of the signal from the wavelet coefficients.
5. Do approximative reconstructions A_{K} of the signal A with all wavelet coefficients which are greater than K, where $K=1,2,5$ resp 10. Plot the signalers A, A_{1}, A_{2}, A_{5} and A_{10} each on single plot and also all together in a joint plott.
6. Norm esitmates: Verify that the square sum of the signal A and the square sum of the wavelet cefficients are the identical.
7. Error estimates: Compute the square sum of the error $A-A_{K}$ for the approximative reconstruction when $K=1,2,5$ resp. 10. How large is signal to noise rate (in decibel)

$$
S N R=-20 \quad{ }^{10} \log \frac{\left\|A-A_{k}\right\|}{\|f\|}
$$

Comput the coefficient of the wavelet filter of length 4 using local rotations
(The higpass filter has to have vanishing 0 -th och 1 -st moments .)
Give the answer in exact form (with square-roots)

Computations with wavelet filters of length 4 in Matlab

Do the corresponding exercises with this filter as was described above for the Haar filter Observe:The signal A is thougth to be defined for all integers, and that it has value 0 outside the interval [1:128]. Because of that at each level the wavelet filter is generating more coefficients than those coefficients we we considered in the case above whith the Haar filter.

