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Introduction

The course is aimed for students who have had some experience with groups,
and perhaps seen the definition of rings. We have tried to make these series
of lectures self-contained. The theory is often given in terms of commutative
rings, but many of the examples are given for the ring of integers. The
theoretical result that often simplifies the situation when considering the ring
of integers is the Structure Theorem for finitely generated abelian groups.
Recall that a finitely generated abelian group M can be written as

M = Z/(n1)× · · · × Z/(np),

for some non-negative integers 0 ≤ n1 ≤ n2 · · · ≤ np. This provides a
description of finitely generated modules over the integers, a description we
use to give examples of the general theory and of general definitions.

The purpose of the second part of these notes concerning topological spaces
is to introduce the basic concepts of topological spaces and their homology
groups. We stress examples and tools to compute these invariants. In par-
ticular we compute the homology of spheres and projective spaces.

We do not claim any originality with the text. We have freely used the
existing literature as reference. In particular, for the first six chapters we did
use Rotman, “Introduction to Homological Algebra” as guidance. That book
was in particular useful for the technical proofs dealing with resolutions and
the independence of the choices involved.
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Chapter 1

Modules

1.1 Rings

Groups considered here are abelian and denoted as (A,+) where 0 denotes
the identity element. A ring A will in these notes always mean a commutative
unital ring. Recall that a ring A is an abelian group (A,+) with an additional
product structure which is compatible with the group structure. The product
is denoted with ·, but is in many cases simply suppressed. In any case it is
a map of sets

A× A −→ A

which is associative, a·(b·c) = (a·b)·c, and distributive, a·(b+c) = a·b+a·c,
for all elements a, b and c in A. The ring being commutative means that
a · b = b · a, for all a, b in A. Unital means that there exists an element 1 in
A such that 1 · a = a for all a.

The typical examples of rings will for us be the integers A = Z with the usual
addition and multiplication, and fields.

1.1.1 Definition. A commutative, non-zero, and unital ring A is a field if
any non-zero element a ∈ A has a multiplicative inverse a−1 in A, that is an
element such that a · a−1 = 1.

Examples of fields are the rational numbers Q, the real numbers R and
the complex numbers C. Other fields we have in mind are finite fields Fp

obtained as quotients of Z by the subgroup generated by some prime number
p.

Even though our statements usually are given in terms of general commuta-
tive rings, we have our focus on the ring of integers Z and fields, only.
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1.2 Modules

1.2.1 Definition. Let A be a ring and (M,+) an abelian group. Assume
furthermore that we have a map of sets A×M −→M, (a, x) 7→ ax, such that

a(x+ y) = ax+ ay (a+ b)x = ax+ bx

(ab)x = a(bx) 1x = x

for all elements a, b in A, and all elements x, y in M . Such a map gives the
abelian group (M,+) an A-module structure. We will refer to such a map by
saying that M is an A-module.

1.2.2 Example. Any abelian group (M,+) is in a natural way a Z-module.
We have the natural map

Z×M −→M

sending (n, x) to n · x = x + · · · + x. This defines a Z-module structure.
Consequently, each abelian group has a natural Z-module structure.

1.2.3 Example. Let A be a field. In that case a module M over A is a
vector space, and the map defining the A-module structure on the abelian
group is the usual scalar multiplication. Thus, the notion of a module is a
generalization of vector spaces.

1.2.4 Example. Let (A,+) be the abelian group structure of the ring A.
Together with the product structure on A we have that A is an A-module. In
fact, any ideal I ⊆ A is an A-module. Recall that a subgroup (I,+) ⊆ (A,+)
such that ax ∈ I, for any a ∈ A and any x ∈ I, is called an ideal. Thus, for
any ideal I ⊆ A we have that the product structure from the ring gives a
map

A× I −→ I,

satisfying the criteria of (1.2.1). Hence, we have that any ideal is in a natural
way an A-module. From an ideal I in a commutative ring we can always
construct the quotient ring A/I. The quotient ring is also in a natural way
an A-module.

1.2.5 Example. Let ϕ : A −→ B be a homomorphism of rings, that is a map
of the underlying sets such that ϕ(a + b) = ϕ(a) + ϕ(b), ϕ(ab) = ϕ(a)ϕ(b)
and where ϕ(1) = 1. Then the ring B can be viewed as an A-module in the
obvious way. More generally, let M be a B-module. Then we have a natural
map

A×M −→M

taking (a, x) to ϕ(a)x. It is straightforward to check that the map gives M
the structure of an A-module. We say that the B-module M becomes an
A-module by restriction of scalars.
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1.3 Submodules and quotients

1.3.1 Definition. Let M be an A-module, and let (N,+) ⊆ (M,+) be a
subgroup. If the A-module structure on M restricts to an A-module structure
on N , that is, we get by restriction an induced map

A×N −→ N,

then we say that N is a submodule of M .

Note that a non-empty subset N ⊆ M which is closed under addition, and
under multiplication by elements from A, will be a submodule.

1.3.2 Lemma. Let N be a submodule of M . Then the quotient group
(M/N,+) has an induced A-module structure

A×M/N −→M/N

sending (a, x) to ax, where z denotes the equivalence class of z in M/N , for
z ∈M .

Proof. Let us first show that the description above indeed gives a well-defined
map. Let x and y be two elements in M that represent the same equivalence
class in M/N . We need to see that the equivalence classes of ax and ay are
equal, for any a ∈ A. Since x and y represent the same equivalence class in
M/N we have that x = y + n in M for some n ∈ N . Then ax = ay + an in
M , and an is in N . It follows that ax = ay in M/N . Thus there is a well-
defined map, and it is readily checked that it defines an A-module structure
on M/N .

1.4 Basis

Let x1, . . . , xm be m elements in an A-module M . Consider the subset

< x1, . . . , xm >= {a1x1 + . . .+ amxm | ai ∈ A} ⊆M.

1.4.1 Lemma. The set < x1, . . . , xm > is an A-submodule of M .

Proof. The set is closed under addition and also under multiplication by
elements from A. Namely, if x ∈< x1, . . . , xm >, then we have that there are
scalars a1, . . . , am in A such that

x = a1x1 + · · ·+ amxm.
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For any scalar a ∈ A we have (1.2.1)

ax = aa1x+ · · ·+ aamxm,

hence the set is a submodule of M .

We refer to this as the submodule generated by the elements x1, . . . , xm. If
the submodule generated by x1, . . . , xm equals the ambient module M , then
we say that x1, . . . , xm span the A-module M .

1.4.2 Definition. Let M be an A-module. If there exists a finite set of
elements x1, . . . , xm in M that spans the module, then we say that the module
M is finitely generated.

1.4.3 Example. The integer plane M = Z × Z is a finitely generated Z-
module. A set of generators is x1 = (1, 0), x2 = (0, 1). Indeed, any element
(m,n) in M can be written as the sum

(m,n) = mx1 + nx2.

Hence the two elements x1 and x2 span M .

1.4.4 Example. The Fundamental Theorem for finitely generated Abelian
groups says that an abelian group is finitely generated if and only if it is of
the form

M = Z× · · · × Z× Z/(n1)× · · · × Z/(nr),

where ni ≥ 1. Thus a finitely generated abelian group contains a finite
number of copies of Z, and a torsion part which is the product of a finite
number of cyclic groups of finite order. If we let xi = (0, 0, . . . , 0, 1, 0, . . . , 0) ∈
M denote the element having the class of 1 at the i’th component, then these
elements span the module M .

Linear Independence

We say that the elements x1, . . . , xm in a module M are linearly independent,
over A, if

m∑
i=1

aixi = 0⇒ {ai = 0, for all i = 1, . . . ,m.}

Finally, we say that the ordered sequence x1, . . . , xm form an A-module basis
of M if the elements span M and are linearly independent. Note that if
x1, . . . , xm is an ordered sequence that form an A-module basis of M , then
any reordering of the basis will still be linearly independent and still span
M . However, generally a reordering of a basis will give a different basis.
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1.4.5 Definition. A module M that admits a basis is called a free module.

1.4.6 Remark. The zero module M = 0 is a free module. The basis is the
empty set.

1.4.7 Example. The elements x1 and x2 of Example (1.4.3) will form a basis.

1.4.8 Example. One major difference between modules and vector spaces is
that modules do not always have a basis. For instance, the field F2 of two
elements is a quotient of Z, and in particular a Z-module. The element
1 ∈ F2 spans the module, whereas the zero element does not. The element 1
is however not a basis, as for instance 0 · 1 = 2 · 1 in F2.

1.4.9 Example. The elements {x1, . . . , xn} of the Example (1.4.4) will in in
general not form a basis. In fact it will be a basis if and only if the group
has no torsion part.

1.4.10 Proposition. Let M be an A-module that admits a basis x1, . . . , xm.
Then the any other basis of M will have the same number of elements.

Proof. Exercise (1.8.11).

1.4.11 Definition. An A-module M which has a basis consisting of m ele-
ments is said to be free of rank m.

1.4.12 Example. For vector spaces we have that any non-zero element can
be extended to be part of some basis. This is not true for modules, not even
when the module does have a basis. Consider the ring of integers Z as a
module over itself. The element 1 will form a basis, as well as the element
-1. However, any other non-zero element x will be linearly independent, but
the element will not span Z. For instance, in the free rank one module Z we
have the descending chain of proper submodules Z ⊃ (2) ⊃ (4) ⊃ (8) · · ·

1.5 Direct sum

Let {Mi}i∈I be a collection of A-modules, indexed by some set I. The product
×i∈IMi consisting of all sequences of elements (xi)i∈I with xi ∈ Mi is an
abelian group by componentwise addition. The product becomes naturally
also an A-module via

(a, (xi)i∈I) 7→ (axi)i∈I ,

for all a ∈ A, and all sequences (xi)i∈I in the product.
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1.5.1 Definition. Let A be a ring, and let {Mi}i∈I be a collection of A-
modules. The direct sum ⊕i∈IMi is defined as the A-submodule

⊕i∈IMi ⊆ ×i∈IMi

consisting of sequences (xi) where all but a finite number of elements are
zero.

1.5.2 Remark. Note that in general the direct sum is a proper submodule of
the product. However, when the indexing set I is finite, then the direct sum
equals the product.

1.5.3 Example. It is interesting to consider the direct sum of copies of A,
that is Mi = A for i = 1, . . . , n. The module M = ⊕ni=1A contains the n
elements

ei := (0, 0, . . . , 0, 1, 0, . . . , 0),

where 1 appears on the i’th component for i = 1, . . . , n. From the definition
of the module M = ⊕ni=1A we have that any element x ∈ M is of the form
x = (x1, . . . , xn), with xi ∈ A. We can therefore write

x = (x1, . . . , xn) = x1e1 + · · ·+ xnen.

Thus any element x ∈M is anA-linear combination of the elements e1, . . . , en,
and moreover the linear combination is unique. The elements e1, . . . , en form
an A-module basis of M . In particular the ring A viewed as a module over
itself has the basis 1.

1.6 Homomorphisms

Having defined the notion of an A-module, we will need to define the notion
of maps between these objects.

1.6.1 Definition. Let M and N be two A-modules. An A-module homo-
morphism is a map of the underlying sets f : M −→ N , such that

f(ax+ by) = af(x) + bf(y)

for all a, b in A, and all x, y in M .

Note that an A-module homomorphism f : M −→ N is exactly the same as
a group homomorphism that is compatible with the A-module structure.
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Kernel and Image

The kernel of an A-module homomorphism f : M −→ N is the set

Ker(f) = {x ∈M | f(x) = 0}.

Any module has the zero element 0 ∈ M , and the zero element is in the
kernel of any A-module homomorphism. An A-module homomorphism f is
said to be injective if the kernel is trivial, that is Ker(f) = 0. The image is
the set

Im(f) = {f(x) | x ∈M} ⊆ N.

The homomorphism is surjective if the image equals all of N . An A-module
homomorphism f : M → N is an isomorphism if both injective and surjective.

1.6.2 Lemma. An A-module M is free if and only if it is isomorphic to
⊕i∈IA, for some (possibly empty) indexing set I.

Proof. See Exercise (1.8.19).

1.6.3 Lemma. Let f : M −→ N be an A-module homomorphism. Then we
have the following.

(1) The kernel Ker(f) is an A-submodule of M .

(2) The image Im(f) is an A-submodule of N .

(3) The homomorphism f has a unique factorization through an injective
A-module homomorphism f : M/Ker(f) −→ N .

In particular we have that if f : M −→ N is a surjective A-module homo-
morphism, then f : M/Ker(f) −→ N is an isomorphism.

Proof. Readily checked.

For any A-module M we have the identity morphism idM : M −→M sending
x to x, for all x ∈M .

1.6.4 Lemma. Let f : M −→ N be an A-module isomorphism. Then there
exists a unique A-module homomorphism g : N −→ M such that gf = idM
and fg = idN .

Proof. There is a set-theoretic map g : N −→ M having the property that
g(f(x)) = x and f(g(y)) = y for all x ∈ M , all y ∈ N . One has to verify
that this map is in fact an A-module homomorphism.

7



1.6.5 Proposition. A module M is finitely generated if and only if the
module can be written as a quotient module of a free module of finite rank.

Proof. Note that the image of an A-module homomorphism f : ⊕mi=1A −→M
is exactly the same as the submodule generated by f(e1), . . . , f(em). Thus,
m elements in M that span the module M is exactly the same as having a
surjective map f : ⊕mi=1 A −→M .

The set of all A-module homomorphisms from an A-module M to another
A-module N is denoted

HomA(M,N).

If M = N then a homomorphism is referred to as an endomorphism, and the
set of all endomorphisms is denoted as EndA(M).

1.6.6 Lemma. Let M and N be two A-modules. The set HomA(M,N)
becomes an abelian group with pointwise addition, and has the structure of
an A-module by the map

A× HomA(M,N) −→ HomA(M,N)

sending (a, f) to the map M −→ N that takes x to af(x).

Proof. Readily checked.

1.6.7 Proposition. Let M1, . . . ,Mn be A-modules, and let M = ⊕ni=1Mi

denote their direct sum. For any A-module N we have a natural isomorphism

HomA(⊕ni=1Mi, N) = ⊕ni=1HomA(Mi, N).

Thus, giving an A-module homomorphism from a finite direct sum is equiv-
alent to giving A-module homomorphisms from the components appearing in
the direct sum.

Proof. There is an A-module map ck : Mk −→M = ⊕ni=1Mi sending elements
x 7→ (0, 0, . . . , 0, x, 0, . . . , 0) to the k’th component, for k = 1, . . . , n. Any
morphism f : M −→ N composed with ck give an A-module homomorphism
f ◦ ck : Mk −→ N . We then get an A-module homomorphism

Φ: HomA(M,N) −→ ⊕ni=1HomA(Mi, N) (1.1)

taking f 7→ (f ◦ c1, . . . , f ◦ cn). Let us now construct the morphism going the
other way. Let (f1, . . . , fn) be an element of ⊕ni=1HomA(Mi, N). Then each
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fk is an A-module homomorphism Mk −→ N , and we define the A-module
homomorphism f : M −→ N by

f(x1, . . . , xn) := f1(x1) + · · ·+ fn(xn).

One checks that since each fk is an A-module homomorphism, then also
the map f is an A-module homomorphism. We have then constructed an
A-module homomorphism Ψ which we need to check is the inverse of (1.1).
Let f : M −→ N be an A-module morphism, and consider the A-module
homomorphism Ψ(Φ(f)) : M −→ N . We want to show that these two ho-
momorphisms are equal, which means that they have exactly the same value
on every element x ∈M . We have that

Ψ(Φ(f))(x) = Ψ(f ◦ c1(x), . . . , f ◦ cn(x)) = f ◦ c1(x) + · · ·+ f ◦ cn(x).

As x ∈M we have that x = (x1, . . . , xn), with xk ∈Mk, for all k = 1, . . . , n.
Consequently, we have that

f ◦ c1(x) + · · ·+ f ◦ cn(x) = f(x1, 0, . . . , 0) + · · ·+ f(0, . . . , 0, xn)

= f(x1, . . . , xn) = f(x).

Hence Ψ(Φ) is the identity. One checks in a similar way that Φ(Ψ) also equals
the identity, and thereby completes the proof of the proposition.

1.6.8 Corollary. Let M be an A-module with basis e1, . . . , em and N an A-
module with basis f1, . . . , fn. Then the A-module HomA(M,N) is isomorphic
to the A-module of (n×m)-matrices with coefficients in A.

Proof. As M has basis e1, . . . , em we can by Lemma (1.6.2) identify M with
⊕mi=1A. Consequently, by the proposition, we have

HomA(M,N) = ⊕mi=1HomA(A,N).

Any A-module homomorphism f : A −→ N is determined by its value on
the element 1 ∈ A, and moreover any element in N would give rise to an
A-module homomorphism. It follows that HomA(A,N) = N . As N has basis
f1, . . . , fn we have thatN = ⊕ni=1A. Consequently HomA(A,N) equals the A-
module of ordered n-tuples of elements in A, and we have that HomA(M,N)
equals the A-module of ordered m · n-tuples of elements in A. This is the
same as (n×m)-matrices with coefficients in A.
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Matrix notation

It is customary to represent an A-module homomorphism f : ⊕mi=1 A −→
⊕ni=1A with an (n ×m) matrix Xf where the k’th column is the coefficient
of f(0, . . . , 0, 1, 0, . . . , 0). An element x ∈ ⊕mi=1A is then viewed as a column
vector [x] := [x1, . . . , xm]tr, and the action of f on this particular element is
then given by the matrix multiplication Xf · [x].

1.7 Determinants

Consider now the situation with an A-module M that has a basis e1, . . . , em.
Let f : M −→ M be an endomorphism, which we can by (1.6.8) represent
uniquely with an (m×m)-matrix

Xf =


a1,1 a1,2 · · · a1,m

a2,1 a2,2
...

...
. . .

...
am,1 am,2 . . . am,m

 ,
with coefficients ai,j ∈ A. We define the determinant of the endomorphism
f : M −→M to be the determinant of the corresponding matrix representa-
tion,

det(f) :=
∑
σ∈Sm

(−1)|σ|a1,σ(1) · · · am,σ(m).

Note that det(f) is an element of the ring A.

1.7.1 Proposition. Let f : M −→M be an A-module endomorphism of an
A-module that has a finite basis. Then f is an isomorphism if and only if
det(f) is invertible in A.

Proof. If f were an isomorphism it would be invertible. On the level of
matrices there would exist a matrix Y such that the product XfY would
equal the identity matrix Im. The determinant of the identity matrix is 1,
and we would get

1 = det(XfY ) = det(f) · det(Y ) ∈ A.

In other words det(f) is invertible in A. To prove the converse, let ad(M) de-
note the adjoint matrix of Xf . The adjoint matrix is the transpose of the co-
factor matrix, where the coefficient (i, j) of the cofactor matrix is (−1)i+jci,j,
with ci,j being the determinant of the matrix Xf with row i and column j
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removed. Note that the adjoint matrix has coefficients in A, and Cramer’s
identity yields the following matrix equality

Xf · ad(X) = det(f) · Im.

As det(f) was assumed invertible we get that

det(f)−1ad(X)

is the matrix inverse of Xf . Hence f : M −→ M has an inverse, and is
consequently an isomorphism.

1.8 Exercises

1.8.1. Show that the fields R and C are not isomorphic.

1.8.2. Show that the multiplicative inverse of an element x in a commutative unital ring
A is unique, if it exists.

1.8.3. Solve the equation 3x = 2 in Z/(7).

1.8.4. Describe all ideals I in the ring A = Z/(12), and in each case describe the quotient
ring A/I.

1.8.5. The sum of two subvector spaces V1 and V2 of a vector space V is defined as

V1 + V2 = {x1 + x2 | xi ∈ V } ⊆ V.

The sum is again a vector space. Show that

dim(V1 + V2) = dim(V1) + dim(V2)− dim(V1 ∩ V2).

1.8.6. Consider an inclusion of A-modules L ⊆ N ⊆M . Show that we have the inclusion
N/L ⊆M/L, and that we have

(M/L)/(N/L) = M/N.

1.8.7. Let A be a commutative unital ring. Assume that A contains no zero-divisors other
than the zero element 0 ∈ A, and assume that the underlying set |A| is finite. Show that
A is in fact a field. (An element x ∈ A is a zero-divisor if there exists a non-zero element
y such that xy = 0).

1.8.8. Let ϕ : A −→ B be a homomorphism of rings.

(1) Show that if J ⊆ B is an ideal, then ϕ−1(J) is an ideal in A.

(2) Let I ⊆ A be an ideal. Show that if ϕ is surjective, then ϕ(I) is an ideal in B.

(3) Show, by an example, that ϕ(I) is not necessary an ideal, even if I is an ideal.

1.8.9. Verify that a0 = 0 and that (a − b)x = ax − bx for any elements a, b in a ring A,
and any x in an A-module M .
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1.8.10. Let V be a vector space over some field F , and let F [X] denote the polynomial
ring in one variable X over F . Show that a F [X]-module structure on V is equivalent
with having a F -linear map T : V −→ V .

1.8.11. Let E be a free A-module that admits a basis β = e1, . . . , en. Show that any other
basis of E will have the same cardinality as β.

1.8.12. Let E be a free A-module of finite rank. Show that EndA(E) is free A-module,
and find a basis.

1.8.13. Let M be an A-module, and let M∗ = HomA(M,A) denote its dual. Show that
there is a natural A-module homomorphism M −→ (M∗)∗ from a module to its double
dual. Show, furthermore, that if M is free of finite rank, then M is isomorphic to its
double dual.

1.8.14. Let M be an A-module. Show that the A-module EndA(M) has a ring (not
necessarily commutative) structure by composition.

1.8.15. A non-zero A-module M is called simple if the only submodules are the zero
module and M itself. Thus a module M is simple if the trivial submodules are the only
submodules of M .

(1) Show that a simple module is isomorphic to A/m for some maximal ideal m in A.

(2) Show Schur’s Lemma: Let f : M −→ N be an A-module homomorphism between
two simple modules. Show that f is either the zero map or an isomorphism.

(3) Show that if M is simple, then EndA(M) is a skew-field; that is, a not necessarily
commutative field.

1.8.16. The sum of two submodules M and N of an A-module P is defined similarily as
with vector spaces (1.8.5). Show that

(M +N)/N = N/(M ∩N).

1.8.17. Let M be an A-module, and I ⊆ A an ideal generated by x1, . . . , xn. Assume that
for each i = 1, . . . , n there exists an integer pi such that xpi

i annihilates M . Show that
there exists an integer m such that Im annihilates M . (An element a ∈ A annihilates
an element m ∈ M if am = 0, and the element a ∈ A annihilates M if am = 0 for all
m ∈M).

1.8.18. Let I ⊆ A be a non-zero ideal. Show that I is a free A-module if and only if I is
principally generated by an element which is not a zero-divisor. (An ideal I is principally
generated if it is generated by one element).

1.8.19. Prove Lemma (1.6.2).

1.8.20. Show that the Z-submodule Z[p] ⊆ Q consisting of all integer coefficient polyno-
mial expressions in p, is not finitely generated unless p ∈ Z.

1.8.21. An element x in an A-module M is a torsion element if there exists an element
a ∈ A that is not a zero-divisor and annihilates x (1.8.17). Show that the torsion elements
in M form an A-submodule, the torsion module of M .

1.8.22. Show that Q is torsion free, but not free as an Z-module.

1.8.23. Show that HomZ(Z/(m),Z) = 0 for any non-zero integer m 6= 0.
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1.8.24. Show that HomZ(Z/(m),Z/(n)) = Z/(d), where d is the greatest common divisor
of m and n.

1.8.25. Let

M =
[
1 1 −1
0 2 3

]
,

where the coefficients in the matrix are in Z/(30). Show that the rows of M are linearly
independent over Z/(30), but any two columns are linearly dependent (a situation which
does not occur for vector spaces).

1.8.26. The integer plane Z2 consists of all ordered pairs of integers v = (n,m). We have
seen (Example (1.4.7)) that the integer plane is a free Z-module of rank two.

1. Let v = (m,n) be a vector in the integer plane Z2. Show that v is part of a basis
if and only if (m,n) = 1 (the integers are coprime).

2. Let v = (5, 12). Extend u to a basis of the integer plane.

1.8.27. Show that Z/(m)⊕ Z/(n) = Z/(nm) if and only if (n,m) = 1.

1.8.28. Find an example where M ⊕ P = N ⊕ P , but where M is not isomorphic to N .

1.8.29. A ring A is noetherian if any ascending chain of ideals I1 ⊆ I2 ⊆ · · · becomes
stationary. Show that the ascending chain condition is equivalent with any submodule of
a finitely generated module being finitely generated. In particular any ideal in a noetherian
ring is finitely generated. As the ideals in Z are principally generated, we have that Z is
a noetherian ring.
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Chapter 2

Complexes

2.1 Complexes

Let P• = {Pn, dn}n∈Z be a family of modules Pn, and module homomorphisms

dn : Pn −→ Pn−1

indexed by the integers. The module Pn is the degree n component of the
family, and the homomorphism dn is the boundary operator in degree n. Note
that the boundary operators are decreasing the degree. We will eventually
also allow these boundary operators to be increasing, but as default we con-
sider decreasing boundary operators.

A collection {Pn, dn} with decreasing boundary operators is called a complex
if dn−1◦dn = 0, for all n. And a collection {Pn, dn} with increasing boundary
operators is called a complex if dn+1 ◦ dn = 0, for all n.

The issue with ascending versus descending boundary operators is a matter of
indexing, the important property is that the composition of any two adjacent
boundary operators equals the zero map.

2.1.1 Lemma. The composition of two module homomorphisms f : M −→
N and g : N −→ P is the zero homomorphism if and only if

Im(f) ⊆ Ker(g).

In particular, a family {Pn, dn} of modules a homomorphisms, is a complex
if and only if

Im(dn+1) ⊆ Ker(dn),

for all n.
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Proof. This is just a restatement.

2.1.2 Example. Any module M can be viewed as a complex

· · · −→ 0 −→ · · · −→ 0 −→M −→ 0 −→ · · · .

It is customary to put the module M in degree zero, unless otherwise men-
tioned. So M is the complex {Pn, dn} where P0 = M , and all the other are
zero modules. The boundary operators dn are all the zero map.

2.1.3 Example. The sequence of Z-modules

· · · // 0 // Z
4 // Z // Z/(2) // 0 // · · ·

is a complex. The first non-trivial map is multiplication by 4, and the second
non-trivial map is the quotient map. The multiplication by a non-zero integer
n : Z −→ Z is always injective, and the image of such a map is the submodule
(n) ⊆ Z generated by n. The kernel of the projection morphism Z −→ Z/2
is the submodule (2). We then have that in the sequence above we could
have replaced 4 with any integer of the form 2n, and the sequence would still
be a complex.

2.1.4 Remark. Strictly speaking a complex is indexed by the integers, but
often we encounter a finite collection of modules and homomorphism. We
will in such cases tacitly assume that the other modules are zero modules. In
particular if we have a sequence of A-modules and A-module homomorphisms

Pn
dn // · · · dk // Pk−1 ,

where Im(dp) ⊆ Ker(dp−1) for all n ≤ p < k, we will refer to the sequence
being a complex. This means that we assume that Pm = 0 for m ≥ n and
for m ≤ k − 2.

2.1.5 Definition. A complex {Pn, dn} is an exact sequence if Im(dn+1) =
Ker(dn) for all n. Furthermore, an exact sequence with at most three non-
trivial elements is a short exact sequence, and written as

0 −→M −→ N −→ P −→ 0.

2.1.6 Example. The complex (2.1.3) is not exact, but

0 // Z
4 // Z // Z/(4) // 0

is short exact.
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2.1.7 Example. Let f : M −→ N be an A-module homomorphism. The
cokernel of a homomorphism f is the quotient module N/Im(f), and usually
denoted Coker(f). We can then form the sequence

0 // Ker(f) //M
f // N // Coker(f) // 0

which we consider being an complex with other terms being zero modules
and suppressed, and where the degrees also are suppressed. The complex is
exact by construction.

2.1.8 Example. Note that a sequence M
f // N // 0 is exact is equivalent

with f being surjective. A sequence 0 //M
f // N is exact is equivalent

with f being injective. Exactness of the sequence

0 //M
f // N // 0

is another way of saying that f is an isomorphism.

2.2 Chain maps

Consider the diagram

M
f //

d
��

M ′

d′

��
N

g // N ′

of A-modules and A-module homomorphisms. Such a diagram is referred to
as being commutative if d′ ◦ f = g ◦ d.

2.2.1 Definition. A chain map f : P• −→ Q• is a collection of A-module
homomorphisms fn : Pn −→ Qn commuting with the boundary operators. In
other words we have commutative diagrams

Pn
fn //

dP
n
��

Qn

dQ
n
��

Pn−1
fn−1 // Qn−1

for every n.
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2.2.2 Example. Consider the diagram

0

��

// Z
4 //

��

Z

��

// 0

��
0 // 0 // Z/(2) // 0.

Each horizontal row we think of representing a complex. As the diagrams
commute we have that the diagram represents a chain map of complexes.

2.2.3 Proposition (Snake Lemma). Let

M1

f1
��

ϕ1 //M2

f2
��

ϕ2 //M3

f3
��

// 0

0 // N1
ψ1 // N2

ψ2 // N3

be a commutative diagram of A-modules and A-module homomorphisms,
where the two horizontal sequences are exact. Then we have a long exact
sequence of A-modules

Ker(f1) // Ker(f2) // Ker(f3)

δgggggggggggg

ssggggggggggg

Coker(f1) // Coker(f2) // Coker(f3)

. (2.1)

The two first and the two last homomorphisms are the obvious ones, whereas
the connecting homomorphism δ takes an element x ∈ Ker(f3) to the class of

ψ−1
1 (f2(ϕ

−1
2 (x))) ∈ Coker(f1).

Furthermore, if ϕ1 is injective, then the left most homomorphism in the long
exact sequence is injective. If ψ2 is surjective, then the rightmost homomor-
phism in the long exact sequence is surjective.

Proof. It is readily checked that we have an induced homomorphism of ker-
nels and cokernels, that is the two first and the two last arrows of the se-
quence displayed above. We will describe the particular map δ : Ker(f3) −→
coker(f1). Let x ∈M3 be an element mapped to zero by f3, and let x′ ∈M2

be any element such that ϕ2(x
′) = x. By commutativity of the diagram we

have ψ2(f2(x
′)) = f3(x), hence f2(x

′) ∈ Ker(ψ2). Consequently there is a
unique element x′′ ∈ N1 such that ψ1(x

′′) = f2(x
′). Let δ(x) be the image of

x′′ by the quotient map N1 −→ coker(f1). This prescribed map involved a
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choice of pre-image x′ of x, and we need to check that we indeed get a well-
defined map. Let y′ ∈ M2 be another pre-image of x. Then ϕ2(x

′ − y′) = 0.
By exactness of the upper row there exist z ∈M1 such that ϕ1(z) = x′ − y′.
By the commutativity of the left diagram it follows that the two different
pre-images x′ and y′ give the same element in coker(f1). Consequently we
have a well-defined map δ : Ker(f3) −→ coker(f1), which is easily seen to be
an A-module homomorphism.

We furthermore leave to the reader to check that we not only have obtained
a complex in (2.1), but that it is actually an exact sequence. The only part
we will go through in detail is exactness at one particular step. We will show
that Ker(δ) equals the image of the induced map Ker(f2) −→ Ker(f3). Since
we assume that the reader has verified that we have a complex we need only
to show that any element in the kernel of δ is the image of some element
in Ker(f2). Let x be an element of Ker(f3) which is mapped to zero by δ,
that is x ∈ ker(δ). We need show that there exists an x′ ∈ Ker(f2) such that
ϕ2(x

′) = x. Let x′ ∈M2 be any pre-image of x, and let y ∈ N1 be the element
such that ψ1(y) = f2(x

′). Then we have that δ(x) is the image of y by the
quotient map N1 −→ coker(f1). We have assumed that δ(x) = 0, which
then means that y = f1(z), for some z ∈ M1. Now consider the element
x′ − ϕ1(z) ∈M2, which is a pre-image of x, as

ϕ2(x
′ − ϕ1(z)) = ϕ2(x

′)− ϕ2(ϕ1(z)) = x− 0.

Using the commutativity of the left diagram we obtain that

f2(x
′ − ϕ1(z)) = f2(x

′)− f2(ϕ1(z)) = f2(x
′)− ψ(f1(z)).

As f1(z) = y and ψ1(y) = f2(x
′), we get that f2(x

′−ϕ1(z)) = 0. We therefore
have an element x′−ϕ1(z) in the kernel of f2 which is mapped to the element
x. Consequently Ker(δ) equals the image of Ker(f2).

2.3 Exercises

2.3.1. Let N1 and N2 be two submodules of M . Show that we have a short exact sequence

0 −→ N1 ∩N2 −→ N1 ⊕N2 −→ N1 +N2 −→ 0,

where the first map sends x to (x, x), and the second map takes (x, y) to x− y.

2.3.2. Let f : M −→ N and g : N −→ P be two A-module homomorphisms. Show that
there is an exact sequence

0→ Ker(f)→ Ker(gf)→ Ker(g)→ Coker(f)→ Coker(gf)→ Coker(g)→ 0.
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2.3.3. Given a short exact sequence 0→M → N → P → 0, and given f : P ′ → P . Show
that there exist a commutative diagram and exact rows of the form

0 // M //

��

N ′

��

// P ′

f

��

// 0

0 // M // N // P // 0

2.3.4. Given chain maps f : P• −→ Q• and q : Q• −→ R• that, for every n, form the
commutative diagrams and exact sequences of A-modules

0 // Pn
fn //

dP
n

��

Qn

dQ
n

��

gn // Rn //

dR
n

��

0

0 // Pn−1
fn−1 // Qn−1

gn−1 // Rn−1
// 0.

Show that we obtain induced commutative diagrams and exact sequences

Coker(dPn+1)

��

// Coker(dQn+1) //

��

Coker(dRn+1) //

��

0

0 // Ker(dPn−1) // Ker(dQn−1) // Ker(dRn−1)

2.3.5. Let
0 −→ Fn −→ Fn−1 −→ · · · −→ F0 −→ 0

be an exact sequence of finitely generated free A-modules Fi. Show that

n∑
i=0

(−1)irank(Fi) = 0.
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Chapter 3

Hom-functors

3.1 The Hom-functors

Let M be an A-module. We have, for any A-module N , that the set of
A-module homomorphisms from M to N , HomA(M,N), form an A-module.
Note that if f : N1 −→ N2 is an A-module homomorphism we get an induced
A-module homomorphism

f∗ : HomA(M,N1) −→ HomA(M,N2),

by composition; a homomorphism ϕ : M −→ N1 is mapped to f∗(ϕ) := f ◦ϕ.

3.1.1 Proposition. Let M be an A-module, and let

0 // N1
f // N2

g // N3
// 0

be a short exact sequence of A-modules. Then we get an exact sequence

0 // HomA(M,N1)
f∗ // HomA(M,N2)

g∗ // HomA(M,N3).

Proof. Let ϕ : M −→ N1 be an A-module homomorphism. We have that
g∗ ◦ f∗(ϕ) is the composition of the three homomorphisms g, f and ϕ. As the
composition of g and f is the zero map, it follows that the sequence (3.1.1)
is a complex. To establish injectivity of f∗, we assume that ϕ is in the kernel
of f∗. That is, the composition

M
ϕ // N1

f // N2

is the zero map. If ϕ : M −→ N1 was not the zero map, there would exist
an x ∈ M such that ϕ(x) 6= 0. But then f∗(ϕ) would take that particular
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element to f(ϕ(x)), which would be non-zero as f is injective. It follows that
ϕ is the zero homomorphism, and f∗ is injective. Now we want to show that
Im(f∗) = Ker(g∗). As we already have seen that the sequence (3.1.1) is a
complex, we need only to show that Ker(g∗) ⊆ Im(f∗). Let ϕ : M −→ N2

be an element of the kernel of g∗. Then in particular we have g∗(ϕ(x)) = 0
for every x ∈ M . As the image of f equals the kernel of g, we obtain
that the image of ϕ is contained in the image of f , that is Im(ϕ) ⊆ Im(f).
Furthermore, as f is injective each element in the image has an unique pre-
image in the domain. Define now the map of sets ϕ′ : M −→ N1 by taking
x ∈M to the unique preimage of ϕ(x). This is not only a well-defined map,
it is readily checked that in fact this is an A-module homomorphism. By
construction we have that f∗(ϕ

′) = ϕ, and consequently ker(g∗) = Im(f∗),
and we have proven the proposition.

3.1.2 Example. Our favorite example is the short exact sequence

0 // Z
2 // Z // Z/(2) // 0.

Apply now the functor HomZ(Z/(2),−) to that sequence and we obtain the
exact sequence

0 // HomZ(Z/(2)),Z)
2∗ // // HomZ(Z/(2),Z) // HomZ(Z/(2),Z/(2)).

By Exercise (1.8.23) we have that the module HomZ(Z/(2),Z) is the zero
module. On the other hand we clearly have that HomZ(Z/(2),Z/(2)) 6= 0,
as it contains the identity morphism. We have that the sequence considered
above is exact, but we have just shown that the rightmost arrow is not
surjective. The sequence in question is

0 −→ 0 −→ 0 −→ HomZ(Z/(2),Z/(2)) = Z/(2).

3.2 Projective modules

The assignment taking an A-module N to the A-module HomA(M,N) is
functorial. We say that HomA(M,−) is a left exact functor as the functor
takes short exact sequences to left exact sequences. As the Example (3.1.2)
above shows, the functor is not right exact, in general, since right exactness
is not preserved. One could however ask for which modules M the functor
HomA(M,−) takes short exact sequences to short exact sequences. Such
modules certainly exist, take M = 0 for instance. A functor that takes short
exact sequences to short exact sequences is called an exact functor.
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3.2.1 Definition. An A-module P is projective if for any surjection of A-
modules Q′ −→ Q, any homomorphism g : P −→ Q can be extended to a
homomorphism g′ : P −→ Q′. That is, given the diagram of A-modules,

P

g

����~
~

~
~

Q′ // Q // 0,

and solid arrows representing homomorphisms, with the horizontal sequence
exact. Then there exists a homomorphism, represented by the dotted arrow,
making the diagram commutative.

3.2.2 Example. Any free module satisfies the defining property of a projective
module. Hence a free module is projective.

3.2.3 Theorem. A module P is projective if and only if HomA(P,−) is an
exact functor.

Proof. Let P be a projective module. By (3.1.1) we have that HomA(P,−)
is left-exact. We need only to check that it also preserves surjections. Let
f : N −→ N ′ be a surjective A-module homomorphism. We need to show
that the associated A-module homomorphism

HomA(P,N)
f∗ // // HomA(P,N ′) (3.1)

is surjective. Let ϕ ∈ HomA(P,N ′), and consider the diagram

N
f // N ′ // 0

P

ϕ

OO . (3.2)

The horizontal sequence is exact, and by definition of projectivity there exists
a lifting ϕN : P −→ N of ϕ. Then we have that f∗(ϕN) = ϕ, and the
homomorphism (3.1) is surjective. Conversely, assume that HomA(P,−) is
an exact functor. In particular that means that for any surjection f : N −→
N ′, and any diagram as (3.2), there would exist a lifting since the module
homomorphism (3.1) is surjective. In other words P is projective.
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3.3 Injective modules

We now consider the dual situation, fixing N instead of M when considering
HomA(M,N). If f : M1 −→ M2 is an A-module homomorphism we get an
induced A-module homomorphism

f ∗ : Hom(M2, N) −→ Hom(M1, N),

given by composition ϕ 7→ ϕ ◦ f . Note that the arrows get reversed, and we
say that HomA(−, N) is a contravariant-functor.

3.3.1 Proposition. Let N be an A-module, and let

0 //M1
f //M2

g //M3
// 0

be a short exact sequence of A-modules. Then we have an induced exact
sequence

0 // HomA(M3, N)
g∗ // HomA(M2, N)

f∗ // HomA(M1, N)

of A-modules.

Proof. That we have a complex follows from the fact that g ◦ f is the zero
map. Let us first establish injectivity of g∗. Let ϕ ∈ HomA(M3, N) be such
that g∗(ϕ) = 0. Thus ϕ ◦ g : M2 −→ N is the zero map, which is equivalent
with Ker(ϕ) ⊇ Im(g). As the homomorphism g : M2 −→ M3 is surjective,
it is necessarily so that Ker(ϕ) = M3. That is, ϕ is the zero map, and we
have injectivity of g∗. To prove exactness in the middle we need to see that
Ker(f ∗) ⊆ Im(g∗). Let ϕ ∈ HomA(M2, N) be such that f ∗(ϕ) = 0. Then ϕ◦f
is the zero map, which means that Im(f) ⊆ Ker(ϕ). As any homomorphism
factors through its kernel (Lemma 1.6.3, Assertion (3)), we have in particular
that ϕ factors through

ϕ : M2/Im(f) = M3
// N.

Then we have that g∗(ϕ) = ϕ, hence ϕ is in the image of g∗. In other words
HomA(−, N) is left exact.

3.3.2 Example. Let us again consider our favorite example, the exact sequence

0 // Z
2 // Z // Z/(2) // 0.
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Apply HomZ(−,Z/(2)) to the sequence above, and we get the exact sequence

0 // HomZ(Z/(2),Z/(2)) // HomZ(Z,Z/(2)) 2∗ // HomZ(Z,Z/(2)).

Since Z is a free module over itself, a homomorphism Z −→ N is determined
by its action on 1. Furthermore, as such a homomorphism can send 1 to
anything in N we have that HomZ(Z,Z/(2)) = Z/(2). The identification is
thus to send a homomorphism f : Z −→ Z/(2) to f(1) ∈ Z/(2). Note that
under that identification the morphism

2∗ : Z/(2) −→ Z/(2)

corresponds to multiplication by 2. In other words 2∗ is the zero homomor-
phism, and we have that the sequence above is not surjective at the right.

3.3.3 Definition. An A-module I is injective if for any injective homo-
morphism Q −→ Q′, we have that any homomorphism ϕ : Q −→ I can be
extended to a homomorphism ϕ′ : Q′ −→ I. That is, given a diagram of
A-modules,

I

0 // Q

ϕ

OO

// Q′

__@
@

@
@

and solid arrows representing homomorphisms, with the horizontal sequence
exact, there exists a dotted arrow making the diagram commutative.

3.3.4 Proposition. An A-module I is injective if and only if any A-module
homomorphism f : J −→ I, with J ⊆ A an ideal, can be extended to a
homomorphism f ′ : A −→ I.

Proof. As ideals J ⊆ A are particular cases of modules we immediately
have that if I is an injective module, then any homomorphism from an ideal
J −→ I can be extended to a homomorphism A −→ I. We need to prove the
converse. Let I be an A-module such that any homomorphism from ideals
in A can be extended to homomorphism from the ring. We shall show that
I is injective. Assume that we are given a diagram

I

0 // Q

ϕ

OO

// Q′
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of A-modules where the sequence is exact. Let A denote the collection of
pairs {(P, φ)} where P is an A-module such that Q ⊆ P ⊆ Q′, and where
φ : P −→ I is an extension of ϕ. By Zorn’s Lemma (see Exercise (3.4.12))
there exists a maximal element (P ′, φ′) of A . Note that if P ′ = Q′ then we
get that I is injective, completing our proof. We therefore only need to show
that P ′ = Q′. Assume therefore that P ′ 6= Q, and in particular there exists
an element x ∈ Q′ but where x /∈ P ′. Define the ideal

J = {a ∈ A | ax ∈ P ′} ⊆ A,

and the A-module homomorphism f : J −→ I by sending a to φ′(ax). By
assumption there exists an extension f ′ : A −→ I of f , and we will use this
extension to define an element (P ′′, φ′′) of A . Namely, let P ′′ denote the
A-module generated by elements in P ′ and by x. Elements in P ′′ are then of
the form p+ ax, with p ∈ P and a ∈ A. Furthermore, P ′′ is contained in Q′,
and contains P ′ as a proper submodule since x /∈ P ′. Define the A-module
homomorphism

φ′′ : P ′′ −→ I

by sending p+ax to φ′(p)+a ·f ′(1). We have by Exercise (3.4.13) that φ′′ is a
well-defined A-module homomorphism. Given that, we have now constructed
a pair (P ′′, φ′′) in A that violates the maximality of the pair (P ′, φ′). Hence
our assumption that P ′ 6= Q′ fails and we have indeed that P ′ = Q′.

3.3.5 Proposition. An A-module I is injective if and only if the contravari-
ant functor HomA(−, I) is exact.

Proof. By the left exactness (3.3.1) we need only to see that the contra-
variant functor HomA(−, I) is right exact. Let f : Q −→ Q′ be an injective
A-module homomorphism, and consider the associated A-module homomor-
phism

HomA(Q′, I)
f∗ // HomA(Q, I). (3.3)

Let ϕ ∈ HomA(Q, I) be an element. We need to see that there exists an
element ϕ′ ∈ HomA(Q′, I) such that f ∗(ϕ′) = ϕ. However, we have that
ϕ : Q −→ I is an A-module homomorphism, and that Q −→ Q′ is injective.
By definition there exists an extension ϕ′ : Q′ −→ I of ϕ. That is ϕ = ϕ′◦f =
f ∗(ϕ′), and consequently (3.3) is surjective.

Conversely, assume that HomA(−, I) is exact functor. Then in particular we
have that for any injective homomorphism f : Q −→ Q′ the associated homo-
morphism (3.3) is surjective. Written out, that translates to the fact that to
any homomorphism ϕ : Q −→ I there exists a homomorphism ϕ′ : Q′ −→ I
such that ϕ = ϕ′ ◦ f . By definition, that means that I is injective.
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Divisible modules

The injective modules are much harder to write down than the projective
ones; there are however plenty of injective modules. In fact any A-module
M can be embedded into an injective module. (A proof of that fact is found
in most text books on homological algebra). The injective Z-modules are
however relatively easy to describe.

3.3.6 Definition. A Z-module M is divisible if for any element x ∈M , and
any non-zero integer n there exist y ∈M such that ny = x.

3.3.7 Example. An example of a divisible module is the field of rationals Q.

3.3.8 Proposition. A Z-module I is injective if and only if it is divisible.

Proof. Assume that I is an injective module. Let x ∈ I be a non-zero
element, and let n > 0 be a positive integer. We need to show that there
exist q ∈ I such that nq = x. Let Q = Z and let ϕ : Q −→ I be the Z-
module homomorphism that sends m 7→ mx, and let µn : Q −→ Z = Q′ be
the multiplication map by n. The multiplication map is injective, and by
definition of I being injective there exist an extension ϕ′ : Z −→ I of ϕ. In
other words ϕ′ ◦ µn = ϕ. Set q = ϕ′(1). We have

nq = nϕ′(1) = ϕ′(n) = ϕ′(µn(1)) = ϕ(1) = x.

So, to each non-zero element x ∈ I, and every non-zero integer n, we have
shown there exist an element q ∈ I such that nq = x. Thus the injective
module I is divisible.

Conversely, assume that I is a divisible module. To see that I is injective we
need to see, by Proposition (3.3.4), that any homomorphism from an ideal
J ⊆ Z to I extends to Z. Let f : J −→ I be an A-module homomorphism,
with J an ideal. Since any ideal in Z is principally generated, there exists an
m ∈ Z such that (m) = J . Let x = f(m). Since I is assumed injective there
exists an y ∈ I such that my = x. Let f ′ : Z −→ I be the homomorphism
determined by sending 1 to y. We then have our extension of f : J −→ I,
and I is injective.

3.4 Exercises

3.4.1. Show that a free module is projective.

3.4.2. Let M = ⊕ni=1Mi. Show that M is projective if and only if each summand Mi is
projective.
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3.4.3. Let A = Z/(6), and consider the modules given by the ideals M = (2) ⊂ A and
N = (3) ⊂ A. Show that M ⊕N is projective, but not free.

3.4.4. Let I ⊆ A be an ideal. Show that for anyA-moduleM theA-module HomA(A/I,M)
is naturally an A/I-module. Show furthermore that HomA(A/I,−) takes injective A-
modules to injective A/I-modules.

3.4.5. Let P be a projective A-module, and let I ⊆ A be an ideal. Show that P/IP is a
projective A/I-module.

3.4.6. Let P be a projective A-module that can be generated by n elements. Show that
the dual module HomA(P,A) is also projective and can be generated by n elements.

3.4.7. Given short exact sequences 0→ M → P → N → 0 and 0→ M ′ → P ′ → N → 0,
where the modules P and P ′ are assumed to be projective. Show that M ⊕P ′ = M ′⊕P .

3.4.8. Let m and n be two coprime integers. Show that Z/(m) is a projective Z/(mn)-
module, but not a free module.

3.4.9. Show that Q is not a projective Z-module.

3.4.10. Are submodules of projective modules projective? Consider (p) ⊂ A = Z/(p2).

3.4.11. Let f : M −→ N be an A-module homomorphism of free A-modules. Show that
the following are equivalent.

(1) We have f(M) as a direct summand of N .

(2) We have that Coker(f) is projective.

(3) There exists an A-module homomorphism ϕ : N −→M such that f = fϕf .

3.4.12. Let A be a non-empty set. A subset R ⊆ A × A is a relation on A . Assume
that the relation R satisfies the following three axioms.

1. Reflexitivity: For any x ∈ A we have (x, x) ∈ R.

2. Antisymmetry: If (x, y) ∈ R and (y, x) ∈ R, then x = y.

3. Transitivity: If (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R.

Then we say that A is partially ordered. A subset D of a partially ordered set A is a
chain if for any pair (x, y) ∈ D ×D we have either (x, y) ∈ R or (y, x) ∈ R. A subset D
has an upper bound in A if there exist w ∈ A such that (x,w) ∈ R, for every x ∈ D .
The Zorn’s Lemma states that if every chain D of a non-empty partially ordered set A
has an upper bound in A , then A has at least one maximal element. Show that the
Zorn Lemma applies to the collection of extensions considered in the proof of Proposition
(3.3.4). The Zorn’s lemma itself is equivalent with the axiom of choice, for instance, and
simply taken as a fact in these notes.

3.4.13. Let P ⊆ Q be A-modules, and assume that there exists an x ∈ Q \P . Let Px ⊆ Q
denote the submodule of elements of the form p+ ax, with p ∈ P , and a ∈ A. Show that
there is, for any A-module M , a well-defined A-module homomorphism

HomA(P,M)⊕HomA(A,M) −→ HomA(Px,M)

sending (ϕ, f) to the homomorphism φ : Px −→M , where

φ(p+ ax) = ϕ(p) + f(a).
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Chapter 4

Homology

4.1 Homology

Let P• = {Pn, dn} be a complex (with descending boundary operators). We
define the A-module of n-cycles as Zn(P ) = ker(dn), and the A-module of
n-boundaries as Bn(P ) = im(dn+1).

Since the collection of modules form a complex we have Bn(P ) ⊆ Zn(P ). We
define the n’th homomology module of the complex

{Pn, dn} as the A-module

Hn(P ) := Zn(P )/Bn(P ).

Note that the complex {Pn, dn} is exact if and only if all of its associated
homology modules Hn(P ) = 0, for all n.

4.1.1 Example. Consider the complex P• we introduced in Example (2.1.3);

0 // Z
d1=4 // Z

d0 // Z/(2) // 0

Only the zero degree homomology H0(P ) is of interest, the other homomology
modules are zero. We have

H0(P ) = ker(d0)/Im(4) = (2)/(4) w Z/(2).

4.1.2 Proposition. Let f : P• −→ Q• be a chain map of complexes. Then
we have an induced A-module homomorphism of

n-cycles Zn(P ) −→ Zn(Q) and n-boundaries Bn(P ) −→ Bn(Q). In particu-
lar we get an induced A-module homomorphism of n’th homology modules
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fn,∗ : Hn(P ) −→ Hn(Q) for all n.

Proof. The two first statements follow from the commutative diagram

Pn

dP
n
��

fn // Qn

dQ
n
��

Pn−1 fn−1

// Qn−1

.

Indeed, let x ∈ Zn(P ). Then dPn (x) = 0. As

0 = fn−1(d
P
n (x)) = dQn (fn(x)),

we have fn(x) ∈ ker(dQn ). That is fn(x) ∈ Zn(Q). Similarly with boundaries;
let x ∈ Bn−1(P ). Then there exist y ∈ Pn such that x = dPn (y). And then
fn−1(x) = dQn (fn(y)), so fn−1(x) ∈ Bn(Q). The last assertion in the lemma
is a consequence of the first two.

Exact triangles

Assume that we have two chain maps of complexes f : P• −→ Q• and
g : Q• −→ R• such that

on each degree n we have the short exact sequence

0 // Pn
fn // Qn

gn // Rn
// 0.

We say then that we have a short exact sequence of complexes.

4.1.3 Proposition (Exact triangle). Let f : P• −→ Q• and g : Q• −→ R•
be two chain maps that composed give a short exact sequence of complexes.

Then we get induced a long exact sequence of homomology modules

· · · // Hn(P )
fn,∗ // Hn(Q)

gn,∗ // Hn(R)
δn,∗ // Hn−1(P ) // · · · .

Proof. We note that any homomorphism dPn : Pn −→ Pn−1 will factor through
its image Bn(P ). We therefore have commutative diagrams
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0 // Pn+1

dP
n+1
��

fn+1 // Qn+1

dQ
n+1
��

gn+1 // Rn+1

dR
n+1
��

// 0

0 // Bn(P )
fn // Bn(Q)

gn // Bn(R) // 0

. (4.1)

The upper row is exact by assumption, and the reader can check that the
bottom row is also exact. By Exercise (2.3.4) we get the

commutative diagram

Pn/Bn(P ) //

��

Qn/Bn(Q)

��

// Rn/Bn(R)

��

// 0

0 // Zn−1(P ) // Zn−1(Q) // Zn−1(R)

,

where the horizontal sequences are exact. Now, the cokernel of each of the
vertical maps are the homomology modules of degree n − 1, and the kernel
of

the vertical maps are the homology modules of degree n. The Snake Lemma
(2.2.3) applied to the last diagram proves the proposition.

4.1.4 Remark. The name exact triangle comes from the mnemonic triangle

H(P )
f∗ // H(Q)

g∗zzvvv
vv

vv
vv

H(R)

δ∗

ddHHHHHHHHH

.

4.1.5 Example. Consider the the commutative diagram

0 // 0 //

��

Z
1 //

4
��

Z

0
��

// 0

0 // Z
2 // Z // Z // 0

The horizontal two sequences are exact, and we consider the three middle
vertical terms as complexes P•, Q• and R•, read from the left to right.

The degrees of the complexes shown are the degree zero and the degree one
part. The diagram then shows that we have chain maps f : P• −→ Q• and
g : Q• −→ R• that composed give a long exact sequence in homology. The
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two boundary maps dP1 and dQ1 are injective, hence H1(P ) = H1(Q) = 0.
The long exact sequence in homology becomes

0 // H1(R) = Z
d1,∗ // H0(P ) = Z

2∗ // H0(Q) = Z/(4) // 0.

Since the sequence is exact it follows that d1,∗ is the homomorphism given
by multiplication by two.

4.2 Homotopy

A chain map f : P• −→ Q• is null-homotopic if there exist A-module homo-
morphisms sn : Pn −→ Qn+1 such that

fn = dQn+1 ◦ sn + sn−1 ◦ dPn ,

for every n. Two chain maps f and g from a complex P• to another complex
Q• are homotopic if the chain map f − g : P• −→ Q• is null-homotopic.

4.2.1 Remark. Here we have given the definition of homotopy for a complex
where the boundary operators are descending dn : Pn −→ Pn−1. If the com-
plex had ascending boundary operators then the definition of homotopy will
be essentially the same, however the A-module homomorphisms sn would
then be descending the degree sn : Pn −→ Qn−1. The equation these ho-
momorphisms should satisfy in order for a chain map to be null-homotopic
would then read

fn = dQn−1sn + sn+1d
P
n .

4.2.2 Example. Consider the two complexes drawn below as horizontal se-
quences, showing degrees {2, 1, 0,−1},

0 //

��

Z

2
��

// Z/(8)

��

// 0

Z/(8) // Z/(4) // 0 // 0.

If P• is the upper complex, and Q• is the lower, we have in the diagram shown
a chain map f : P• −→ Q•. We claim that the chain map f is null-homotopic.
Define the Z-module homomorphisms

s1 : Z = P1 −→ Q2 = Z/(8) s0 : Z/(8) = P0 −→ Z/(4) = Q1
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as the canonical projections. All other sn we set to be the zero map. We
then have fn = dQn+1sn + sn−1d

P
n , for all n, and we have that the chain map

f is null-homotopic.

4.2.3 Theorem. Two chain maps between two complexes P• and Q• that
are homotopic, induce the same homomorphism of homology modules. That
is, if f and g are homotopic chain maps then

fn∗ = gn∗ : Hn(P ) −→ Hn(Q),

for all n.

Proof. We need to show that a null-homotopic map F = f − g is the zero
map. Let x ∈ Hn(P ) be an element in the n-th homomology. Recall that
Hn(P ) is the quotient module Zn(P )/Bn(P ), and therefore we may represent
x with an n-cycle z ∈ Zn(P ). We have that the null-homotopy F sends the
n-cycle to

F (z) = dQn+1sn(z) + sn−1d
P
n (z).

Since z is an n-cycle we have by definition that dPn (z) = 0. Thus F (z) =
dQn+1sn(z). As sn(z) ∈ Qn+1 we have by definition that dQn+1(sn(z)) is an
n-boundary, in other words F (z) ∈ Bn(Q). Then, by definition of the homo-
mology, we have that F (z) = 0 in Hn(Q), and we have proven our claim.

4.3 Exercises

4.3.1. Let f : P• −→ Q• be a chain map of complexes. We define the mapping cone in the
following way. Let Mn = Pn−1 ⊕Qn, and define dMn : Mn −→Mn−1 by

dMn (x, y) = (−dPn−1(x), dQn (y) + f(x)).

Show that (Mn, d
M
n ) forms a complex, and that we have a long exact sequence

· · · −→ Hn(Q) −→ Hn(M) −→ Hn−1(P ) −→ · · · .

4.3.2. Let f : P• −→ Q• be a chain map. Show that, for every n, the composite map

Pn+1

dP
n+1 // Pn

fn // Qn

will factor through the boundary Bn(Q) ⊆ Qn.
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4.3.3. Let f and g be two homotopic chain maps P• −→ Q•, and let sn : Pn −→ Qn+1

be the A-module homorphisms such that gn − fn = sn−1d
Q
n + dPn+1sn, for all n. Define

the A-module homomorphism F : Pn −→ Qn by F = gn − fn − sn−1d
P
n . Show that

Im(F ) ⊆ Im(dQn+1).

4.3.4. Given two short exact sequences of complexes, and commutative diagrams

0 // P ′• //

f ′

��

P•

f

��

// P ′′• //

f ′′

��

0

0 // Q′• // Q• // Q′′• // 0.

Show that we have an induced chain map from the long exact sequence in homology. That
is, that we have commutative diagrams

// Hn(P ′)

f ′∗

��

// Hn(P ) //

f∗

��

Hn(P ′′) δ //

f ′′∗

��

Hn−1(P ′) //

f ′∗
��

// Hn(Q′) // Hn(Q) // Hn(Q′′) δ // Hn−1(Q′) //

.
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Chapter 5

Resolutions and Ext

5.1 Free resolutions

Let M be an A-module. Assume that we have an exact sequence

· · · // Fn
dn // Fn−1

dn−1 // · · · // F0
d0 //M // 0.

Then the complex {Fn, dn} (n ≥ 0, without M) is said to be a resolution of
M . If, furthermore, the A-modules Fn all are free, then we say that {Fn, dn}
is a free resolution of M .

5.1.1 Remark. Note that if {Fn, dn}n≥0 is a resolution of M then the module
M itself is not a part of the data. However, we recover M as the cokernel
M = coker(d1). Finally, as the sequence ends at F0, there is strictly speaking
no boundary operator in degree zero. When we occasionally anyhow refer to
d0 of a resolution, we simply mean the projection map F0 −→ coker(d1) = M .

5.1.2 Proposition. Any module over any ring admits a free resolution.

Proof. Let M be an A-module. By Proposition (1.6.5) we can write M as
a quotient module of a free A-module F0. As the kernel K0 of the quotient
homomorphism F0 −→ M again is an A-module, we can write K0 as a
quotient of a free A-module F1. This process is clearly inductive, giving
us free modules Fn+1 that surjects down to the kernel Fn −→ Kn−1. The
quotient homomorphism Fn −→ Kn−1 composed with the injection Kn−1 −→
Fn−1 give a sequence of A-modules and homomorphisms

· · · −→ Fn −→ Fn−1 −→ · · · −→ F1 −→ F0,

which is a resolution of M .

34



5.2 Finite resolutions

Let {Fn, dn} be a free resolution of an A-module M . We say that {Fn, dn}
is a finite free resolution if the following two conditions are satisfied.

(1) All the modules Fn are free of finite rank.

(2) Only a finite number of the modules Fn are non-zero modules, that is
Fn = 0 for n >> 0.

An A-module M admits a finite free resolution if there exists at least one
finite free resolution of M . Furthermore, if {Fn, dn} is a finite resolution of
M then the smallest integer p such that Fn = 0 for all n > p, is called the
length of the resolution.

5.2.1 Example. A finite dimensional vector space V is free considered as a
module over the base field. In particular any finite dimensional vector space
has trivially a finite free resolution. Thus, for a finite dimensional vector
space we can always find a finite free resolution of length zero.

5.2.2 Proposition. Let A = Z be the ring of integers. Any submodule F of
a finitely generated free module G, is free of finite rank.

Proof. A submodule of a finitely generated Z-module is again finitely gener-
ated, see Exercise (1.8.29). Thus F is finitely generated, and as such it is by
the structure Theorem for finitely generated abelian groups a direct sum of
a free part and a torsion part. By being a submodule of a free module, it is
clear that F has no torsion. Hence F is free.

5.2.3 Corollary. If M is a finitely generated Z-module then M admits a
finite free resolution of length at most one.

Proof. Let M be a finitely generated module over Z. By Proposition (1.6.5)
we can write M as a quotient of a free module F0 = ⊕ni=1Z of finite rank. Let
F1 denote the kernel of the quotient map, and we have an exact sequence of
Z-modules

0 −→ F1 −→ ⊕ni=1Z −→M −→ 0.

By the proposition we have that F1 is free and of finite rank. Consequently
the sequence above is a finite free resolution.

5.2.4 Remark. The previous example indicates how a free resolution is to
be constructed in the general case, with M a finitely generated A-module.
However, there are some complications for both conditions needed for a finite
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free resolution. By being finitely generated we have that M can be written
as a quotient of a free A-module of finite rank F0. Let K0 denote the kernel,
and consider the short exact sequence of A-modules

0 −→ K0 −→ F0 −→M −→ 0.

In general K0 would not be free, or not even finitely generated. However, if
A is a Noetherian ring then any submodule of a finitely generated module
would again be finitely generated. Fields and the ring of integers Z are
noetherian, as well as polynomial rings in finite number of variables over a
field, and their quotients. Given now that A were Noetherian, then K0 would
be finitely generated. Hence we could write K0 as a quotient of some free
finite rank A-module F1. Let K1 denote the kernel of F1 −→ K0, and we
have a exact sequence

0 −→ K1 −→ F1 −→ F0 −→M −→ 0,

and we have started constructing a finite free resolution of M . The other as-
sumption, that the resolution is of finite length is not automatically satisfied
for Noetherian rings in general. The question whether this process termi-
nates after a finite steps is related to certain geometric properties of the ring
A.

Finite and in particular free resolutions are suitable for computational aspects
as it all become a matter of linear algebra techniques.

5.3 Projective resolutions

A projective resolution of an A-module M is a resolution

· · · // Pn
dn // Pn−1

dn−1 // · · · // P0
d0 //M // 0,

with projective modules Pn, for all n ≥ 0.

5.3.1 Proposition. Any module over any ring admits a projective resolution.

Proof. We have seen that a free module is projective (Example 3.2.2). Hence,
by Proposition (5.1.2) we have that any module over any ring admits a pro-
jective resolution.

5.3.2 Theorem. Let P• and Q• be two resolutions of a module M , with
P• a projective resolution. Then there exists a chain map f : P• −→ Q•.
Furthermore, any other chain map g : P• −→ Q•, inducing the identity on
M , is homotopic to f .
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Proof. We first exhibit a chain map f : P• −→ Q•. By assumption the bound-
ary map dQn : Q0 −→M is surjective, and it follows from projectivity assump-
tion of P0 that the boundary map dP0 : P0 −→M extends to a homomorphism
f0 : P0 −→ Q0. We can iterate this in the following way. Assume that we
have constructed homeomorphisms fn′ : Pn′ −→ Qn′ , commuting with the
boundary maps, for all integers between 0 ≤ n′ ≤ n, for some integer n. We
will show how this yields a homomorphism fn+1 : Pn+1 −→ Qn+1. Let

Bn(Q) = im(dQn+1) ⊆ Qn

denote the boundary. By Exercise (4.3.2) the composite

Pn+1

dP
n+1 // Pn

fn // Qn, (5.1)

will factor through Bn(Q) ⊆ Qn. As the boundary map dQn+1 : Qn+1 −→ Qn

surjects down to Bn(Q) we get by projectivity of Pn that the homomorphism
(5.1) has an extension fn+1 : Pn −→ Qn. We thereby obtain a chain map
f : P• −→ Q• by the projectivity of Pn.

Next we want to show that the chain map f is unique up to homotopy.
Let g : P• −→ Q• be another chain map, such that the induced map on M
is the identity. Let Fn = gn − fn. By assumption F0 = g0 − f0 induces
the zero on M , soF0 : P0 −→ Q0 will factorize through the image B0(Q) of
dQ1 : Q1 −→ Q0. By the projectivity assumption of P0 we now get a lifting
s0 : P0 −→ Q1 of F0. Consider now

g1 − f1 − s0d
P
1 : P1 −→ Q1. (5.2)

One checks that the composition of that particular map (5.2) with dQ1 is zero,
hence the map (5.2) factors through the image of dQ2 : Q2 −→ Q1. Thus, by
the projectivity assumption on P1 there exists a lifting s1 : P1 −→ Q2 of
(5.2). By induction we get A-module homomorphisms sn : Pn −→ Qn+1 for
all n ≥ 0, and by construction we have that

gn − fn = sn−1d
P
n + dQn sn.

Hence F = g − f is null-homotopic, and f is homotopic to g.

5.3.3 Definition. Let M be an A-module and let {Pn, dn} be a projective
resolution. For any A-module N we have the associated complex of A-modules

0 // HomA(P0, N)
d∗1 // HomA(P1, N)

d∗2 // · · ·
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The homology groups of the associated complex we denote by

ExtnA(M,N) := ker(d∗n+1)/im(d∗n),

for each n ≥ 0.

5.3.4 Remark. Note that Ext0
A(M,N) = HomA(M,N), see Exercise (5.5.5).

5.3.5 Proposition. The homology groups ExtnA(M,N) are independent of
the choice of projective resolution.

Proof. Let P• and Q• be two projective resolutions of M . By the Comparison
Theorem (5.3.2) there exists a chain map f : P• −→ Q• and a chain map
g : Q• −→ P•. The composition gf is a chain map P• −→ P•. Then, by
the Comparison Theorem again, we have that the chain map gf must be
homotopic to the identity map 1: P• −→ P•. In other words 1− gf is null-
homotopic. That is, there exist A-module homomorphisms sn : Pn −→ Pn+1

such that

1− gf = dn+1 ◦ sn + sn−1 ◦ dn.

When we apply HomA(−, N) to the resolutions P• and Q• we get

1∗ − (gf)∗ = (dn+1sn)∗ + (sn−1dn)∗.

We have that (gf)∗ = f ∗ ◦ g∗, for any composition of A-module homomor-
phisms. Thus the identity above reads

1− (gf)∗ = s∗n ◦ d∗n+1 + d∗n ◦ s∗n−1.

This is the equation for null-homotopy for an ascending chain complex. Thus
(gf)∗ is homotopic to 1 : P• −→ P•, and similarly we get that (gf)∗ is homo-
topic to the identity on Q•.

It follows from (4.2.3) that on the homology level g∗ is the inverse of f ∗,
proving our claim.

5.3.6 Corollary. Let {Pn, dn} be a projective resolution of an A-module M ,
and let Ki = ker(di) ⊆ Pi for all i ≥ 0. Then we have

Extn+1
A (M,N) = Extn−i(Ki, N),

for any A-module N , and any i ≥ 0.
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Proof. Fix an integer i ≥ 0. Let Qn = Pn+i+1, and εn = dn+i+1. After this
renaming we have the projective resolution of Ki;

Qn
εn // Qn−1

εn−1 // · · · // Q0
ε0 // Ki

// 0.

We apply HomA(−, N) to the resolution of Ki we obtain from this sequence.
Then by taking homology we obtain, by definition,

ExtnA(Ki, N) = ker(ε∗n+1)/im(ε∗n),

for all n ≥ 0. We have εn−i+1 = dn+2, hence the homology module above in
degree n− i is Extn+1

A (M,N).

5.3.7 Corollary. If M is a projective A-module then ExtnA(M,N) = 0 for
any A-module N (n > 0).

Proof. If M is projective we can take the projective resolution P0 = M , which
have only trivial homology modules for all n ≥ 1. Thus ExtnA(M,N) = 0 for
all n ≥ 1.

5.3.8 Lemma. Let 0 //M1
f //M2

g //M3
// 0 be a short exact se-

quence of A-modules. Then there exist projective resolutions P•(Mi) of Mi,
for i = 1, 2, 3, and chain maps giving a short exact sequence of complexes

0 −→ P•(M1) −→ P•(M2) −→ P•(M3) −→ 0.

Proof. Let dR0 : R0 −→ M3 be a surjective homomorphism from a projective
module R0. Since M2 −→ M3 is assumed surjective and R0 is projective
there exists a lifting d̃0 : R0 −→M2 of dR0 . Let dP0 : P0 −→M1 be a surjective
homomorphism from a projective module P0 to M1, and consider the diagram

0 // P0
//

dP
0
��

P0 ⊕R0

dQ
0
��

// R0
//

dR
0
��

0

0 //M1
f //M2

g //M3
// 0,

where dQ0 (x, y) := f(dP0 (x)) + d̃0(y). The diagram is commutative, and the
upper horizontal sequence is a short exact sequence of projective modules
P0, Q0 and R0, where Q0 = P0 ⊕ R0. The kernels of the three vertical maps
we denote by K1, K2 and K3. It is readily checked that the induced sequence

0 −→ K1 −→ K2 −→ K3 −→ 0
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is exact. Applying the above argument to this short exact sequence gives
projective modules P1, Q1 and R1. The inductive process described gives
projective modules P•, Q• and R• and chain maps making a short exact
sequence 0 −→ P• −→ Q• −→ R• −→ 0. Furthermore, each of the three
complexes are exact by construction, hence giving projective resolutions of
M1,M2 and M3.

Split sequences

A short exact sequence

0 //M1
f // N

g //M2
// 0

is called split if N is isomorphic to M1⊕M2, and under this isomorphism the
morphism f : M1 −→M1⊕M2 is the canonical inclusion, and g : M1⊕M2 −→
M2 is the canonical projection.

5.3.9 Lemma. Let 0 //M1
f // N

g //M2
// 0 be a short exact se-

quence of A-modules. The sequence is split if and only if g has a section;
that is there exists an A-module homomorphism s : M2 −→ N such that
g ◦ s = idM2. In particular this always holds if M2 is a projective module.

Proof. If the sequence splits then clearly g has a section. Conversely, if g has
a section then N becomes naturally isomorphic to the direct sum M1⊕M2 in
the following way. Define the A-module homomorphism ϕ : M1 ⊕M2 −→ N
by sending (x, y) 7→ f(x) + s(y), where s : M2 −→ N is one fixed section
of g. To see that this map is injective, we assume (x, y) is in the kernel.
Then f(x) + s(y) = 0, hence g(f(x) + s(y)) = 0 + y, so y = 0. But as f
is injective it also follows that x = 0. Hence ϕ is injective. To establish
surjectivity of ϕ, let z ∈ N be an element. Let y = g(z) ∈ M2. Then we
have that g(z − s(y)) = g(z) − g(s(y)) = y − y = 0. Hence the element
z − s(y) = f(x) ∈ N , for some x ∈ M1. We then get that (x, y) is mapped
to ϕ(x, y) = f(x) + s(y) = z, and ϕ is surjective.

Finally if M2 were projective then the identity morphism id: M2 −→ M2

combined with the defining property of M2 being projective, would give a
lifting to s : M2 −→ N . Such a lifting would be a section.

5.3.10 Proposition. Let 0 //M1
f //M2

g //M3
// 0 be a short ex-

act sequence of A-modules. For each A-module N we get an induced long
exact sequence of Ext-modules

0 −→ HomA(M3, N) −→ HomA(M2, N) −→ HomA(M1, N) −→ · · ·
· · · −→ ExtnA(M3, N) −→ ExtnA(M2, N) −→ ExtnA(M1, N) −→ · · · .
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Proof. By Lemma (5.3.8) we can find projective resolutions of the modules
Mi (i = 1, 2, 3), that fits into a short exact sequence

0 −→ P• −→ Q• −→ R• −→ 0.

We then apply HomA(−, N) to all the modules appearing in the three reso-
lutions above. For each degree n we get the horizontal sequence

0 −→ HomA(Rn, N) −→ HomA(Qn, N) −→ HomA(Pn, N) −→ 0. (5.3)

By Lemma (5.3.9) we have that Qn = Pn ⊕Rn, and in particular that

HomA(Qn, N) = HomA(Pn, N)⊕ HomA(Rn, N).

It follows that the sequence (5.3) is exact. Thus after applying HomA(−, N)
we obtain three complexes P∧• , Q

∧
• and R∧• that form a short exact sequence

0 −→ R∧• −→ Q∧• −→ P∧• −→ 0.

By Theorem (4.1.3) we get a long exact sequence of homology modules, and
by (5.3.5) these homology modules are precisely the Ext-modules.

We have then proved that this particular resolution give a long exact sequence
of homology modules. By Proposition (5.3.5) any other resolution would give
the same homology modules, but we also need to check that the associated
module homomorphism are independent of the resolution. However, by the
Comparison Theorem (5.3.2) it follows that the actual maps between possible
different resolutions are homotopic, hence giving the same maps on homology.

5.3.11 Example. Let A be a field. Any moduleM over a field is a vector space,
so in particular M is free, and projective. Consequently ExtnA(M,N) = 0
with n > 0, for any vector space N .

5.3.12 Example. Let M be a finitely generated Z-module. We have that
ExtnA(M,N) = 0 for n ≥ 2. Indeed, we have by Proposition (5.2.3) that a
finitely generated Z-module has a free resolution of length at most one.

5.3.13 Example. Let Zn = Z/(n) denote the cyclic group of n-elements. We
then have the projective resolution

0 // Z
n // Z // Zn

// 0.

For any Z-module N we get the induced long exact sequence

HomZ(Z, N) n∗ // HomZ(Z, N) // Ext1
Z(Zn, N) // Ext1

Z(Z, N).
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Since Z is free, and in particular projective, we have that the rightmost
module is zero. We have furthermore that HomA(A,R) = R, hence the two
left most groups are identified with N . The map

n∗ : N −→ N

is multiplication with n; that is x 7→ nx. The cokernel of the map n∗ is
therefore the Ext-module, N/nN = Ext1

Z(Zn, N). In particular this applies
to our standard Example (3.1.2).

5.4 Injective resolutions

One of the reasons to introduce the projective modules, and not only stick
to free modules, is that there is a dual counter part. Let N be an A-module,
and assume that we have an exact sequence

0 // N // I0
d0 // I1

d1 // · · · ,

with injective modules In. Then {In, dn} is an injective resolution of N . Let
M be another A-module, and apply HomA(M,−) to one injective resolution
of N . We then have the complex

0 // HomA(M, I0)
d0,∗ // HomA(M, I1)

d1,∗ // · · ·

As in the situation with projective modules a similar argument (cf. Exercise
(5.5.15)) shows that the homology modules are independent of the resolution.
We define the homology modules

ExtAn (M,N) := ker(dn,∗)/im(dn−1,∗).

The dual statements for results of the previous section follows mutatis mu-
tandi. We encourage the reader to at least state all the previous statements
for injective modules and injective resolutions (see Exercises 5.5.14 -5.5.18).

5.4.1 Theorem. For any A-modules M and N , and any integer n ≥ 0 we
have ExtAn (M,N) = ExtnA(M,N).

Proof. Let {Pn, dn} be a projective resolution of M , and let Ki = ker(di).
We then have the short exact sequence

0 −→ Ki+1 −→ Pi+1 −→ Ki −→ 0,
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for all i ≥ 0. In fact we let K−1 = M , and consider the above sequence for
all i ≥ −1. Similarly, we let {Qn, en} be an injective resolution of N , and
we let Cj+1 be the kernel of ej : Qj −→ Qj+1. We then get the short exact
sequence

0 −→ Cj −→ Qj −→ Cj+1 −→ 0,

for all j ≥ 0, where N = C0. We fix two integers i ≥ −1, j ≥ 0 and form the
commutative diagram

0

��

0

��

0

��
0 // HomA(Ki, Cj) //

��

HomA(Ki, Qj) //

��

HomA(Ki, Cj+1) //

��

F

0 // HomA(Pi+1, Cj) //

��

HomA(Pi+1, Qj)

��

// HomA(Pi+1, Cj+1)

��

// 0

0 // HomA(Ki+1, Cj)

��

// HomA(Ki+1, Qj)

��

// HomA(Ki+1, Cj+1) //

��

F ′

E 0 E ′ .

The A-modules E,E ′ and F, F ′ are cokernels, making the related sequences
exact. Since Pi+1 is projective, we get by Corollary (5.3.7) that the middle
horizontal row is exact. And similarly, by Exercise (5.5.18), the middle ver-
tical column is exact as Qj is injective. Thus the whole diagram above is
consist of exact rows and columns.

Applying the Snake Lemma (2.2.3) to the diagram consisting of rows two and
three, we get that E = F . Since Pi+1 is projective we that Ext1

A(Pi+1, Cj) =
0. Consequently, by the long exact sequence (5.3.10) we get that E =
Ext1

A(Ki, Cj). Similarly, we have that F = ExtA1 (Ki, Cj), thus

Ext1
A(Ki, Cj) = ExtA1 (Ki, Cj) (5.4)

for all i ≥ −1 and j ≥ 0. A diagram chase (see Exercise (5.5.8)) shows that
E ′ = F ′, hence

Ext1
A(Ki, Cj+1) = ExtA1 (Ki+1, Cj), (5.5)

for all i and j. To prove the theorem we note that by Lemma (5.3.6) we have

Extn+1
A (M,N) = Ext1

A(Kn−1, N).
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Substitute N = C0. By using (5.5) and then (5.4) repeatedly we can decrease
the index of the first factor Kn−1, and increase the index of the second factor
C0. Using this shifting process n times we arrive at

Ext1
A(Kn−1, C0) = Ext1

A(K−1, Cn).

Then by using the identification of (5.4), and finally using the injective ver-
sion of Lemma (5.3.6) (see Exercise(5.5.17)) we get that

Ext1
A(K−1, Cn) = ExtA1 (K−1, Cn) = Extn+1

A (K−1, N).

As K−1 = M by definition, we have proven the theorem.

5.4.2 Corollary. The A-module M is projective if and only if we have that
Ext1

A(M,N) = 0 for all A-modules N .

Proof. If M is projective we have by Corollary (5.3.7) that ExtnA(M,N) = 0
for all n ≥ 1, and in particular for n = 1.

To prove the converse, let 0 −→ N1 −→ N2 −→ N3 −→ 0 be any short
sequence of A-modules. By taking injective resolutions we get by a result
similar to Proposition (5.3.10) an induced long exact sequence of the as-
sociated homology modules Ext∗A(M,−). By the Theorem we have that
ExtAn (M,N) = ExtnA(M,N) for all modules M and N . By assumption the
higher Ext-modules are zero, which means that the long exact sequence con-
sists of three terms only, the degree zero homology modules. We have that
Ext0

A(M,N) = HomA(M,N). Consequently the assumption that the mod-
ules Ext1

A(M,N) = 0 for all modulesN , implies that the functor HomA(M,−)
is exact. By Theorem (3.2.3) we get that M is projective.

5.5 Exercises

5.5.1. Compute a free finite resolution of Z/(2)⊕ Z/(30)⊕ Z.
5.5.2. Show that we have an exact sequence

0 −→ Z/(p) −→ Z/(p2) −→ Z/(p) −→ 0,

which does not split.
5.5.3. Let M be an A-module, and let F• and G• be two finite free resolutions of M . Let
n be the length of the resolution F• and let m be the length of the resolution G•. Show
that there is an equality

n∑
i=0

(−1)irankFi =
m∑
j=0

(−1)jrankGj .

As the quantity described above is independent of the finite free resolution of M we denote
this by χ(M), and this number is called the Euler-Poincare characteristic of M .
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5.5.4. Show that the sequence

0 −→ mZ/(mn) −→ Z/(mn) −→ nZ/(mn) −→ 0

splits if and only if (m,n) = 1.

5.5.5. Show that Ext0A(M,N) = HomA(M,N).

5.5.6. Show that the elements of Ext1A(M,N) corresponds to extensions E of the form

0 −→ N −→ E −→M −→ 0,

that is exact sequences with N and M as the ends.

5.5.7. Let j : M −→ N be an injective homomorphism. Show that j(M) is a direct
summand of N if and only if j has a section s : N −→ M . Show, furthermore, that if so,
then N = j(M)⊕ ker(s).

5.5.8. Given a commutative diagram of A-modules

M
f //

g

��

N1

��
N2

// Q

Assume that the f and g are surjective homomorphisms. Show that cokernel N1 −→ Q
is naturally isomorphic to cokernel N2 −→ Q. Note that two quotient modules of a fixed
module Q are equal if and only if the kernels of the quotient maps coincide.

5.5.9. Determine the group Ext1Z(Z/(8),Z/(12)).

5.5.10. Let p be a prime number. Show that there are exactly p different extensions E of
the form

0 −→ Z/(p) −→ E −→ Z/(p) −→ 0.

Show that there are only two different choices for E, namely Z/(p) ⊕ Z/(p) and Z/(p2).
Why does this not contradict Excercise (5.5.6)?

5.5.11. We have that Ext1Z(Z/(4),Z/(4)) = G is an Z-module, and in particular a group.
By Excercise (5.5.6) we have that the short exact sequence

0 −→ Z/(4) −→ Z/(16) −→ Z/(4) −→ 0

corresponds to an element in the group G. Construct the extension that corresponds to
its inverse.

5.5.12. Compute Ext1Z(Z/(p),Z).

5.5.13. Show that if M is torsion free, then Ext1Z(M,Z) is divisible. And, if M is divisible,
then Ext1Z(M,Z) is torsion free.

5.5.14. Let I• and J• be two injective resolution of a module N . Show that there exists
a chain map f : I• −→ J•, and that any other chain map is homotopic to f .

5.5.15. Use the previous exercise to show that the homology groups ExtAn (M,N) are
independent of the injective resolution of N .
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5.5.16. Use the previous exercise to show that if we have a short exact sequence

0 −→ N1 −→ N2 −→ N3 −→ 0

of A-modules, then we get for any A-module M an long exact sequence

· · · −→ ExtAn+1(M,N3) −→ ExtAn (M,N1) −→ ExtAn (M,N2) −→ · · ·

5.5.17. Let {In, dn} be an injective resolution of N , and let Ci = ker(di) for all i ≥ 0. Use
the definition directly to show that, for any module M , we have

ExtAn+i(M,N) = ExtAn (M,Ci).

5.5.18. Show that an A-module N is injective if and only if we have that ExtA1 (M,N) = 0
for all A-modules M .
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Chapter 6

Tensor product and Tor

6.1 The construction of the tensor product

The tensor product of two modules is an important object, but not an easy
one. We start by giving its construction.

Let M and N be two A-modules. Let T (M,N) denote the free module
indexed by the elements in the product M ×N , that is

T (M,N) =
⊕

(x,y)∈M×N

Aex,y,

where ex,y is simply notation tagging the component that corresponds to the
element (x, y) ∈M ×N . This is an enormous module!

Consider the following family of relations

ex+x′,y − ex,y − ex′,y,
ex,y+y′ − ex,y − ex,y′ ,

eax,y − ex,ay,
a · ex,y − eax,y,

for all a ∈ A, all x, x′ ∈M and all y, y′ ∈ N . These relations generate an A-
submodule R ⊆ T (M,N), and the tensor product is defined as the quotient
module. That is,

M ⊗A N := T (M,N)/R,

and referred to as the tensor product of M and N , over A. The class of a
basis element ex,y in M⊗AN is denoted x⊗y, and such an element is referred
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to as a pure tensor. A general element z ∈M ⊗AN is called a tensor, and is
a finite linear combinations of the form

z =
n∑
i=1

xi ⊗ yi,

with xi ∈M and yi ∈ N , for i = 1, . . . , n.

6.1.1 Example. Consider the Z-modules M = Z/mZ and N = Z/nZ. As-
sume that the two numbers m and n are coprime, which means that the
biggest common divisor of the two numbers are 1. In other words there exist
numbers a and b such that 1 = am+ bn. Consider now the tensor product

Z/mZ⊗Z Z/nZ,

which we claim is the zero module. To see this it suffices to show that the
element 1⊗ 1 = 0. We have that 1⊗ 1 is the class of the element

e1,1 = eam+bn,1 = eam,1 + ebn,1.

We have that m = 0 in Z/mZ, and as 0 ⊗ x = 0 in any tensor product
M ⊗A N , we get that

e1,1 = e0,1 + eb,n = e0,1 + eb,0.

Thus 1 ⊗ 1 = 0 ⊗ 1 + b ⊗ 0 = 0. And we have that the tensor product
Z/mZ⊗Z Z/nZ = 0.

6.1.2 Proposition. Let {Mi}i∈I be a collection of A-modules. For any A-
module N we have that

(
⊕i∈I Mi

)
⊗A N = ⊕i∈I(Mi ⊗A N).

Proof. Using the notation form the previous section. It is clear that

T (⊕i∈IMi, N) = ⊕i∈IT (Mi, N).

LetR be the submodule defining (⊕i∈IMi)⊗ANas a quotient of T (⊕i∈IMi, N).
And let R′ = ⊕i∈IRi, where Ri ⊆ T (Mi, N) is the submodule with quotient
Mi ⊗A N . Since any element in a direct sum is a finite sum, it is clear that
R = R′, and the proposition follows.
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6.2 Universal property of the tensor product

An A-module homomorphism f : M × N −→ P is bilinear if it is linear in
both factors. That is, for fixed x ∈ M the induced map f(x,−) : N −→ P
is A-linear, for all x ∈ M . And, similarly for all y ∈ N the induced map
f(−, y) : M −→ P is A-linear.

6.2.1 Theorem (Universal property of tensor product). Let M and N be two
A-modules. The natural map F : M×N −→M⊗AN sending (x, y) 7→ x⊗y
is bilinear. It is furthermore the universal bilinear map from M × N ; Let
f : M ×N −→ P be any bilinear map to an A-module P . Then there exists
a unique A-module homomorphism ϕ : M ⊗A N −→ P such that f = ϕF .

Proof. The map of sets M × N −→ T (M,N) sending (x, y) 7→ ex,y is well-
defined. Composed with the projection T (M,N) −→ M ⊗A N gives a well-
defined map M × N −→ M ⊗A N . A routine verification shows that the
map indeed is bilinear. Let f : M × N −→ P be a bilinear map. Define
the A-module homomorphism Φ: T (M,N) −→ P by sending ex,y 7→ f(x, y).
Since the map f is assumed to be bilinear the A-module homomorphism Φ
will have the relations R ⊆ T (M,N) in its kernel, and consequently we get
a induced homomorphism ϕ : M ⊗A N −→ P factorizing f : M ×N −→ P .
Let ϕ′ : M ⊗A N −→ P be another A-module homomorphism factorizing
f : M ×N −→ P . We then would have, for any (x, y) ∈M ×N that

f(x, y) = ϕ(x⊗ y) = ϕ′(x⊗ y).

Since the pure tensors generate the tensor product, it follows that ϕ = ϕ′.
That is, the factorization is unique.

6.2.2 Proposition. The natural map M ⊗A A −→M sending (x, a) 7→ ax,
is an isomorphism.

Proof. We have the bilinear map M × A −→ M sending (x, a) 7→ ax. Let
c : M⊗AA −→M denote the induced A-module homomorphism. Let f : M×
A −→ N be any bilinear map to an arbitraryA-moduleN . Then in particular
the map

ϕ = f(−, 1) : M −→ N

is an A-module homomorphism. Let F : M⊗AA −→ N denote the A-module
homomorphism corresponding to the bilinear map f . As we have
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x⊗ a = ax⊗ 1,

it follows that F = ϕc. Thus any A-module homomorphism from M⊗AA has
a factorization through c : M⊗AA −→M . In particular, setting N = M⊗AA
and letting F = id be the identity map, we get the existence of an A-module
homomorphism ϕ being the inverse of c.

6.2.3 Corollary. Let M be a free module with basis x1, . . . , xm, and let N
be a free module with basis y1, . . . , yn. Then the pure tensors xi ⊗ yj with
1 ≤ i ≤ m, 1 ≤ j ≤ n form an A-module basis of M ⊗A N . In particular
M ⊗A N is free.

Proof. We have M = ⊕mi=1Axi. By Proposition (6.1.2) we have

M ⊗A N = ⊕mi=1Axi ⊗N.

As we have the obvious isomorphism P ⊗A Q = Q⊗A P , for any A-modules
P and Q, we can also apply Proposition (6.1.2) on the other factor as well.
That gives

M ⊗A N = M ⊗A (⊕mj=1Ayj) = ⊕i,jAxi ⊗A Ayj.

By the Proposition above, we get that Axi ⊗A Ayj = A(xi ⊗ yj) = A.

6.3 Right exactness of tensor product

6.3.1 Lemma. Let f : M −→M ′ and g : N −→ N ′ be two A-module homo-
morphism. Then we have an induced A-module homomorphism

f ⊗ g : M ⊗A N −→M ′ ⊗A N ′,

sending x⊗ y 7→ f(x)⊗ g(y).

Proof. The map M ×N −→M ′ ⊗A N ′ sending (x, y) 7→ f(x)⊗ g(y) is well-
defined, and bilinear. The induced map of tensor products then follows from
the universal properties of the tensor product.
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6.3.2 Proposition. Let the following be a short exact sequence of A-modules

0 // N1
f // N2

g // N3
// 0

Then, for any A-module M , the following induced sequence is also exact

M ⊗A N1
1⊗f //M ⊗A N2

1⊗g //M ⊗A N3
// 0.

In other words, (M ⊗A −) is a right exact covariant functor.

Proof. By Lemma (6.3.1) there exist A-module homomorphisms as described
in the Proposition, from where it follows that we have a complex. Surjectivity
of the rightmost map is left for the reader to check. The tricky part is to
show that

Ker(1⊗ g) ⊆ Im(1⊗ f).

Let I ⊆M⊗AN2 denote the image of the A-module homomorphism 1⊗f . As
we have that the sequence is a complex we have that 1⊗g has a factorization
through

1⊗ g : M ⊗A N2/I −→M ⊗A N3.

We need to show that 1⊗ g is injective. This we will do by showing that
the homomorphism 1⊗ g has a section. For any y′ ∈ N3, let y ∈ N2 be an
element such that g(y) = y′. Define the map

M ×N3 −→M ⊗N2/I,

by sending (x, y′) 7→ x⊗ y, where x⊗ y denotes the class of the tensor x⊗y in
M ⊗AN3/I. The reader is encouraged to check that the map is independent
of the choice of pre-image y of y′, making it a well-defined map.

The map is clearly bilinear, hence we obtain by the universal properties of
the tensor product an A-module homomorphism

s : M ⊗A N3 −→M ⊗A N2/I.

By construction we have that, for any y′ ∈ N3 any x ∈M that

1⊗ g(s(x⊗ y′)) = 1⊗ g(x⊗ y) = x⊗ y′.

Since the pure tensors x⊗ y′ generate the A-module M ⊗3N we have proven
that s is a section of 1⊗ g. Hence 1⊗ g is injective, that is Ker(1 ⊗ g) ⊆
Im(1⊗ f).
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6.3.3 Example. The tensor product is not left exact in general, as shown by
the following example. Consider the short exact sequence of Z-modules

0 // Z
2 // Z // Z/2Z // 0.

Tensor this sequence with (−⊗Z Z/2Z). By Proposition (6.2.2) we have the
identity M ⊗A A = M , hence we get the sequence

Z/2Z 2 // Z/2Z // Z/2Z⊗Z Z/2Z // 0.

The multiplication by 2 map equals the zero map. So in particular the
sequence is not left exact, and we also obtain that

Z/2Z⊗Z Z/2Z = Z/2Z.

6.3.4 Proposition. Let m and n be two integers, and let c = GCD(m,n)
denote their greatest common divisor. Then we have

Z/(m)⊗Z Z/(n) = Z/(c).

Proof. Using the right exactness of tensor product, and the identification of
Proposition (6.2.2), we obtain the commutative diagram of surjective Z

module homomorphisms

Z //

��

Z/(m)

��
Z/(n) // Z/(n)⊗Z Z/(m).

In particular we have Z/(m)⊗Z Z/(n) equals to Z/I, for some ideal I ⊆ Z.
From the commutative diagram above we have (m) ⊆ I, and (n) ⊆ I. Fur-
thermore, the smallest ideal containing both (m) and (n) is the ideal gen-
erated by (c), where c is their greatest common divisor. We must therefore
have (c) ⊆ I, and in particular we get an induced surjective Z-module ho-
momorphism

Z/(c) −→ Z/(m)⊗Z Z/(n). (6.1)

We have furthermore, a natural bilinear map Z/(m) ×Z Z/(n) −→ Z/(c)
taking (x, y) 7→ x · y. Note that this map is well-defined because the ideal
(c) contains both (m) and (n). It follows that we get an induced Z-linear
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homomorphism Z/(m) ⊗Z Z/(n) −→ Z/(c). This homomorphism is the
inverse of (6.1).

6.4 Flat modules

As we have seen, tensoring does not preserve short exactness. Those modules
M , however, that do preserve exactness are of particular interest.

6.4.1 Definition. An A-module M such that for any short exact sequence
of A-modules 0 −→ N1 −→ N2 −→ N3 −→ 0 the induced sequence

0 // N1 ⊗AM // N2 ⊗AM // N3 ⊗AM // 0

is exact, is called a flat-module.

6.4.2 Example. The ring A considered as an A-module is flat. This is indeed
the case as M ⊗A A = M by Proposition (6.2.2).

6.4.3 Example. Let F be a free module, that is F = ⊕i∈IA. For any module
M we have by Proposition (6.1.2) and Proposition (6.2.2) that F ⊗A M =
⊕i∈IM . It follows that free modules are flat. In particular we have that
vector spaces are always flat.

6.4.4 Example. Consider the Z-module M = Z/(n), for some integer n > 1.
By replacing the 2 in Example (6.1.1) we get that M is not flat. Note that
when n = 1 the module is the zero module, which is flat by trivial reasons.
And when n = 0 the module M = Z is free, hence flat.

6.4.5 Proposition. Let M be an A-module. The following are equivalent

(1) The module M is flat.

(2) The induced map N1⊗AM −→ N2⊗AM is injective, for any injective
map N1 −→ N2 of A-modules.

(3) For any injective map N1 −→ F with F a free A-module, the induced
map N1 ⊗AM −→ F ⊗AM is injective.

Proof. It it is clear that (1) is equivalent with (2), and that (2) implies (3).
We will show that (3) implies (2). Let 0 −→ N1 −→ N2 −→ N3 −→ 0 be
a short exact sequence of A-modules. We can find free modules F2 and F3

making a commutative diagram
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F2
f //

f2
��

F3

f3
��

N2
// N3,

with surjective homomorphisms. Let C = Ker(f) and let Ki ⊆ Fi denote the
kernel of fi, (i = 2, 3). There is an induced surjective map C −→ N1, and we
let Z denote the kernel of that homomorphism. From the right exactness of
the tensor product we obtain the following commutative diagram and exact
rows

Z ⊗AM //

��

K2 ⊗AM

��

// K3 ⊗AM

��

// 0

C ⊗AM // F2 ⊗AM // F3 ⊗AM // 0.

By assumption M satisfies the condition (3), so in particular the bottom
horizontal sequence in (6.4) is injective to the left. The Snake Lemma then
gives that we have a short exact sequence of the co-kernels of the three
vertical maps in the diagram. By the right exactness of the tensor product
we obtain that the co-kernel of the vertical maps is the sequence

N1 ⊗AM −→ N2 ⊗AM −→ N3 ⊗AM.

Injectivity of the map N1 ⊗A M −→ N2 ⊗A M follows as the right most
vertical sequence in (6.4) is injective by the assumption of M . Thus, we have
proven that (3) implies (2) (and in fact that (3) implies (1)).

6.4.6 Proposition. Let M1, . . . ,Mn be a finite collection of A-modules, and
let M = ⊕ni=1Mi denote their direct sum. Then M is flat if and only each
summand is flat.

Proof. We can by induction reduce to the situation to having two summands
only, M = M1 ⊕M2. For any A-module Q the sequence

0 −→M1 ⊗A Q −→ (M1 ⊕M2)⊗A Q −→M2 ⊗A Q −→ 0

is exact since the middle term is M1 ⊗A Q⊕M2 ⊗A Q (Proposition (6.1.2)).
Let N −→ F be a injective A-module homomorphism, with F free, and let
Q denote its cokernel. Consider the commutative diagram
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0

��

0

��

0

��
M1 ⊗A N //

��

M1 ⊗A F

��

//M1 ⊗A Q //

��

0

(M1 ⊕M2)⊗N //

��

(M1 ⊕M2)⊗ F //

��

(M1 ⊕M2)⊗Q //

��

0

M2 ⊗A N //

��

M ⊗A F //

��

M2 ⊗A Q

��

// 0

0 0 0

with exact horizontal sequences. By the observation above all the three
vertical columns are exact. If M is flat, then the left most map in the middle
horizontal row is injective. Applying the Snake Lemma to rows two and three
in the diagram gives that M2⊗AN −→M2⊗AF is injective. Hence M2 is flat
by Proposition (6.4.5). Similar argument shows that M1 also is flat. Thus if
M = M1⊕M2 is flat, we get that it’s summands are also flat. The converse is
immediate consequence of the fact that tensor products commute with direct
sum (Proposition (6.1.2).

6.4.7 Corollary. Any projective module is flat.

Proof. Let P be a projective module, and write P as a quotient of a free
module F −→ P . By Lemma (5.3.9) that surjection splits, and we have that
F = P ⊕K, where K is the kernel of F −→ P . Since F is free we have by
Example (6.4.3) that F is flat. Then, as just seen we get that each of its
summands, and in particular the projective module P , is flat.

6.4.8 Corollary. A finitely generated Z-module is flat if and only if it is
free.

Proof. By the Fundamental Theorem for finitely generated abelian groups
we have that a finitely generated module M can be written as

M = ⊕ni=1Z⊕mj=1 Z/(nj),
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for some integers n1, . . . , nm, all strictly greater than one. By the Proposition
M is flat if and only if all of its summands are flat. A torsion module Z/(n)
with n ≥ 1 is not flat, as seen in Example (6.4.4). Thus the only summands
that are flat are summands with Z. Such a module will be free by definition.

6.5 Tor

We fix an A-module M . For any A-module N we let

// Pn
dn // · · · d1 // P0

// N // 0

be a projective resolution of N . Tensoring that resolution with our fixed
module M we get the complex

// Pn ⊗AM // · · · // P0 ⊗AM // 0.

If P• was the resolution of N , we let (P•⊗AM) denote the associated complex
we get by tensoring with M . For each positive integer n ≥ 0, we have the
homology modules

Hn(P• ⊗AM) = Ker(dn ⊗ 1)/Im(dn+1 ⊗ 1).

6.5.1 Proposition. The homology modules defined above are independent of
the projective resolution. These homology modules are denoted

TorAn (N,M) := Hn(P• ⊗AM).

Proof. The proof, which is similar to the proof of (5.3.5), is left to the reader.

6.5.2 Remark. Note that TorA0 (N,M) = N ⊗AM .

6.5.3 Proposition. Let 0 −→ N1 −→ N2 −→ N3 −→ 0 be a short exact
sequence of A-modules. Then there is, for any A-module M , a long exact
sequence
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· · · // TorAn+1(N3,M)

rrffffffffffffffffffffffffff

TorAn (N1,M) // TorAn (N2,M) // TorAn (N3,M)

rrffffffffffffffffffffffffff

TorAn−1(N1,M) // · · ·

Proof. By Lemma (5.3.8) we can find projective resolutions of the modules
N1, N2 and N3, that together make a short exact sequence in degree n;

0 // Pn // Qn
// Rn

// 0.

We have furthermore that the sequence splits by Lemma (5.3.9), hence Qn =
Pn⊕Rn. Thus, when tensoring the resolutions with M , we get complexes in
the vertical direction, but the short exactness in each degree n is preserved.
The long exact sequence of homology modules then follows from Theorem
(4.1.3) and Proposition (6.5.1).

6.5.4 Proposition. Let M be an A-module. The following assertions are
equivalent

(1) The module M is flat.

(2) We have TorA1 (N,M) = 0 for all A-modules N .

(3) We have TorAn (N,M) = 0 for all N , all n > 0.

Proof. Clearly (3) implies (2). By the long exact sequence (6.5.3) it follows
that (2) implies (1). We will show that (1) implies (3). Assume that M is
flat, and let N be a module. Let P• be a projective resolution of N . By
taking out kernels and cokernels, one can break up any long exact sequence
into many short exact sequences. Since M is flat, tensoring with M will
preserve short exact sequences. It follows that M also preserves any long
exact sequences. Thus P•⊗AM is not only a complex, it is exact. Hence all
the positive homology modules are zero, and we have shown that (1) implies
(3).
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6.6 Universal Coefficient Theorem

6.6.1 Theorem. Assume that the ring A is either the integers A = Z, or
that A is a field. Let M be a finitely generated A-module, and let F• be a
complex where in each degree the modules are free and of finite rank. The
following identity holds,

Hn(F• ⊗AM) = Hn(F•)⊗AM
⊕

TorA1 (Hn−1(F•),M).

Proof. Let {Fn, dn} be a complex with free and finitely generated modules
Fn. Let Zn = Ker(dn). We have Zn⊗AM ⊆ ker(dn⊗1), and the isomorphism
of Exercise (1.8.6) gives the short exact sequence

Zn⊗AM/Im(dn+1⊗1) ⊂ ker(dn⊗1)/Im(dn+1⊗1)→ ker(dn⊗1)/Zn⊗AM → 0
(6.2)

Note that by definition the middle term is Hn(F• ⊗AM). We will prove the
theorem by showing that this short exact sequence splits, giving us that the
middle term is the direct summand of the two others, and then identify these
two modules. Let us begin by recalling that the sequence

0 −→ Zn −→ Fn −→ Bn−1 −→ 0 (6.3)

is short exact, where Bn−1 = im(dn). As Zn ⊆ Fn and Bn−1 ⊆ Fn−1 are
submodules of a free module, these two modules themselves are free (Propo-
sition (5.2.2)). It then follows from Lemma (5.3.9) that the above sequence
splits, so Fn = Zn ⊕ Bn−1. We then get that Zn ⊗A M is a summand of
Fn ⊗A M , and then also that Zn ⊗A M is a summand of ker(dn ⊗ 1). We
then obtain that the sequence (6.2) splits. To identify the outer terms of the
sequence (6.2), consider the exact sequence

0 // Zn // Fn
dn // Zn−1

// Hn−1(F•) // 0.

Which yields a free, hence projective, resolution of Hn−1(F•). Consequently
the homology of the complex

Zn ⊗AM
j // Fn ⊗AM

dn⊗1// Zn−1 ⊗AM

computes the torsion modules TorAi (Hn−1(F•),M). Note that the splitting
of the sequence (6.3) implies that Zn ⊗AM is a summand of Fn ⊗AM , and
consequently that the homomorphism j is injective. We then have
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TorA0 (Hn−1(F•),M) = Zn−1 ⊗AM/Im(dn ⊗ 1)

TorA1 (Hn−1(F•),M) = ker(dn ⊗ 1)/Zn ⊗AM.

As Hn−1(F•) ⊗A M is the zero’th Tor-module TorA0 (Hn−1(F•),M) we have
identified the ends of the sequence (6.2) in the desired way, proving our claim.

6.6.2 Remark. The assumption that the complex F• consists of modules that
are free and of finite rank in each degree, can be relaxed. In fact, what we
used is that any submodule of a free Z-module is free, and that holds without
the finiteness assumption.

6.7 Exercises

6.7.1. Let M,N and P be A-modules. Show that we have a natural isomorphism

HomA(M ⊗A N,P ) = HomA(M,HomA(N,P )).

6.7.2. Let E be a free A-module of finite rank, and let E∗ denote its dual. Show that for
any A-module M we have a natural isomorphism

HomA(M,E) = HomA(M ⊗A E∗, A).

6.7.3. Let M be an A-module. We define the tensor algebra TA(M) in the following way.
Let T 0M = A. For each integer n > 0 we let Tn(M) = M ⊗A · · · ⊗A M be the tensor
product of M taken n-times. So T 1(M) = M,T 2(M) = M ⊗AM and so on. Let

TA(M) = ⊕n≥0T
n(M),

and show that the A-module TA(M) has a natural product structure by

(x1 ⊗ · · · ⊗ xn) · (y1 ⊗ · · · ⊗ ym) := x1 ⊗ · · · ⊗ xn ⊗ y1 · · · ⊗ ym.

6.7.4. LetM be an A-module, and let TA(M) be the tensor algebra (6.7.3). Let I ⊆ TA(M)
be the two-sided ideal generated by all tensors of the form x⊗ y− y⊗ x, for all x, y ∈M .
Let SA(M) := TA(M)/I denote the graded commutative unital quotient algebra, which
we refer to as the symmetric algebra.

(1) Show that for any A-algebra (commutative) B there is a bijection between A-module
homomorphisms M −→ B and A-algebra homomorphisms SA(M) −→ B.

(2) Show that when M is a free module of rank n, then SA(M) = A[x1, . . . , xn] the
polynomial algebra in n-variables over A.

6.7.5. Let A = Z be the integers. The rank of a finitely generated A-module M is defined
as the Q-vector space dimension

rk(M) = dimQ(M ⊗Z Q).

Show that for a free and finitely generated module F the rank defined here coincides with
the usual rank defined (1.4.11).
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6.7.6. Let Pn −→ · · · −→ P0 be a complex of finitely generated Z-modules. Show that

n∑
i=0

(−1)irk(Pi) =
n∑
i=0

(−1)irkHi(C•),

where Hi(C•) is the i’th homology module of the complex.

6.7.7. Assume that we have a short exact sequence 0 −→ M1 −→ M2 −→ M3 −→ 0
of finitely generated Z-modules. Show that the Euler-Poincare characteristic (5.5.3) is
additive;

χ(M2) = χ(M1) + χ(M3).

6.7.8. Show that an A-module M is flat if and only if the natural map M ⊗A I −→ A is
injective, for all ideals I ⊆ A.

6.7.9. Compute TornZ/(8)(Z/(4),Z/(4)).

6.7.10. Let I and J be two ideals in a ring A. Show that the ideal I + J (see Exercise
(1.8.5)) consisting of all A-linear combinations of elements in I and J , equals the smallest
ideal containing both I and J . That is, I + J = ∩I ′, where the intersection is taken over
all ideal I ′ ⊆ A, with I ⊆ I ′ and J ⊆ I ′. Deduce then that

A/I ⊗A A/J = A/(I + J).

6.7.11. Let I and J be two ideals in a ring A. Show that

TornA(A/I,A/J) = Torn−2
A (I, J) (n > 2)

Tor2A(A/I,A/J) = Ker(I ⊗A J −→ IJ).

Tor1A(A/I,A/J) = I ∩ J/(IJ).

6.7.12. Show that if M and N are flat A-modules, then so is M ⊗A N .

6.7.13. Given a short exact sequence 0 −→M1 −→M −→M2 −→ 0 of A-modules. Show
that if M1 and M are flat, then so is M2.
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Chapter 7

Topological spaces

The aim of this chapter is to introduce the main objects we are going to study:
topological spaces and continuos maps between them. We will discuss several
examples: Euclidean spaces and its subspaces, simplices, quotients, projec-
tive spaces, and manifolds. We will also discuss compactness. Homotopy
relation is the subject of the last part of this chapter.

7.1 Topological spaces and continuous maps

7.1.1 Definition. A topological space is a set X together with a collection
T of subsets of X which satisfies the following properties:

(1) X and ∅ belong to T .

(2) If U and V belong to T , then so does the intersection U ∩ V .

(3) If, for s ∈ S, Us belong to T , then so does the union
⋃
s∈S Us.

Let (X, T ) be a topological space. The collection T is called the topology
of X and the members of T are called open subsets of X. A topological
space (X, T ) will be often denoted simply by X, in which case the collection
of open subsets T is assumed to be known. A subset D ⊂ X is called closed
if the complement X \D is open.

7.1.2 Excercise. Let (X, T ) be a topological space. Show that:

(1) X and ∅ are closed subset of X.

(2) If D and E are closed subset of X, then so is D ∪ E.
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(3) If, for s ∈ S, Ds is closed in X, then so is ∩s∈SDs.

7.1.3 Example. Let X be the set consisting of just one point. Such a set has
a unique topology consisting of all the subsets of X. This topological space
is denoted by ∆0 or D0 or R0 and is called the point.

7.1.4 Definition. Let X and Y be topological spaces. A function f : X −→
Y is called continuous if, for any open subset V ⊂ Y , the pre-image f−1(V ) =
{x ∈ X | f(x) ∈ V } is open in X.

We will often use the term map for a continuous function between topological
spaces. Thus any map is a function, but not all functions are maps, only those
that are continuous. This notion of continuity is essential for understanding
topological spaces. Maps will be used to compare spaces.

7.1.5 Excercise. Show that a function f : X −→ Y is continuous if and only
if, for any closed subset D ⊂ Y , the pre-image f−1(D) = {x ∈ X | f(x) ∈ D}
is closed in X.

7.1.6 Excercise. Let f : X −→ Y and g : Y −→ Z be continuous functions
between topological spaces. Show that the composition gf : X −→ Z is also
continuous.

7.1.7 Definition. A continuous function f : X −→ Y is called an isomor-
phism if there is a continuous function g : Y → X such that fg = idY and
gf = idX . Two spaces X and Y are said to be isomorphic if there is an
isomorphism f : X −→ Y .

Note that an isomorphism of topological spaces is a one to one and onto func-
tion (such functions are also called bijections), as it has an inverse function.
However even if a continuous function is a bijection (one to one and onto), so
it has an inverse, the inverse may fail to be continuous. Thus to be an isomor-
phism it is not enough to be a continuous bijection. To be an isomorphism,
in addition to having the inverse, this inverse has to be continuous.

7.1.8 Excercise. Let S be a set containing at least two distinct elements.
Consider the following two collections of subsets of S: T = {∅, S} and D =
{all subsets of S}. Show that (S, T ) and (S,D) are topological spaces. Prove
that id : S −→ S is a continuous function between (S,D) and (S, T ), but
it is not a continuous function between (S, T ) and (S,D). Conclude that
id : S −→ S is not an isomorphism between (S,D) and (S, T ). Are (S,D)
and (S, T ) isomorphic?
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Constructing new spaces

7.2 Subspaces

Let X be a topological space and Y ⊂ X be a subset. Define U to be the
collection of subsets of Y which consist of intersections Y ∩U where U is an
open subset in X. We call the collection U the subspace topology on Y .

7.2.1 Excercise. Let X be a topological space and Y ⊂ X be a subset. Show
that Y with the subspace topology is a topological space.

7.2.2 Excercise. Let X be a topological space and Z ⊂ Y ⊂ X be subsets.
Consider Y as a topological subspace of X. The set Z can be then considered
as a subspace of Y and a subspace of X. Show that these two subspace
topologies on Z are the same.

We will often use the above exercises to construct new topological spaces.
We will define first an ”ambient” topological space and then consider its
subspaces as the new topological spaces.

7.2.3 Excercise. Let Y and X be topological spaces and Z ⊂ X be a topo-
logical subspace. Show that the inclusion i : Z ⊂ X is continuous. Show
also that a function f : Y −→ Z is continuous if and only if the composition
if : Y −→ X is continuous.

7.3 Disjoint unions

Let X and Y be topological spaces. Consider the disjoint union X
∐
Y and

the collection U of subsets U ⊂ X
∐
Y such that U ∩ X is open in X and

U ∩ Y is open in Y . We call the collection U the disjoint union topology on
X
∐
Y .

More generally, for a collection of topological spaces {Xi}i∈I , consider the
disjoint union

∐
i∈I Xi and the collection U of subsets U ⊂

∐
i∈I Xi such

that U ∩Xi is open for any i ∈ I. We call the collection U the disjoint union
topology on

∐
i∈I Xi.

7.3.1 Excercise. Let Y and X be topological spaces. Show X
∐
Y , with the

disjoint union topology, is a topological space.

7.3.2 Excercise. Let X,Y , and Z be topological spaces. Show that a function
f : X

∐
Y −→ Z is continuous if and only if the compositions of f and the

inclusions in1 : X ⊂ X
∐
Y and in2 : Y ⊂ X

∐
Y are both continuous.
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7.3.3 Excercise. A space of the form
∐

I ∆0 is called discreet. Show that any
subset of a discreet space is open. Show that any function out of a discreet
space is continuous. Show that any function into ∆0 is continuous.

7.4 Products

Let X and Y be topological spaces. Consider the product X × Y and the
collection U of subsets U ⊂ X × Y such that, for any point (x, y) ∈ U , there
are open subsets x ∈ U1 ⊂ X and y ∈ U2 ⊂ Y such that U1 × U2 ⊂ U . We
call the collection U the product topology on X × Y .

7.4.1 Excercise. Let X and Y be topological spaces. Show X × Y with the
product topology is a topological space.

7.4.2 Excercise. Let X, Y , and Z be topological spaces. Show that a function
f : Z → X × Y is continuous if and only if the compositions of f with
projections pr1 : X × Y −→ X and pr2 : X × Y −→ Y are both continuous.

7.5 Quotients

Let X be a topological space, Y a set, and f : X −→ Y a function of sets.
The function f can be used to define a topology on Y . Let U be the collection
of subset U ⊂ Y for which f−1(U) is open in X. The collection U is called
the quotient topology on Y induced by f . We will also call Y , with the
quotient topology, a quotient space of X.

7.5.1 Excercise. Let X be a topological space. Show that Y with the quotient
topology induced by f : X −→ Y is a topological space and the function
f : X −→ Y is continuous.

An important property of a quotient space is that it is easy to verify if a
function from such a space is continuous:

7.5.2 Proposition. Let Y be the topological space given by the quotient
topology induced by f : X −→ Y . A function g : Y → Z is continuous if and
only if the composition gf : X −→ Z is continuous.

Proof. Composition of continuous functions is continuous (Exercise 7.1.6).
Thus if g is continuous, then so is gf . This shows one implication.

Assume now that gf is continuous. We need to show that g is continuous.
Let U ⊂ Z be an open subset. As gf is continuous, the subset f−1(g−1(U))
is open in X. By definition of the quotient topology, g−1(U) is then open in
Y and we can conclude that g is also continuous.
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7.6 Compact spaces

The aim of this section is to introduce an important class of topological
spaces: compact spaces. Their key property is that continuous bijections
between them are isomorphisms. We start with:

7.6.1 Definition.

(1) A topological space X is called Hausdorff if, for any two distinct paints
x1, x2 ∈ X, there are open subsets x1 ∈ U1 ⊂ X and x2 ∈ U2 ⊂ X
whose intersection U1 ∩ U2 is empty.

(2) A topological space X is compact if it is Hausdorff and, for any col-
lection of open subsets {Ui ⊂ X}i∈I for which

⋃
i∈I Ui = X, there is a

finite sequence i1, i2, . . . , ik such that:

Ui1 ∪ Ui2 ∪ · · · ∪ Uik = X

The collection of open subsets {Ui ⊂ X}i∈I such that
⋃
i∈I Ui = X is called

an open cover, or simply a cover, of X. A space X is compact if it is Hausdorff
and any cover of X has a finite subcover.

7.6.2 Excercise. Let X and Y be spaces. The disjoint union X
∐
Y is com-

pact if and only if both X and Y are compact.

7.6.3 Excercise. Let {Xi}i∈I be a collection of compact spaces. Show that∐
i∈I Xi is compact if and only if I is a finite set.

7.6.4 Excercise. Let X and Y be spaces. The product X × Y is compact if
and only if both X and Y are compact.

Here are some fundamental properties of compact spaces:

7.6.5 Proposition.

(1) Let X be a Hausdorff space. If a subspace Y ⊂ X is compact, then it
is a closed subset of X.

(2) Let X be a compact space. A subspace Y ⊂ X is compact if and only
if it is closed.

Proof. (1): We need to show that X \ Y is open. For that it is enough to
prove that, for any point x 6∈ Y , there is an open set x ∈ U ⊂ X such that
the intersection U ∩Y is empty. Since X is Hausdorff, for any y ∈ Y , we can
find two open subsets x ∈ Uy ⊂ X and y ∈ Vy ⊂ X such that Uy ∩ Vy = ∅.
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It is then clear that Y ⊂
⋃
y∈Y Vy. Since Y is compact, we can then find

finitely many points y1, . . . , yn, such that Y ⊂ Vy1 ∪ · · · ∪Vyn . It then follows
that an open subset U = Uy1 ∩ · · · ∩ Uyn has empty intersection with Y .

(2): If Y is compact then it is closed by statement (1).

Let Y be a closed subset of X and Y =
⋃
i∈I(Ui∩Y ), where Ui is open in X.

Then X = (X \ Y ) ∪
⋃
i∈I Ui. Since X is compact we can find then a finite

sequence i1, i2, . . . , ik such that:

X = (X \ Y ) ∪ Ui1 ∪ Ui2 ∪ · · · ∪ Uik

It then follows that Y = (Ui1 ∩ Y ) ∪ (Ui2 ∩ Y ) ∪ · · · ∪ (Uik ∩ Y ). To show
that Y is compact, it remains to show that it is Hausdorff. Let y1 and y2 be
two distinct points in Y . Since X is Hausdorff, there are two open subsets
y1 ∈ U1 ⊂ X and y2 ∈ U2 ⊂ X whose intersection U1 ∩ U2 is empty. It then
follows that the intersection of U1 ∩ Y and U2 ∩ Y is also empty and Y is
Hausdorff.

An important property of compactness is that it is preserved by continuous
functions:

7.6.6 Proposition.

(1) Let f : X −→ Y be a continuous function and Y a Hausdorff space. If
D ⊂ X is compact, then f(D) is compact and closed in Y .

(2) Assume that X is compact and Y Hausdorff. If f : X −→ Y is a map
which is an onto function, then Y is also compact.

(3) Assume that X is compact and Y is Hausdorff. If f : X −→ Y is a
continuos bijection (one to one and onto), then f is an isomorphism.

Proof. (1): Since Y is Hausdorff, then so is f(D). Let f(D) ⊂
⋃
i∈I Ui.

Since D is compact and D ⊂
⋃
i∈I f

−1(Ui), there is a finite sequence i1, . . . , ik
such that:

D ⊂ f−1(Ui1) ∪ f−1(Ui2) ∪ · · · ∪ f−1(Uik)

Consequently f(D) ⊂ Ui1 ∪ Ui2 ∪ · · · ∪ Uik . We can conclude that f(D) is
compact. By Proposition 7.6.5.(1), f(D) is also closed in Y , as Y is assumed
to be Hausdorff.

(2): This is a consequence of statement (1).

(3): Since f is a bijection, there is an inverse function g : Y −→ X, such that
fg = idY and gf = idX . We need to show that g is continuous. According
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to Exercise 7.1.5 it is enough to prove that g−1(D) is closed in Y , for any
closed subset D ⊂ X. Note however that g−1(D) = f(D). Thus we need
to show that f(D) is closed. This follows from the following sequence of
implications. Since D is closed and X is compact, D is also compact by
Proposition 7.6.5.(2). As Y is Hausdorff, f(D) is then compact by statement
(1). We can then use again Proposition 7.6.5.(1) to conclude that f(D) is
closed.

According to statement (3) of the above proposition, to show that compact
spaces X and Y are isomorphic, it is enough to construct a continuous bi-
jection f : X −→ Y . The inverse of f would be then necessarily continuous.
This is one of the key advantages of compact spaces and we will use it often.
Another property of compact spaces often used is:

7.6.7 Proposition. Let X be a Hausdorff space and Y ⊂ X and Z ⊂ X be
two disjoint (Y ∩ Z = ∅) subspaces which are compact. Then there are open
sets Y ⊂ U ⊂ X and Z ⊂ V ⊂ X such that U ∩ V = ∅.

Proof. Let us fix a point y ∈ Y . For any z ∈ Z let us choose open subsets
y ∈ Uy,z ⊂ X and z ∈ Vy,z ⊂ X such that Uy,z ∩ Vy,z = ∅. This can be done
since X is Hausdorff. Clearly Z ⊂

⋃
z∈Z Vy,z. Since Z is compact, there is a

finite sequence z1, z2, . . . , zk such that:

Z ⊂ Vy,z1 ∪ Vy,z2 ∪ · · · ∪ Vy,zk

Define Uy := Uy,z1 ∩ Yy,z2 ∩ · · · ∩ Uy,zk
and Vy := Vy,z1 ∪ Vy,z2 ∪ · · · ∪ Vy,zk

.
Then Uy and Vy are disjoint open subsets of X such that y ∈ Uy and Z ⊂ Vy.
Consider such subsets for all y ∈ Y . It is clear that Y ⊂

⋃
y∈Y Uy. Since Y

is compact, there is a finite sequence y1, y2, . . . , yn such that:

Y ⊂ Uy1 ∪ Uy2 ∪ · · · ∪ Uyk

Define U := Uy1 ∪Uy2 ∪ · · · ∪Uyk
and V := Vy1 ∩ Vy2 ∩ · · · ∩ Vyk

. The subsets
U and V satisfy the requirements of the propositions.

7.7 Euclidean spaces

For n > 0, let Rn be the set of n-tuples of real numbers. If n = 0, we define
R0 to be the one point set {0}. Recall that |x| =

√
x2

1 + · · ·x2
n, if n > 0 and

|0| = 0 if n = 0. Let a ∈ Rn and r ∈ R. The following subsets in Rn are
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called respectively the sphere, the disc, and the open ball with center in a
and radius r:

S(a, r) = {x ∈ Rn | |x− a| = r}

D(a, r) = {x ∈ Rn | |x− a| ≤ r}

B(a, r) = {x ∈ Rn | |x− a| < r}

We can now define a topology on Rn. A subset U ⊂ Rn is called open if, for
any point a ∈ U , there is a number ε > 0, such that the open ball B(a, ε) is
included entirely in U . The collection of such open subsets of Rn is called
the Euclidean topology and Rn, with this choice of open subsets, is called
the n-dimensional Euclidean space. We will not consider any other topology
on Rn. From now on the symbol Rn denotes the n-dimensional Euclidean
space.

7.7.1 Excercise. Show that Rn with the above choice of open subsets is a
Hausdorff topological space.

7.7.2 Excercise. Show that the product of Euclidean topologies on Rn×Rm

is the same as the Euclidean topology on Rn+m.

7.7.3 Excercise. Consider Rn as a subset of Rn+m consisting of n+m-tuples
of real numbers whose last m-coordinates are 0. Show that the Euclidean
topology on Rn is the same as the subspace topology of the Euclidean topol-
ogy on Rn+m.

We can now use the Euclidean space Rn to consider its subspaces. In this
way we can get a lot of new examples of topological spaces. Here are some
of the ones we will often use:

n–dimensional disc: Dn := {x ∈ Rn | |x| ≤ 1}

n–dimensional open disc: Bn := {x ∈ Rn | |x| < 1}

(n− 1)–dimensional sphere: Sn−1 := {x ∈ Rn | |x| = 1}

unit interval: I := {x ∈ R | 0 ≤ x ≤ 1}

n–dimensional simplex: ∆n := {x ∈ Rn+1 | x0 + · · ·+ xn = 1}

For example D0 = R0 = ∆0 is the one point space. The space S0 ⊂ R
consists of two points {−1, 1} and it is then isomorphic to the disjoint union
D0
∐
D0.

Let 0 ≤ i ≤ n. A point in ∆n whose all coordinates are 0 except the i-th
coordinate, which has to be 1, is called the i-th vertex of ∆n and is denoted
by vi.
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7.7.4 Excercise. Let X ⊂ Rn and Y ⊂ Rm are subspaces. Show that a
function f : X −→ Y is continuous if and only if, for any a ∈ X and any
ε > 0, there is δ > 0 such that, when |x− a| < δ, then |f(x)− f(a)| < ε.

7.7.5 Excercise. Show that, for any a ∈ Rn and any r > 0, the spaces Rn

and B(a, r) are isomorphic.

7.7.6 Excercise. Show that, for any a, b ∈ Rn and any r, s > 0, the spaces
D(a, r) and D(b, s) are isomorphic.

7.7.7 Excercise. Show that Dn and ∆n are isomorphic spaces.

7.7.8 Theorem. A subspace X of the Euclidean space Rn is compact if and
only if, as a subset of Rn, it is closed and bounded (it lies in a ball B(a, r)
for some r).

It follows from the above theorem that Sn−1, Dn, and ∆n are compact spaces.

It turns out that the Euclidean spaces Rn, for different n, are not isomorphic.
Can you see how to show it? Part of this course is to develop methods that
can be used to distinguish topological spaces. The general idea to show that,
for m 6= n, Rm is not isomorphic to Rn, is to find a property of topological
spaces which is preserved by isomorphisms and such that Rm satisfies this
property and Rn does not. We will use homology to identify such a property.

7.8 Simplicial operators

For 0 ≤ i ≤ n+ 1, define di : ∆n −→ ∆n+1 to be the function given by:

di(x0, . . . xn) = (x0, . . . xi−1, 0, xi, . . . xn) ∈ ∆n+1

For 0 ≤ i ≤ n, define si : ∆n+1 → ∆n to be the function given by:

si(x0, . . . xn+1) = (x0, . . . , xi−1, xi + xi+1, xi+2, . . . , xn+1)

One can use Exercise 7.7.4 to see that di and si are continuous.

The symbols djdi, djsi, sjdi and sjsi denote respectively the following com-
positions:

∆n di−→ ∆n+1 dj−→ ∆n+2

∆n+1 si−→ ∆n dj−→ ∆n+1

∆n di−→ ∆n+1 sj−→ ∆n

∆n+2 si−→ ∆n+1 sj−→ ∆n
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7.8.1 Excercise. Show that the following identities hold:

(1) If j > i, then djdi = didj−1.

(2) If j > i, then sjdi = disj−1.

(3) sidi = id.

(4) sidi+1 = id.

(5) If j − 1 < i, then sjdi = di−1sj.

(6) If i > j, then sjsi = si−1dj.

7.9 Cell attachments

Let X be a topological space and α : Sn−1 −→ X be a map. Consider the
space X

∐
Dn with the disjoint union topology. Consider further the set

X
∐
Bn and a function f : X

∐
Dn −→ X

∐
Bn given by:

f(x) =

{
x if x ∈ X

∐
Bn

α(x) if x ∈ Sn−1 ⊂ Dn

The topological space consisting of the set X
∐
Bn together with the quotient

topology given by f is denoted by X ∪α Dn. We say that X ∪α Dn is con-
structed out of X by attaching n-dimensional cell Dn along α : Sn−1 −→ X.

7.9.1 Excercise. Let α : Sn−1 −→ X be a map. Show that the composition
of the quotient map f : X

∐
Dn −→ X ∪α Dn and the inclusion X

∐
Bn ⊂

X
∐
Dn, induced by the identity id : X −→ X and the inclusion Bn ⊂ Dn,

is a continuous bijection. Is it an isomorphism?

7.9.2 Proposition. If X is Hausdorff, then so is X ∪α Dn, for any map
α : Sn−1 → X.

Proof. Let y1 and y2 be two distinct points in X ∪α Dn. There are 3 cases.
First y1 and y2 are in X. Since X is Hausdorff, then there are two disjoint
open subsets y1 ∈ U1 ⊂ X and y2 ∈ U2 ⊂ X. The subsets α−1(U1) and
α−1(U2) are open in Sn−1. Define:

Vi := {x ∈ Dn | |x| > 1/2 and x/|x| ∈ α−1(Ui)} ⊂ Dn

Note that V1 and V2 are open and disjoint subsets of Dn. Finally set Wi :=
Ui ∪ (Vi \α−1(Ui) ⊂ X

∐
Bn. Note that f−1(Wi) = Ui ∪Vi ⊂ X

∐
Dn. Thus
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Wi is open in X ∪αDn. The subsets W1 and W2 are also disjoint and contain
respectively y1 and y2.

Let y1 ∈ X and y2 ∈ Bn. Define W1 := X ∪ {x ∈ Bn | |x| > (1 + |y2|)/2}
and W2 := {x ∈ Bn | |x| < (1 + |y2|)/2}. Note that f−1(W1) = X ∪ {x ∈
Dn | |x| > (1 + |y2|)/2} and f−1(W2) = {x ∈ Dn | |x| < (1 + |y2|)/2}. These
are open subsets. The sets Wi are then also open. They are disjoint and
contain respectively y1 and y2.

Let y1 and y2 be two distinct points in Bn. Since Bn is Hausdorff, there are
open disjoint subsets y1 ∈ W1 ⊂ Bn and y2 ∈ W2 ⊂ Bn. The subset Wi is
also open in Y .

7.9.3 Proposition. If X is compact, then so is X ∪α Dn, for any map
α : Sn−1 → X.

Proof. By previous proposition X ∪αDn is Hausdorff. Since X
∐
Dn is com-

pact, according to Proposition 7.6.6.(2), the space X ∪αDn, as the image of
f : X

∐
Dn −→ X ∪α Dn, is also compact.

7.9.4 Example. Consider the one point space D0. Let α : Sn−1 −→ D0 be
the unique map. The space D0 ∪α Dn is isomorphic to Sn. To construct the
isomorphism consider a function g : D0

∐
Bn −→ Sn defined as follows:

g(x) =


(0, · · · , 0,−1) if x ∈ D0

(2
√

1−|x|
|x| x, 1− 2|x|) if x ∈ Bn \ {(0, · · · , 0)}

(0, · · · , 0, 1) if x = (0, · · · , 0) ∈ Bn

We claim that g is a bijection and that the composition of the quotient
function f : D0

∐
Dn −→ D0

∐
Bn and g is a continuous function gf :

D0
∐
Dn −→ Sn. To see this we need to show that the restriction of gf

to the components D0 and Dn are continuous. This is true for the first
restriction since all functions out of D0 are continuous. The other restriction
is given by the formula:

Dn 3 x 7→

{
(2
√

1−|x|
|x| x, 1− 2|x|) ∈ Sn if x ∈ Dn \ {(0, · · · , 0)}

(0, · · · , 0, 1) ∈ Sn if x = (0, · · · , 0) ∈ Dn

whose continuity can be checked using 7.7.4. Thus the function g defines a
continuous map, denoted by the same symbol, g : D0 ∪α Dn −→ Sn. As
both spaces D0 ∪α Dn and Sn are compact, this map g must be then an
isomorphism.
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7.10 Real projective spaces

Consider the Euclidean space Rn+1 (n ≥ 0). The symbol RPn denotes the
set of 1-dimensional R-vector subspaces of Rn+1. Such subspaces are also
called lines in Rn+1. For example since R is 1-dimensional R-vector space,
it has only one 1-dimensional R-vector subspace, and hence RP0 is just a
point.

Define π : Sn −→ RPn to be the function that assigns to a vector v ∈ Sn ⊂
Rn+1 the R-linear subspace generated by v. Explicitly π(v) := {rv | r ∈ R}.

7.10.1 Definition. The set RPn together with the quotient topology induced
by π : Sn −→ RPn is called the n-dimensional real projective space.

In the rest of this section we will identify the projective spaces as spaces
build by attaching cells. For that we need:

7.10.2 Proposition. RPn is a compact space.

Proof. Since Sn is compact, according to Proposition 7.6.6.(2), to show that
RPn is compact it is enough to prove that it is Hausdorff. Let L1 and
L2 be two distinct points in RPn, i.e., two distinct 1-dimensional R-linear
subspaces in Rn+1. Let v1 and v2 be two points in Sn which generate the
lines L1 and L2 respectively. Let r = min{|v1 − v2|, |v1 + v2|}. Define U1 to
be the subset of PRn of all the lines which are generated by vectors v such
that min{|v1 − v|, |v1 + v|} < r/2. Define U2 to be subset of RPn of all the
lines which are generated by vectors v such that min{|v2−v|, |v2 +v|} < r/2.
It is clear that the subsets U1 and U2 are disjoint and L1 ∈ U1 and L2 ∈ U2.
We claim that these sets are also open. Note that:

π−1(Ui) = {w ∈ Sn | |vi − w| < r/2} ∪ {w ∈ Sn | |vi + w| < r/2}

Since it is an open subset in Sn, Ui is open in RPn.

We can use the map π : Sn −→ RPn to attach a cell and build a new
topological space RPn ∪π Dn+1.

7.10.3 Proposition. The space RPn ∪π Dn+1 is isomorphic to RPn+1.

Proof. Since both spaces RPn ∪π Dn+1 and RPn+1 are compact, to show
that they are isomorphic we need to construct a continuous bijection between
them. Let us denote by e : Rn+1 −→ Rn+2, respectively e : Sn −→ Sn+1, the
functions which assigns to an element x ∈ Rn+1 the element (x, 0) ∈ Rn+2.
Note that both of these functions are continuous. Define i : RPn −→ RPn+1
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to be a function that assigns to a line L ⊂ Rn+1, the line in e(L) ⊂ Rn+2.
Note that there is a commutative diagram:

Sn

π

��

e // Sn+1

π

��
RPn i //RPn+1

Since the composition iπ = πe is continuous, then i is also continuous. The
map i : RPn −→ RPn+1 is called the standard inclusion.

Define a function g : RPn∐Bn+1 → RPn+1 as follows:

g(x) =

{
i(x) if x ∈ RPn

the line generated by (x,
√

1− |x|2) ∈ Rn+2 if x ∈ Bn+1

Note that the composition of the function g with the quotient map f :
RPn∐Dn+1 −→ RPn ∪π Dn+1 is continuous. Thus g defines a continu-
ous map g : RPn ∪π Dn+1 −→ RPn+1. Note that this map is a bijection.
Since the spaces are compact we can conclude that this map is an isomor-
phism.

7.10.4 Example. Let n = 0. In this case RP0 is just a point and as a
topological space it is isomorphic to D0. Thus there is only one map π :
S0 −→ RP0. The space RP1 is then isomorphic to D0 ∪π D1, which by
Example 7.9.4, is isomorphic to S1. It follows then that RP1 is isomorphic
to S1. We would like to identify the map π : S1 −→ RP1 = S1. Note that
this map sands the elements x and −x to the same point. If we think about
S1 as a subset of the complex numbers C of length 1, then the multiplication
map S1 3 z 7→ z2 ∈ S1 also sends x and −x to the same point. One can
then check directly that the map π : S1 −→ RP1 = S1 is given by this
multiplication map.

7.11 Topological manifolds

7.11.1 Definition. Let n ≥ 0. A topological space X is called an n-
dimensional manifold if it is a Hausdorff space and, for any point x ∈ X,
there is an open subset x ∈ U ⊂ X which is isomorphic to Rn.

We will be interested mostly in topological manifolds which are compact.
The most basic are:
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7.11.2 Proposition. Let X be a compact topological manifold of dimension
0. Then X is isomorphic to D0

∐
D0
∐
· · ·
∐
D0 (a finite disjoint union of

points).

Proof. Since, for any point x ∈ X, there is an open subset x ∈ U ⊂ X which
is isomorphic to R0 we can conclude that {x} ⊂ X is an open subset of X.
As X = ∪x∈X{x} and X is compact, we must have X = {x1, x2, . . . , xk}.
The map

∐k
i=1D

0 −→ X which sends the i-th D0 to the point xi is then a
continuous bijection. Since both spaces are compact this bijection has to be
then an isomorphism.

Can a manifold have different dimensions? This question is directly related
to the question if Rn and Rm can be isomorphic for different n and m. We
will use homology to answer this question.

7.11.3 Proposition. Spaces Sn and RPn are compact manifolds of dimen-
sion n.

Proof. Let us choose points x = (x1, . . . , xn+1) ∈ Sn and π(x) ∈ RPn.
Consider the subsets U := {y ∈ Sn | |y−x| < 1} and D := {y ∈ Sn | |y−x| ≤
1}. Note that U is open in Sn. Moreover its image π(U) is open in RPn, as
π−1π(U) = U ∪ (−U) is open in Sn. The subset D is closed in Sn and hence
it is a compact space. Since the map π : D → π(D) is a continuous bijection
it has to be an isomorphism. Its restriction π : U −→ π(U) is therefore also
an isomorphism. Thus to show the proposition it is enough to prove that
U is isomorphic to Rn. We are going to show that U is isomorphic to Bn.
One can then use Exercise 7.7.5 to get an isomorphism between U and Rn−1.
Define f : U −→ Bn−1 and g : Bn−1 −→ U by the following formulas:

f(y1, . . . , yn) = (y1 − x1, . . . , yn−1 − xn−1)

g(z1, . . . , zn−1) =

=
(
z1 + x1, . . . , zn−1 + xn−1,

√
1− (z1 + x1)2 − · · · − (zn−1 + xn−1)2

)
It is clear that f and g are continuous. Since the compositions fg and gf
are identities, these morphisms are isomorphisms.

7.12 Homotopy relation

Recall that I denotes the unit interval [0, 1] ⊂ R. We are going to use it to
define a relation on continuous maps with the same domain and range:
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7.12.1 Definition. A map f : X −→ Y is homotopic to g : X −→ Y if
there is a map S : X × I −→ Y such that, for any x ∈ X, S(x, 0) = f(x)
and S(x, 1) = g(x). Any such map S is called a homotopy between f and g.

Homotopy is an equivalence relation on the set of continuous maps between
X and Y and is preserved by compositions:

7.12.2 Proposition. (1) If f : X −→ Y is homotopic to g : X −→ Y
then g is homotopic to f (symmetry of the homotopy relation).

(2) If f : X −→ Y is homotopic to g : X −→ Y and g : X −→ Y is
homotopic to h : X −→ Y , then f is homotopic to h (transitivity of
the homotopy relation).

(3) If f : X −→ Y and g : X −→ Y are homotopic, then, for any h :
Y −→ Z, so are the compositions hf : X −→ Z and hg : X −→ Z.

(4) If f : X −→ Y and g : X −→ Y are homotopic, then, for any h :
Z −→ X, so are the compositions fh : Z −→ Y and gh : Z −→ Y .

Proof. (1): Let S : X × I −→ Y be a homotopy between f and g. Define
S ′ : X × I −→ Y as S ′(x, t) = S(x, 1 − t). Note that S ′ is a homotopy
between g and f .

(2): Let S : X×I −→ Y be a homotopy between f and g and S ′ : X×I −→
Y be a homotopy between g and h. Define S ′′ : X× I −→ Y by the formula:

S ′′(x, t) =

{
S(x, 2t) if 0 ≤ t ≤ 1/2

S ′(x, 2t− 1) if 1/2 ≤ t ≤ 1

Note that S ′′(x, 0) = f(x) and S ′′(x, 1) = h(x). Thus, if continuous, S ′′ would
be a homotopy between f and h. To see that S ′′ is continuous consider the
following compositions:

X × [0, 1/2]
α−→ X × I S−→ Y

X × [1/2, 1]
β−→ X × I S′−→ Y

where α(x, t) = (x, 2t) and β(x, t) = (x, 2t−1). These composition are clearly
continuous. It follows that, if D is closed in Y , then so are (Sα)−1(D) ⊂
X × [0, 1/2] ⊂ X × I and (S ′β)−1(D) ⊂ X × [1/2, 1] ⊂ X × I. The sum
(Sα)−1(D)∪ (S ′β)−1(D) is then also closed in X× I. Note however that this
sum coincide with (S ′′)−1(D). The function S ′′ is therefore continuous.
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(3): If S : X × I −→ Y is a homotopy between f and g, then hS is a
homotopy between hf and hg.

(4): Let S : X × I −→ Y be a homotopy between f and g. Define S ′ :
Z × I −→ Y by the formula S ′(z, t) = S(h(x), t). This is a homotopy
between fh and gh.

The fundamental example of homotopic maps are the inclusions in0 : X −→
X × I and in1 : X −→ X × I, where in0(x) = (x, 0) and in1(x) = (x, 1).

Homotopy relation can be used to define:

7.12.3 Definition. A map f : X −→ Y is called a homotopy equivalence
if there is a map g : Y −→ X such that the compositions fg and gf are
homotopic respectively to the identity maps id : Y −→ Y and id : X −→ X.

Two spaces X and Y are said to be homotopy equivalent if there is a homotopy
equivalence f : X −→ Y .

A space is called contractible if it is homotopy equivalent to the one point
space D0.

The homotopy equivalence relation on spaces is an equivalence relation. It is
a weaker relation than an isomorphism. Two isomorphic spaces are clearly
homotopy equivalent.

7.12.4 Proposition. (1) If D ⊂ Rn is non-empty and convex (the inter-
val between any two points in D is subset of D), then D is contractible.

(2) The spaces Rn, Dn, ∆n, and Bn are contractible.

Proof. (1): Let us choose a point x ∈ D. Define f : D0 −→ D to be given by
f(0) = x and g : D −→ D0 to be the unique map. Clearly gf = id. We need
to show that the composition fg : D −→ D is homotopic to id : D −→ D.
Define S : D × I −→ D by the formula: S(y, t) = tx + (1 − t)y. It is well
define since D is convex. Note that s(y, 0) = y and s(y, 1) = fg. Thus S is
a homotopy between id and fg.

(2): This follows from statement (1) as all these spaces are convex.

7.12.5 Proposition. (1) Let D ⊂ Rn be convex and x ∈ D a point for
which there is r > 0 such that B(x, r) ⊂ D. Then the space D \ {x} is
homotopy equivalent to Sn−1.

(2) Let n > 0. The spaces Rn \{0}, Dn \{0}, ∆n \{
(
1/(n+ 1), . . . , 1/(n+

1)
)
}, and Bn \ {0} are homotopy equivalent to Sn−1.
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Proof. Since D is convex, the space S(x, r/2) is a subspace of D. This
space S(x, r/2) is isomorphic to Sn−1. Thus to show the statement it is
enough to show that D \{x} is homotopy equivalent to S(x, r/2). Set a map
f : S(x, r/2) −→ D \ {x} to be the inclusion and g : D \ {x} −→ S(x, r/2)

to be defined by the formula g(y) = x + r(y−x)
2|y−x| . It is straight forward to

check that gf is id : S(x, r/2) −→ S(x, r/2). We need to show that fg is
homotopic to id : D \{x} −→ D \{x}. Define H : (D \{x})× I −→ D \{x}:

H(y, t) := ty + (1− t)
(
x+

r(y − x)

2|y − x|
)

Note that H(y, 1) = id and H(y, 0) = fg(y).

7.13 π0(X)

Let X be a topological space. Note that maps f : D0 −→ X can be identified
with elements of X. Such a map is determined by where it sends the only
point of D0. In this way we can think about elements of X as maps from
the one point space D0 to X. The homotopy relation on such maps can be
then rephrased in terms of elements of X as follows: two points x0, x1 ∈ X
are homotopic if there is a map α : I −→ X such that α(0) = x0 and
α(1) = x1. Such continuous maps are called paths between x0 and x1. To
have a language to describe this particular situation we are going to use the
following definition:

7.13.1 Definition. Two points x0 ∈ X and x1 ∈ X are said to be in the
same path component if there is a path α : I −→ X such that α(0) = x0 and
α(1) = x1.

Since homotopy relation on maps is an equivalence relation (see Proposi-
tion 7.12.2), we get that being in the same path component is also an equiv-
alence relation on the set of elements of X. We can then consider the equiv-
alence classes of this relation and define:

7.13.2 Definition. The set of equivalence classes of the relation ”being in
the same path component” on the set of points of X is denoted by π0(X).

A space is called path connected if π0(X) consists of one point, i.e., if all
pairs of points in X are in the same path component.

7.13.3 Excercise. Show that, for any n ≥ 0, ∆n is path connected.
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We are going to denote elements in π0(X) by [x], where x ∈ X is a point in
the given equivalence class. For such an element [x] ∈ π0(X), let us denote by
X[x] the subspace of X consisting of all points in X that are in the same path
component as x. These subspaces of X are called path connected components
of X. Note that these subspaces are path connected, i.e., π0(X[x]) is the one
point set.

7.13.4 Excercise. Show that if Y is path connected, then for any map f :
Y −→ X, there is x ∈ X such that f(Y ) ⊂ X[x].
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Chapter 8

Homology

In this chapter we are going to define and discuss homology of topological
spaces. We are going to illustrate how to use this invariant to distinguish
between topological spaces. In particular we are going to show that, for
different n’s, the spaces Rn’s are not isomorphic. We will present explicit
calculations of the homology of spheres and projective spaces. We will also
study the effect on homology groups of various standard maps.

8.1 Singular homology

Let X be a topological space. How can we study X? We are going to do
that by comparing X to simplices of various dimensions. This will be done
by studying sets of maps between ∆n and X.

8.1.1 Definition.

• A singular simplex of dimension n in X is a continuous map σ : ∆n −→
X.

• The set of singular simplexes of dimension n in X is denoted by ∆n(X).

• The symbol Sn(X) denotes the free abelian group generated by the set
∆n(X).

For example, the set ∆0(X), of maps from ∆0 to X, can be identified with
the set of points of X.

Any elements of the group Sn(X) can be written uniquely as a sum:

a1σ1 + a1σ2 + · · ·+ akσk

79



where, for all l, al ∈ Z is an integer and σl : ∆n −→ X is a singular simplex
in X.

To get interesting information about X it is not enough however to study
just singular simplices ∆n −→ X. We need to also understand how simplicial
operators act on singular simplices. By precomposing with the simplicial
operator di : ∆n −→ ∆n+1 (see 7.8), we get a map of sets and a group
homomorphism which we denote by the same symbol:

di : ∆n+1(X) −→ ∆n(X) (σ : ∆n+1 −→ X) 7→ (σdi : ∆n −→ X)

di : Sn+1(X) −→ Sn(X)
∑
l

alσl 7→
∑
l

al(σldi)

8.1.2 Excercise. Show that if j > i, then the following compositions of maps
of sets are the same (compare with 7.8.1):

∆n+2(X)
di−→ ∆n+1(X)

dj−→ ∆n(X)

∆n+2(X)
dj−1−−→ ∆n+1(X)

di−→ ∆n(X)

Conclude that the following compositions describe the same group homomor-
phisms:

Sn+2(X)
di−→ Sn+1(X)

dj−→ Sn(X)

Sn+2(X)
dj−1−−→ Sn+1(X)

di−→ Sn(X)

8.1.3 Example. Let x0, . . . , xn be n + 1 points in a convex subspace X of
Rm. These points determine a singular simplex σ : ∆n −→ X given by
σ(t0, . . . , tn) = t0x0 + · · · tnxn. We will also use the symbol (x0, . . . , xn) to
denote this singular simplex. Such singular simplices in X are called linear.

If σ is a linear simplex in X, then so is di(σ). Explicitly, if σ = (x0, . . . , xn),
then di(σ) = (x0, . . . , xi−1, xi+1, . . . , xn). We will also denote the linear sim-
plex di(σ) by (x0, . . . , x̂i, . . . , xn), where the symbol x̂i indicates the omitted
component.

For example, consider the convex subspace ∆n × I ⊂ Rn+1 × R. For each
0 ≤ k ≤ n, the following set of n + 2 points ∆n × I determines a linear
simplex of dimension n+ 1, which we denote by τk : ∆n+1 −→ ∆n × I:(

(v0, 0), . . . , (vk, 0), (vk, 1), . . . , (vn, 1)
)

where vi denotes the i-th vertex of ∆n, i.e. the point whose i-th coordinate
is 1 and all other coordinates are 0.
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8.1.4 Example. Since ∆0 is the one point space, 0-dimensional singular sim-
plices in X can be identified with elements x ∈ X. The group ∆0(X) is then
the free abelian group generated by elements of X. An element of S0(X) is
a combination of elements of X with integer coefficients:

a1x1 + a2x2 + · · ·+ anxn

where ai ∈ Z and xi ∈ X.

Since ∆1 is isomorphic to the interval I, we can think about 1-dimensional
singular simplices in X also as maps α : I −→ X. Under this identification,
if a 1-dimensional simplex σ in X corresponds to α : I −→ X, then d0(σ)
corresponds to the end α(1) of the path α. In the same way d1(σ) corresponds
to the beginning α(0) of the path α.

8.1.5 Definition. Let n ≥ 0. Define ∂n+1 : Sn+1(X) −→ Sn(X) to be given
by:

∂n+1(σ) =
n+1∑
i=0

(−1)idi(σ)

8.1.6 Proposition. Let n ≥ 0. The following composition is the zero homo-
morphism:

Sn+2(X)
∂n+2−−−→ Sn+1(X)

∂n+1−−−→ Sn(X)

Proof.

∂n+1∂n+2(x) =
n+1∑
j=0

(−1)jdj
( n+2∑
i=0

(−1)idi(x)
)

=

=
∑
j>i

(−1)i+jdjdi(x) +
∑
j≤i

(−1)i+jdjdi(x) =

use Exercise 8.1.2 to get:

=
∑
j>i

(−1)i+jdidj−1(x) +
∑
j≤i

(−1)i+jdjdi(x) =

set j = k + 1 in the first sum to get:

=
∑
k≥i

(−1)i+k+1didk(x) +
∑
j≤i

(−1)i+jdjdi(x) = 0

We can now use the above proposition to define a chain complex of abelian
groups:
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8.1.7 Definition. Let X be a topological space. The following chain complex
is called the singular chain complex of X and is denoted by S∗(X):

· · · ∂n+1−−−→ Sn(X)
∂n−→ · · · ∂3−→ S2(X)

∂2−→ S1(X)
∂1−→ S0(X)

Let G be an abelian group and X a topological space. The n-th homology of
the complex S∗(X)⊗G is called the n-th homology of X with coefficients in
G and is denoted by Hn(X,G).

In the case G is the group of integers Z, then Hn(X,Z) is simply denoted by
Hn(X) and called the integral homology of X.

8.1.8 Example. Note that S∗(D
0) is given by the complex:

· · · id−→ Z
0−→ Z

id−→ Z
0−→ · · · id−→ Z

0−→ Z

It follows that:

Hn(D0, G) =

{
G if n = 0

0 if n > 0

8.1.9 Excercise. Show that there are isomorphisms:

S∗(
r∐
i=1

D0) =
r⊕
i=1

S∗(D
0) Hn(

r∐
i=1

D0, G) =
r⊕
i=1

Hn(D0, G)

8.1.10 Excercise. As in Example 8.1.4 we think about 1-dimensional singular
simplices in X as paths σ : I −→ X. For such a path, let us denote by
σ′ : I −→ X the opposite path, i.e., by definition, σ′(t) := σ(1−t). Show that
σ + σ′ is a boundary in S1(X) (it is in the image of ∂2 : S2(X) −→ S1(X)).

8.1.11 Excercise. Let σ : I −→ X and τ : I −→ X be two paths such that
σ(1) = τ(0). Define σ ∗ τ : I −→ X to be the concatenation of σ and τ ,
explicitly:

σ ∗ τ(t) :=

{
σ(2t) if 0 ≤ t ≤ 1/2

τ(2− 2t) if 1/2 ≤ t ≤ 1

Show that σ + τ − σ ∗ τ is a boundary in S1(X).

The rest of these notes is devoted to setting up tools to calculate homology of
more complicated spaces than just discreet spaces. We start with discussing:
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8.2 Homology and maps

To compare spaces one uses maps. Maps can be also used to compare the
homology groups of spaces. Let f : X −→ Y be a continuous function. By
composing with f we get a function between the sets of singular simplices:

∆n(X) 3 (σ : ∆n −→ X) 7→ (fσ : ∆n −→ Y ) ∈ ∆n(Y )

This function is denoted by ∆n(f) : ∆n(X) −→ ∆n(Y ). The induced homo-
morphism on the groups of singular simplices is denoted by:

Sn(f) : Sn(X) −→ Sn(Y )

It maps an element a1σ1+· · ·+akσk in Sn(X) to an element a1fσ1+· · ·+akfσk
in Sn(Y ).

8.2.1 Excercise. Show that the following diagrams of abelian groups and
homomorphisms commute:

Sn+1(X)
Sn+1(f) //

di

��

Sn+1(Y )

di

��
Sn(X)

Sn(f) // Sn(Y )

Sn+1(X)
Sn+1(f) //

∂n+1

��

Sn+1(Y )

∂n+1

��
Sn(X)

Sn(f) // Sn(Y )

8.2.2 Excercise. Let f : X −→ Y and g : Y −→ Z be continuous maps. Show
that the homomorphism Sn(gf) : S∗(X) −→ Sn(Z) is given by the compo-
sition of Sn(f) : Sn(X) −→ Sn(Y ) and Sn(g) : Sn(Y ) −→ Sn(Z). Moreover
show that Sn(id) : Sn(X) −→ Sn(X) is the identity homomorphism. Con-
clude that if f : X −→ Y is an isomorphism of topological spaces, then
Sn(f) : Sn(X) −→ Sn(Y ) is an isomorphism of abelian groups.

From the above exercises it follows that f induces a map of chain complexes
S∗(f) : S∗(X) −→ S∗(Y ) and hence a homomorphism of homology groups
Hn(f,G) : Hn(X,G) −→ Hn(Y,G). These induced homomorphisms are
compatible with compositions:

S∗(fg) = S∗(f)S∗(g) S∗(id) = id

Hn(fg,G) = Hn(f,G)Hn(g,G) Hn(id, G) = id

Moreover if f : X −→ Y is an isomorphism, then so are S∗(f) and Hn(f,G).

83



8.3 Reduced homology

For any space X, there is a unique map p : X −→ D0. This map induces
then a homomorphism of chain complexes S∗(p) : S∗(X) −→ S∗(D

0). We
use this homomorphism to define:

8.3.1 Definition. Let X be a topological space. The kernel of S∗(p) :
S∗(X) −→ S∗(D

0) is denoted by S̃∗(X) and called the complex of reduced
singular simplices of X.

For a group G, the n-th homology of S̃∗(X)⊗G is denoted by H̃n(X,G) and
called the n-th reduced homology of X with coefficients in G. If G = Z is the
group of integers, then H̃n(X,Z) is simply denoted by H̃n(X).

For example, S̃∗(D
0) is the zero complex and consequently H̃n(D0, G) = 0

for any n ≥ 0 and any group G.

For any continuous map f : X −→ Y , the following triangle commutes:

X
f //

p

  B
BB

BB
BB

B Y
p

~~}}
}}

}}
}}

D0

By applying S∗ to this triangle, we get a commutative triangle of homomor-
phisms of chain complexes:

S∗(X)
S∗(f) //

S∗(p)

$$JJJJJJJJJ
S∗(Y )

S∗(p)

zzttttttttt

S∗(D
0)

Commutativity of this diagram implies that Sn(f) : Sn(X) −→ Sn(Y ) takes
elements of S̃n(X) into elements of S̃n(Y ). Thus, for any such continuous
map, restriction of S∗(f) to the subcomplex S̃∗(X) defines a chain map which
is denoted by:

S̃∗(f) : S̃∗(X) −→ S̃∗(Y )

By tensoring with a group G we get a yet another homomorphism of chain
complexes:

S̃∗(f)⊗G : S̃∗(X)⊗G −→ S̃∗(Y )⊗G
The induced homomorphism on the n-th homology is denoted by:

H̃n(f,G) : H̃n(X,G) −→ H̃n(Y,G)
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8.3.2 Excercise. Show that if f : X −→ Y is an isomorphism then so is
H̃n(f,G), for any n ≥ 0 and any group G.

Recall that S∗(D
0) can be identified with the complex (see Example 8.1.8):

· · · id−→ Z
0−→ Z

id−→ Z
0−→ · · · id−→ Z

0−→ Z

Moreover, with this identification, the homomorphism Sn(p) : Sn(X) −→ Z
is given by:

Sn(p)(a1σ1 + · · ·+ akσk) = a1 + · · ·+ ak

Thus S̃n(X) is the subgroup of Sn(X) consisting of these sums a1σ1 + · · ·+
akσk for which a1 + · · ·+ ak = 0.

In the case X is a nonempty space, then there is a map D0 −→ X whose
composition with p : X −→ D0 is the identity. It follows that after applying
S∗ to these maps we get a commuting diagram:

S∗(D
0) //@A BC

id

OO
S∗(X)

S∗(p) // S∗(D
0)

It then follows that the chain complex S∗(X) is isomorphic to the direct sum
of complexes S∗(D0)⊕ S̃∗(X).

8.3.3 Proposition. Let X be a non empty space and G be a group.

(1) H0(X,G) is isomorphic to G⊕ H̃0(X,G).

(2) For n > 0, the homomorphism H̃n(X,G) −→ Hn(X,G), induced by the
inclusion S̃∗(X) ⊂ S∗(X), is an isomorphism.

Proof. Since X is not empty, the following is a split exact sequence of chain
complexes:

0 −→ S̃∗(X) ⊂ S∗(X)
S∗(p)−−−→ S∗(D

0) −→ 0

Thus by tensoring with G we get also a split exact sequence of chain com-
plexes:

0 −→ S̃∗(X)⊗G ⊂ S∗(X)⊗G S∗(p)⊗G−−−−−→ S∗(D
0)⊗G −→ 0

Such a short exact sequence of chain complexes leads to a long exact sequence
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of its homologies:

· · · //

// H̃1(X,G) // H1(X,G)
H1(p,G)// H1(D

0, G) //

// H̃0(X,G) // H0(X,G)
H0(p,G)// H0(D

0, G) // 0

The proposition is now a direct consequence of the fact that: H0(D
0, G) = G

and Hn(D0, G) = 0 for n > 0.

8.4 H0(X,G)

The aim of this section is to explain what information about a topological
space is encoded in its 0’th homology. Note first that, by definition, H0(X)
fits into an exact sequence:

S1(X)
∂1−→ S0(X) −→ H0(X) −→ 0

Thus an element of H0(X) can be represented by an element in S0(X), i.e.,
a sum a1x1 + · · · + akxk where ai ∈ Z and xi ∈ X. Two such sums give
the same element in H0(X) if their difference is of the form ∂1(σ) for some
σ ∈ S1(X).

As tensoring is right exact, for any group G, the above exact sequence leads
to an exact sequence:

S1(X)⊗G ∂1−→ S0(X)⊗G −→ H0(X)⊗G −→ 0

It follows that:

8.4.1 Proposition. The groups H0(X,G) and H0(X)⊗G are isomorphic.

A topological space consists of a set X together with a topology (a choice
of open subsets). We used this topology to define an equivalence relation on
the set X: ”being in the same path component” (see Definition 7.13.1).

If 0 and 1 dimensional singular simplices in X are identified with respectively
elements of X and paths α : I −→ X in X, as explained in Example 8.1.4,
then the relation of being in the same path component can be reformulated
as follows:
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8.4.2 Proposition. Two points x0 ∈ X and x1 ∈ X are in the same path
component if and only if there is a singular simplex σ : ∆1 −→ X such that
d0(σ) = x1 and d1(σ) = x0.

Recall that for x ∈ X, the symbol X[x] denotes the subspace of X consisting
of all the points in X that are in the same path component as x.

8.4.3 Proposition. For any G and n ≥ 0, there are isomorphisms:∐
[x]∈π0(X)

∆n(X[x]) = ∆n(X)

⊕
[x]∈π0(X)

S∗(X[x]) = S∗(X)
⊕

[x]∈π0(X)

Hn(X[x], G) = Hn(X,G)

Proof. Since ∆n is path connected, any singular simplex σ : ∆n −→ X maps
∆n into one of the path connected components of X. The first isomorphism
is then induced by the inclusions X[x] ⊂ X. The second and the third
isomorphisms are consequences of the first one.

8.4.4 Proposition. If X is non empty and path connected, then, for the
unique map p : X −→ D0, the homomorphism H0(p,G) : H0(X,G) −→
H0(D

0, G) is an isomorphism.

Proof. Choose a point x ∈ X and consider the composition:

D0 π−→ X
p−→ D0

where π sendsD0 to the chosen point x. Since this composition is the identity,
then so is the induced composition on the homology:

H0(D
0)

H0(π)−−−→ H0(X)
H0(p)−−−→ H0(D

0)

It follows that H0(π) is a monomorphism. We are going to show that it is
also an epimorphism. Let a1x1 + · · · + akxk be an element in S0(X) that
represents a given homology class in H0(X). Since X is path connected, for
any i, there is a path αi : I −→ X such that αi(0) = x and αi(1) = xi.
Consider the following element in S1(X):

σ := a1α1 + · · ·+ akαk

Note that ∂1(σ) = a1x1 + · · · + akxk − (a1 + · · · + ak)x. Consequently the
element a1x1+· · ·+akxk differs from (a1+· · ·+ak)x by en element of the form
∂1(σ). This means that the homology class induced by a1x1+· · ·+akxk is the

87



same as the homology class induced by (a1 + · · ·+ak)x. As the latter is in the
image of H0(π), this homomorphism is an epimorphism. We can conclude
that H0(π) is an isomorphism. Its inverse H0(p) is therefore an isomorphism
too. We can now use Proposition 8.4.1 to conclude that H0(p,G) is also an
isomorphism for any group G.

8.4.5 Corollary. H0(X,G) =
⊕

π0(X)G.

Proof. By Proposition 8.4.3, H0(X,G) =
⊕

[x]∈π0(X)H0(X[x]). Since X[x] is

path connected, according to Proposition 8.4.4, H0(X[x]) = G. These two
observations imply the corollary.

8.5 Homology and homotopy

Not only isomorphisms induce an isomorphism on homology groups. It turns
out that the same is true for homotopy equivalences. This is one of the
fundamental properties of the singular chain complexes and their homology
groups.

8.5.1 Theorem. Assume that maps f : X −→ Y and g : X −→ Y are
homotopic. Then the homomorphisms of chain complexes S∗(f) : S∗(X) −→
S∗(Y ) and S∗(g) : S∗(X) −→ S∗(Y ) are also homotopic. In particular the
induced homomorphisms Hn(f,G) : Hn(X,G) −→ Hn(Y,G) and Hn(g,G) :
Hn(X,G) −→ Hn(Y,G) coincide for all n.

Before we prove this theorem we are going to present some of its conse-
quences.

8.5.2 Corollary. (1) If f : X −→ Y is a homotopy equivalence, then for
any n ≥ 0 and any group G, Hn(f,G) : Hn(X,G) −→ Hn(Y,G) is an
isomorphism.

(2) If X and Y are homotopy equivalent spaces, then, for any n ≥ 0 and any
group G, the homology groups Hn(X,G) and Hn(Y,G) are isomorphic.

(3) If X is a contractible space, then:

Hn(X,G) =

{
G if n = 0

0 if n > 0
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Proof. Let f : X −→ Y be a homotopy equivalence. Then there is g :
Y −→ X such that the compositions fg and gf are homotopic to identi-
ties. Thus according to Theorem 8.5.1 the homomorphisms Hn(fg,G) and
Hn(gf,G) coincide with respectively Hn(idY , G) and Hn(idX , G), and hence
they are the identity homomorphisms. Since Hn(fg,G) = Hn(f,G)Hn(g,G)
and Hn(gf,G) = Hn(g,G)Hn(f,G), it follows that Hn(g,G) is the inverse
of Hn(f,G). The homomorphism Hn(f,G) is therefore an isomorphism, and
the first statement of the corollary is proven.

The second statement is a direct consequence of the first one.

The third statement follows from the second and Example 8.1.8.

Combining the above corollary with Propositions 7.12.4 and 7.12.5 we get:

8.5.3 Corollary. (1) If D ⊂ Rk is a convex non empty subspace (for ex-
ample if D = ∆k−1 or Dk or Rk), then:

Hn(D,G) =

{
G if n = 0

0 if n > 0

(2) Assume that D ⊂ Rk is convex and x ∈ D a point for which there
is r > 0 such that B(x, r) ⊂ D. Then, for any G and n ≥ 0, the
groups Hn(D \ {x}, G) and Hn(Sk−1, G) are isomorphic. In particular
the groups Hn(Rk \ {0}, G) and Hn(Dk \ {0}, G) are isomorphic to
Hn(Sk−1, G).

As a corollary of the homotopy invariance of homology we also get a state-
ment which will be used to distinguish between Rk’s for different k’s.

8.5.4 Corollary. If Rk is isomorphic to Rm, then Hn(Sk−1) is isomorphic
to Hn(Sm−1) for any n.

Proof. Assume that f : Rk −→ Rm is an isomorphism. Then the restriction
f : Rk \ {0} −→ Rm \ {f(0)} is also an isomorphism. Thus the induced
homomorphism Hn(f) : Hn(Rk\{0}) −→ H1(R

m\{f(0)}) is an isomorphism
too. Since Rk \{0} and Rm \{f(0)} are homotopy equivalent to respectively
Sk−1 and Sm−1, the groups Hn(Sk−1) and Hn(Sm−1) are isomorphic for any
n.

Theorem 8.5.1 and Corollary 8.5.2 can be rephrased in terms of reduced
homology:
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8.5.5 Corollary. (1) Assume that f : X −→ Y and g : X −→ Y are ho-
motopic. Then the homomorphism H̃n(f,G) : H̃n(X,G) −→ H̃n(Y,G)
and H̃n(g,G) : H̃n(X,G) −→ H̃n(Y,G) are the same for all n and all
groups G.

(2) If f : X −→ Y is a homotopy equivalence, then H̃n(f,G) : H̃n(X,G) −→
H̃n(Y,G) is an isomorphism.

(3) If X and Y are homotopy equivalent, then, for any n ≥ 0 and any
groups G, the reduced homology groups H̃n(X,G) and H̃n(Y,G) are
isomorphic.

(4) If X is contractible, then H̃n(X,G) = 0 for any n ≥ 0 and any G.

We now prove Theorem 8.5.1.

Proof of Theorem 8.5.1. We start by defying a sequence of homomorphisms
sn : Sn(X) −→ Sn+1(Y ). Let S : X×I −→ Y be a homotopy between f and
g. Let σ : ∆n −→ X be a singular simplex of dimension n in X. Consider
the composition:

∆n+1 τk−→ ∆n × I σ×id−−−→ X × I S−→ Y

where τk : ∆n+1 −→ ∆n× I is a linear simplex (see Example 8.1.3) given by:

τk =
(
(v0, 0), . . . , (vk, 0), (vk, 1), . . . , (vn, 1)

)
(vi denotes the i-th vertex of ∆n). Define:

sn(σ) := Σn
k=0(−1)kS(σ × id)(τk)

We claim that the following equality holds:

Sn(g)(σ)− Sn(f)(σ) = ∂n+1sn(σ) + sn−1∂n(σ)

The homomorphisms sn, for n ≥ 0, give therefore a homotopy between S∗(f)
and S∗(g).

To show the above equality one uses the same argument for all n’s. For
clarity we will illustrate this calculation only in the case n = 1. The other
cases are left as an exercise. Assume that n = 1. Note that:

∂2s1(σ) = ∂2S(σ × id)(τ0)− ∂2S(σ × id)(τ1) =

= S(σ × id)∂2

(
(v0, 0), (v0, 1), (v1, 1)

)
− S(σ × id)∂2

(
(v0, 0), (v1, 0), (v1, 1)

)
=
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Note that:
S(σ × id)∂2

(
(v0, 0), (v0, 1), (v1, 1)

)
=

S(σ×id)
(
(v0, 1), (v1, 1)

)
−S(σ×id)

(
(v0, 0), (v1, 1)

)
+S(σ×id)

(
(v0, 0), (v0, 1)

)
and

S(σ × id)∂2

(
(v0, 0), (v1, 0), (v1, 1)

)
=

S(σ×id)
(
(v1, 0), (v1, 1)

)
−S(σ×id)

(
(v0, 0), (v1, 1)

)
+S(σ×id)

(
(v0, 0), (v1, 0)

)
It follows that

∂2s1(σ) = S(σ × id)
(
(v0, 1), (v1, 1)

)
− S(σ × id)

(
(v0, 0), (v1, 0)

)
+

+S(σ × id)
(
(v0, 0), (v0, 1)

)
− S(σ × id)

(
(v1, 0), (v1, 1)

)
On the other hand:

s0∂1(σ) = s0(d0σ)− s0(d1σ) =

= S(d0σ × id)
(
(v0, 0), (v0, 1)

)
− S(d1σ × id)

(
(v0, 0), (v0, 1)

)
= S(σ × id)

(
(v1, 0), (v1, 1)

)
− S(σ × id)

(
(v0, 0), (v0, 1)

)
It follows that:

∂2s1(σ) + s0∂1(σ) = S(σ × id)
(
(v0, 1), (v1, 1)

)
− S(σ × id)

(
(v0, 0), (v1, 0)

)
As S is a homotopy between f and g, we can then conclude that:

∂2s1(σ) + s0∂1(σ) = S1(g)(σ)− S1(f)(σ)

8.6 Small singular simplices

So far we could only calculate homology in very few cases: the 0-th homology
of an arbitrary space and all homology groups of contractible spaces. To
calculate the homology of a sphere for example or a circle we need one more
tool. This is the subject of this section. The chain complex S∗(X) is simply
too big for calculations. Our strategy is to find a much smaller subcomplex
of S∗(X) that has the same homology as S∗(X).

Let X be a topological space. Let us fix an open cover of X, i.e., a family
U = {Ui} of open subsets of X such that X =

⋃
Ui.
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8.6.1 Definition. An U-singular simplex in X of dimension n is a contin-
uous map σ : ∆n −→ X such that for some i, the image σ(∆n) is included
in Ui.

The set of U-singular simplexes of dimension n in X is denoted by ∆Un (X).

The symbol SUn (X) denotes the free abelian groups generated by the set ∆Un (X).

Note that if σ : ∆n −→ X is an U -singular simplex in X, then so is diσ. It
follows that the homomorphism ∂n+1 : Sn+1(X) −→ Sn(X) takes elements
of SUn+1(X) into SUn (X). In this way we obtain a chain subcomplex of S∗(X)
denoted by SU∗ (X). Explicitly it is given by:

· · · ∂n+2−−−→ SUn+1(X)
∂n+1−−−→ · · · ∂2−→ SU1 (X)

∂1−→ SU0 (X)

It turns out that to calculate homology of a space we can use both the
complex of singular simplices or the complex of U -singular simplexes. This
is the content of:

8.6.2 Theorem. Let U be an open cover of a topological space X. Then the
inclusion i : SU∗ (X) ⊂ S∗(X) is a homotopy equivalence, i.e., there is a chain
complex homomorphism s : S∗(X) −→ SU∗ (X) such that the compositions
is : S∗(X) −→ S∗(X) and si : SU∗ (X) −→ SU∗ (X) are homotopic to identities.

This theorem together with the homotopy invariance of homology (Theo-
rem 8.5.1) will be our key tools to calculate homology of spaces. The rest of
these notes explain how to use this theorem in practise. We start with:

8.6.3 Corollary. For any group G and any n ≥ 0, the groups Hn(X,G) and
Hn(SU∗ (X)⊗G) are isomorphic.

8.6.4 Excercise. Consider the following subsets of S1:

U0 := {(x, y) ∈ S1 | y > −1/2} U1 := {(x, y) ∈ S1 | y < 1/2}

They form an open cover U = {U0, U1} of S1. Consider also a singular
simplex σ : I −→ S1 given by the formula σ(t) = (sin(2tπ), cos(2tπ)). Is σ a
U -singular simplex? Find a singular simplex τ ∈ SU1 (S1) such that τ − σ is
a boundary in S1(S

1), i.e., it is in the image of ∂2 : S2(S
1) −→ S1(S

1).

8.7 Reduced small singular simplices

Let U be an open cover of X. Define S̃U∗ (X) to be the kernel of the compo-
sition:

SU∗ (X) ⊂ S∗(X)
S∗(p)−−−→ S∗(D

0)
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The group S̃Un (X) is then the subgroup of S∗(X) consisting of these combina-
tions of U -singular simplices a1σ1+· · ·+akσk for which the sum a1+· · ·+ak =
0. It is a subgroup of the reduced complex S̃n(X).

8.7.1 Excercise. Assume that X is not an empty space. Show that the chain
complexes S∗(X), S̃∗(X), SU∗ (X), S̃U∗ (X), and S∗(D

0) fit into the following
commutative diagram of chain complexes whose rows are split exact:

0 // S̃U∗ (X)
� � //

� _

��

SU∗ (X) //
� _

��

S∗(D
0) //

id
��

0

0 // S̃∗(X)
� � // S∗(X)

S∗(p) // S∗(D
0) // 0

8.7.2 Excercise. Show that the inclusion S̃U∗ (X) ⊂ S̃∗(X) is a homotopy
equivalence of chain complexes (use Theorem 8.6.2).

Using the above exercises and Theorem 8.6.2, we can rephrase Proposi-
tion 8.3.3 in terms of the U -singular simplices:

8.7.3 Proposition. Let X be a non empty space, U its open cover, and G
a group.

(1) H0(X,G) is isomorphic to G⊕H0(S̃
U
∗ (X)⊗G).

(2) For n > 0, the homomorphism Hn(S̃U∗ (X)⊗G) −→ Hn(X,G), induced
by the inclusion S̃U∗ (X) ⊂ S∗(X), is an isomorphism.

The key point of the above proposition is that to calculate homology of X,
instead of using the complex S∗(X), me can use S̃U∗ (X) for some open cover U
of X. Why is it easier to use the complexes S̃U∗ (X) or SU∗ (X)? The answer is
that they often lead to exact sequences. Let us illustrate this in the basic case
of an open cover U = {U0, U1} of X that consists of only two open subsets.
This will be the case used in the rest of these notes. Let V = U0 ∩ U1 and
assume that V is not empty. We are going to use the following symbols to
denote the appropriate inclusions:

V
� � j0 //

� _

j1
��

U0� _

i1
��

U1
� � i0 // X

Observe that the inclusions i0 : U0 ⊂ X and i1 : U1 ⊂ X map singular
simplices in Ui into U -singular simplexes of X. Moreover any U -singular
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simplexes of X is in the image of S∗(i0) or S∗(i1). This means that the
following homomorphism is an epimorphism:

S∗(i0)⊕ S∗(i1) : S∗(U0)⊕ S∗(U1) −→ SU∗ (X)

What is the kernel of this homomorphism? A pair (x, y) ∈ S∗(U0) ⊕ S∗(U1)
is in the kernel of S∗(i0)⊕ S∗(i1) if and only if S∗(i0)(x) = −S∗(i1)(y). This
can happen if and only if x is in the image of both S∗(j0) : S∗(V ) −→ S∗(U0)
and S∗(j1) : S∗(V ) −→ S∗(U1). This leads to an exact sequence of chain
complexes:

0 −→ S∗(V )
(S∗(j0),−S∗(j1))−−−−−−−−−→ S∗(U0)⊕ S∗(U1)

S∗(i0)+S∗(i1)−−−−−−−−→ SU∗ (X) −→ 0

8.7.4 Excercise. Show that the above sequence is a part of the following
larger commutative diagram of chain complexes whose all rows and columns
are exact:

0

��

0

��

0

��

0 // S̃∗(V )
(S̃∗(j0),−S̃∗(j1))//

� _

��

S̃∗(U0)⊕ S̃∗(U1)
S̃∗(i0)+S̃∗(i1) //

� _

��

S̃U∗ (X) //
� _

��

0

0 // S∗(V )
(S∗(j0),−S∗(j1))//

S∗(p)
��

S∗(U0)⊕ S∗(U1)
S∗(i0)+S∗(i1) //

S∗(p)⊕S∗(p)
��

SU∗ (X) //

S∗(p)
��

0

0 // S∗(D
0)

(id,−id) //

��

S∗(D
0)⊕ S∗(D0)

id+id //

��

S∗(D
0) //

��

0

0 0 0

Since all the groups in the above diagram are free, we can tensor this diagram
with a group G and get analogous diagram whose rows and columns are also
exact. We will be interested only in its top row. For any group G we then
have an exact sequence of chain complexes:

0 // S̃∗(V )⊗G // (S̃∗(U0)⊗G)⊕(S̃∗(U1)⊗G) // S̃U∗ (X)⊗G // 0

Such an exact sequence of chain complexes leads to a long exact sequence of
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their homologies:

· · · // H̃2(X,G)

qqccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

H̃1(V,G)
(H̃1(j0,G),−H̃0(j1,G))

// H̃1(U0, G)⊕ H̃1(U1, G)
H̃1(i0,G)+H̃1(i1,G) // H̃1(X,G)

qqccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

H̃0(V,G)
(H̃0(j0,G),−H̃0(j1,G))

// H̃0(U0, G)⊕ H̃0(U1, G)
H̃0(i0,G)+H̃0(i1,G) // H̃0(X,G)

qqccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

0

We can now use this exact sequence to relate homologies of X, U0, U1, and
V . For example, assume that U0 and U1 are contractible spaces. In this case
H̃n(U0, G) = H̃n(U1, G) = 0 for any n and thus the above exact sequence
gives:

8.7.5 Proposition. Let U = {U0, U1} be an open cover of X and G be a
group. Assume that V = U0 ∩ U1 is not empty and that U0 and U1 are
contractible. Then, H̃0(X,G) = 0 and, for n > 0, H̃n(X,G) = H̃n−1(V,G).

If only one of {U0, U1} is contractible, for example U1, then again since
H̃n(U1, G) = 0, for all n, the above exact sequence gives:

8.7.6 Proposition. Let U = {U0, U1} be an open cover of X and G be a
group. Assume that V = U0 ∩ U1 is not empty and that U1 is contractible.
Then there is an exact sequence:

· · · // H̃2(X,G)

rrdddddddddddddddddddddddddddddddddddddddddddddd

H̃1(V,G)
H̃1(j0,G

// H̃1(U0, G)
H̃1(i0,G) // H̃1(X,G)

rrdddddddddddddddddddddddddddddddddddddddddddddd

H̃0(V,G)
H̃0(j0,G)

// H̃0(U0, G)
H̃0(i0,G) // H̃0(X,G)

qqdddddddddddddddddddddddddddddddddddddddddddddddddd

0
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8.8 Homology of spheres

We already know that, since S0 is a discreet space consisting of two points,
then:

Hn(S0, G) =

{
G⊕G if n = 0

0 if n > 0

H̃n(S0, G) =

{
G if n = 0

0 if n > 0

The aim of this section is to prove:

8.8.1 Theorem. Let G be a group. Then:

H̃n(Sk, G) =

{
G if n = k

0 if n 6= k

Proof. The proof is by induction on k. The case k = 0 has already been
proven. Let k > 0. We are going to use the following open subsets of Sk:

U0 = {(x1, . . . xk+1) ∈ Sk | xk+1 > −1/2}

U1 = {(x1, . . . xk+1) ∈ Sk | xk+1 < 1/2}

V = U0 ∩ U1 = {(x1, . . . xk+1) ∈ Sk | − 1/2 < xk+1 < 1/2}

First we need to understand the homotopy type of these subspaces:

8.8.2 Excercise. (1) Show that U0 and U1 are contractible spaces.

(2) Show that U0 and U1 are isomorphic to Rk.

(3) Show that the following inclusion is a homotopy equivalence:

Sk−1 3 (x1, . . . , xk) 7→ (x1, . . . , xk, 0) ∈ V

From the above exercise it follows that the cover U = {U0, U1} consists of
contractible spaces. We can then use Proposition 8.7.5 to conclude that
H̃0(S

k, G) = 0 and, for n > 0, H̃n(Sk, G) = H̃n−1(V,G). However since V is
homotopic to Sk−1, we get that for n > 0:

H̃n(Sk, G) = H̃n−1(S
k−1, G)

We can now use the inductive assumption to finish the proof of the theorem.
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8.8.3 Corollary. Let k > 0 and G be a group. Then:

Hn(Sk, G) =

{
G if n = 0 or n = k

0 if n 6= 0 and n 6= k

8.8.4 Excercise. Let σ : I −→ S1 be a map given by the formula σ(t) =(
sin(2tπ), cos(2tπ)

)
. It is a singular simplex in S1(S

1). Show that it is a
cycle, i.e., it is in the kernel of ∂1 : S1(S

1) −→ S0(S
1). Show moreover, that

its homology class [σ] ∈ H1(S
1) = Z is a generator.

8.8.5 Excercise. Let τ : I −→ S1 be a map given by the formula σ(t) =(
sin(4tπ), cos(4tπ)

)
. It is a singular simplex in S1(S

1). Show that it is a
cycle, i.e., it is in the kernel of ∂1 : S1(S

1) −→ S0(S
1). Show moreover

that τ − 2σ, were σ is defined as in Exercise 8.8.4, is a boundary, i.e., it is
in the image of ∂2 : S2(S

1) −→ S1(S
1). Conclude that the homology class

[τ ] ∈ H1(S
1) is equal to 2[σ] ∈ H1(S

1).

8.8.6 Excercise. Let us think about S1 as a subspace of complex numbers C,
of length 1. Let α : S1 −→ S1 be the squaring map α(z) := z2. Show that
H1(α) : H1(S

1) −→ H1(S
1) is multiplication by 2. Show that the same holds

for the homomorphism H1(α,G) : H1(S
1, G) −→ H1(S

1, G), for any group
G.

8.8.7 Excercise. Let σ be as defined in Exercise 8.8.4. Let σ′ : I −→ S1

be given by σ′(t) =
(

sin(2π(1 − t), cos(2π(1 − t)
)
. Show that σ′ is a cycle.

Show further that σ + σ′ is a boundary in S1(S
1), i.e., it is in the image of

∂2 : S2(S
1) −→ S1(S

1). Conclude that the homology class [σ′] ∈ H1(S
1) is a

generator and [σ′] = −[σ].

8.8.8 Excercise. Let β : S1 −→ S1 be the map given by the formula β(x1, x2) =
(x1,−x2). Show that H1(β) : H1(S

1) −→ H1(S
1) is the multiplication by

−1.

8.9 Some geometric applications

In this section we present some geometric applications and corollaries of the
calculation presented in Theorem 8.8.1. We start with:

8.9.1 Proposition. Sk is homotopy equivalent to Sm if and only if k = m.

Proof. If k = m, then Sk is even isomorphic to Sm. Assume that Sk is
homotopy equivalent to Sm. Then the homology groups H̃n(Sk) and H̃n(Sm)
are then isomorphic for all n. According to Theorem 8.8.1, this can happen
if and only if k = m.
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We have now enough tools to show:

8.9.2 Proposition. Rk is isomorphic to Rm if and only if k = m.

Proof. If k = m, then obviously Rk is isomorphic to Rm. Assume that Rk

and Rm are isomorphic. By Corollary 8.5.4 we then have that Hn(Sk−1) and
Hn(Sm−1) are isomorphic groups for all n. Using Proposition 8.9.1 we can
then conclude that k − 1 = m− 1, and hence k = m.

8.9.3 Excercise. Let M be a manifold of dimension m and N be a manifold of
dimension k (see Definition 7.11.1). Show that if M and N are isomorphic,
then m = k.

8.9.4 Proposition. Let k ≥ 1. There is no map r : Dk −→ Sk−1 for
which the composition of the inclusion Sk−1 ⊂ Dk and r is homotopic to
id : Sk−1 −→ Sk−1.

Proof. Assume that such a map exists. Consider its effect on homology:

H̃k−1(S
k−1) −→ H̃k−1(D

k)
H̃k−1(r)−−−−→ H̃k−1(S

k−1)

Note that this composition must be the identity. Thus we would get a com-
mutative diagram of the form:

Z //@A BC
id

OO0 // Z

This however is impossible (why?).

8.9.5 Proposition. Let f : Dk −→ Dk be a continuous map. Then there is
a point x ∈ Dk, such that f(x) = x.

Proof. The case k = 0 is obvious. Assume that k ≥ 1 and that there is
no such point, i.e., for all x ∈ Dk, f(x) 6= x. We can then define a map
r : Dk −→ Sk−1 by the formula:

r(x) :=
x− f(x)

|x− f(x)|

We are going to show that the composition of the inclusion Sk−1 ⊂ Dk and
r is homotopic to the identity. We can then use Proposition 8.9.4 to get a
contradiction. Define the homotopy H : Sk−1 × I −→ Sk−1 by the formula:

H(x, t) :=
x− tf(x)

|x− tf(x)|
This is well defined since x− tf(x) 6= 0 (why?). Note that H(x, 0) = x and
H(x, 1) is the discussed composition.
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8.9.6 Excercise. Let f : S2k −→ S2k be a continuous map. Show that there
is a point x ∈ S2k such that either f(x) = x or f(x) = −x. Is the same true
for an odd dimensional sphere?

8.10 The homology of the antipodal map

The aim of this section is to determined the effect on the k-th homology
group of the antipodal map an : Sk −→ Sk. By definition an : Sk −→ Sk is
the map given by the formula:

an(x1, . . . , xk+1) := (−x1, . . . ,−xk+1)

Let k ≥ 1 and k + 1 ≥ i ≥ 1. Define the map fi : Sk −→ Sk to be given by
the formula:

fi(x1, . . . , xi−1, xi, xi+1, . . . , xk+1) = (x1, . . . , xi−1,−xi, xi+1, . . . , xk+1)

We first determine the effect of fi on the k-homology group:

8.10.1 Proposition. Let k ≥ 1 and k + 1 ≥ i ≥ 1. For any group G, the
homomorphism Hk(fi, G) : Hk(S

k, G) −→ Hk(S
k, G) is the multiplication by

−1.

Proof. The proof is by induction on k. The case k = 1 has been the subject
of Exercise 8.8.8. Assume that k > 1. Let us choose j 6= i. As in the proof
of Theorem 8.8.1, let:

U0 = {(x1, . . . xk+1) ∈ Sk | xj > −1/2}

U1 = {(x1, . . . xk+1) ∈ Sk | xj < 1/2}
V = U0 ∩ U1 = {(x1, . . . xk+1) ∈ Sk | − 1/2 < xj < 1/2}

Note that fi : Sk −→ Sk maps U0 to U0 and U1 to U1. Moreover re-
stricted to Sk−1 = {(x1, . . . , xj−1, 0, xj+1, . . . , xk+1) ∈ V ⊂ Sk} the map fi is
the analogous map to fi, but for Sk−1. Thus by the inductive assumption
Hk−1(fi, G) : Hk−1(V,G) −→ Hk−1(V,G) is multiplication by −1. Consider
next the following commutative diagram of chain complexes, whose rows are
exact:

0 // S∗(V )
(S∗(j0),−S∗(j1))//

S∗(fi)

��

S∗(U0)⊕ S∗(U1)
S∗(i0)⊕S∗(i1)//

S∗(fi)⊕S∗(fi)

��

SU∗ (Sk) //

S∗(fi)

��

0

0 // S∗(V )
(S∗(j0),−S∗(j1))// S∗(U0)⊕ S∗(U1)

S∗(i0)⊕S∗(i1)// SU∗ (Sk) // 0
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This leads to a commutative square, as in Proposition 8.7.5, with exact rows:

0 // Hk(S
k, G)

Hk(fi,G)
��

∂ // Hk−1(V,G) //

Hk−1(fi,G)

��

0

0 // Hk(S
k, G)

∂ // Hk−1(V,G) // 0

where ∂ : Hk(S
k, G) −→ Hk−1(V,G) is the connecting homomorphism in-

duces by the short exact sequence of chain complexes above. Since by the
inductive assumption Hk−1(fi, G) : Hk−1(V,G) −→ Hk−1(V,G) is multipli-
cation by −1 and ∂ is an isomorphism, then Hk(fi, G) : Hk(S

k, G) −→
Hk(S

k, G) is also the multiplication by −1 homomorphism.

8.10.2 Corollary. Let k ≥ 1. The homomorphism Hk(an, G) : Hk(S
k, G) −→

Hk(S
k, G) is multiplication by (−1)k+1.

Proof. Note that an is the composition of fi for k + 1 ≥ i ≥ 1, i.e.,:

an = fk+1fk · · · f1

Thus:

Hk(an, G) = Hk(fk+1, G)Hk(fk, G) · · ·Hk(f1, G)

Since, by Proposition 8.10.1, Hk(fi, G) : Hk(S
k, G) −→ Hk(S

k, G) is the
multiplication by −1, for all i, the corollary follows.

8.11 The effect on homology of a cell attach-

ment

Assume that we know the homology of X and the effect on homology groups
of the map α : Sk−1 −→ X. Is this information enough to determine the
homology of the space X ∪α Dk (see Section 7.9)? Let i : X ⊂ X ∪α Dk be
the inclusion map.

8.11.1 Theorem. Let k ≥ 1, α : Sk−1 −→ X be a map, and G be a group.

(1) If n 6= k− 1 and n 6= k, then Hn(i, G) : Hn(X,G) −→ Hn(X ∪αDk, G)
is an isomorphism.
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(2) There is an exact sequence of abelian groups:

0 // H̃k(X,G)
H̃k(i,G) // H̃k(X ∪α Dk, G)

rrddddddddddddddddddddddddddddddddddddd

H̃k−1(S
k−1, G)

H̃k−1(α,G)

// H̃k−1(X,G)
H̃k−1(i,G)// H̃k−1(X ∪α Dk, G)

qqdddddddddddddddddddddddddddddddddddddddddd

0

Proof. Define the following open subsets of X ∪α Dk:

U0 := X
∐
{x ∈ Bk | |x| > 1/3}

U1 := {x ∈ Bk | 2/3 > |x|}
V := U0 ∩ U1 = {x ∈ Bk | 2/3 > |x| > 1/3}

We need to understand the homotopy type of these subspaces:

8.11.2 Excercise. Show that the inclusion X ⊂ U0 is a homotopy equivalence.

8.11.3 Excercise. Show that U1 is a contractible space and that the inclusion:

{x ∈ V | |x| = 1/2} ⊂ V

is a homotopy equivalence. Conclude that V is homotopy equivalent to Sk−1.

8.11.4 Excercise. Let S := {x ∈ V | |x| = 1/2} and f : Sk−1 −→ S be
defined by the formula f(x) = x/2. Show that the following compositions
are homotopic:

Sk−1 f−→ S ⊂ V ⊂ U0

Sk−1 α−→ X ⊂ U0

It is clear that U := {U0, U1} is an open cover of X ∪α Dk. Since U1 is
contractible and V is not empty we can use Proposition 8.7.6 to get an exact
seduce:

· · · // H̃2(X ∪α Dk, G)

qqdddddddddddddddddddddddddddddddddddddddddddddd

H̃1(V,G)
H̃1(j0,G)

// H̃1(U0, G)
H̃1(i0,G) // H̃1(X ∪α Dk, G)

qqdddddddddddddddddddddddddddddddddddddddddddddd

H̃0(V,G)
H̃0(j0,G)

// H̃0(U0, G)
H̃0(i0,G) // H̃0(X ∪α Dk, G)

qqcccccccccccccccccccccccccccccccccccccccccccccccccc

0
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Since V is homotopy equivalent to Sk−1, if n 6= k and n 6= k−1, the homology
groups H̃n(V,G) and H̃n−1(V,G) are trivial. It follows that the homomor-
phism H̃n(i0, G) : H̃n(U0, G) −→ H̃n(X ∪αDk, G) is an isomorphism. As the
inclusion X ⊂ U0 is a homotopy equivalence, we can conclude that, for n 6= k
and n 6= k−1, the homomorphism H̃n(i, G) : H̃n(X,G) −→ H̃n(X ∪αDk, G)
is an isomorphism. It then follows that so is Hn(i, G) : Hn(X,G) −→
Hn(X ∪α Dk, G).

In the case n = k or n = k − 1, the above exact sequence becomes:

0 // H̃k(U0, G)
H̃k(i0,G) // H̃k(X ∪α Dk, G)

rrddddddddddddddddddddddddddddddddddddd

H̃k−1(V,G)
H̃k−1(j0,G)

// H̃k−1(U0, G)
H̃k−1(i0,G)// H̃k−1(X ∪α Dk, G)

rrddddddddddddddddddddddddddddddddddddddddd

0

Using Exercise 8.11.4, we get the claimed exact sequence.

8.12 The integral homology groups of the pro-

jective spaces

In this section we will determine the integral homology of the projective
spaces RPn. Since RP1 = S1, we then have:

H̃n(RP1,Z) =

{
Z if n = 1

0 if n 6= 1

The aim of this section is to prove:

8.12.1 Theorem. Let k ≥ 0. Then:

(1) if k is even

H̃n(RPk,Z) =

{
Z/2 if n is odd and n < k

0 if n is even or n ≥ k

(2) if k is odd

H̃n(RPk,Z) =


Z/2 if n is odd and n < k

0 if n is even or n > k

Z if n = k
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First, we are going to prove several supporting statements. Let k ≥ 1. Recall
that π : Sk−1 −→ RPk−1 is the map that sends the vector v to the line in Rk

spanned by v. This map is used to build the next projective space. According
to Proposition 7.10.3 there is an isomorphism:

RPk = RPk−1 ∪π Dk

Let i : RPk−1 ⊂ RPk be the standard inclusion. According to Theo-
rem 8.11.1.(1) we get:

8.12.2 Lemma. Let k ≥ 1. If n 6= k − 1 and n 6= k, then H̃n(i) :
H̃n(RPk−1) −→ H̃n(RPk) is an isomorphism. In particular, for n ≥ 2:

0 = H̃n(S1) = H̃n(RP1) = · · · = H̃n(RPn−1)

Theorem 8.11.1.(2) gives also an exact sequence:

0 // H̃k(RPk−1)
H̃k(i) // H̃k(RPk)

∂eeeeeeeeeeeeeeeeeeee

rreeeeeeeeeeeeeeeeeee

H̃k−1(S
k−1)

H̃k−1(π)

// H̃k−1(RPk−1)
H̃k−1(i) // H̃k−1(RPk)

rrddddddddddddddddddddddddddddddddddddddddddd

0

With a help of Lemma 8.12.2 this sequence becomes:

0 // 0 // H̃k(RPk)

∂eeeeeeeeeeeeeeeeeeee

rreeeeeeeeeeeeeeeeeee

H̃k−1(S
k−1)

H̃k−1(π)

// H̃k−1(RPk−1)
H̃k−1(i) // H̃k−1(RPk)

rrddddddddddddddddddddddddddddddddddddddddddd

0

It follows that H̃k(RPk) is a subgroup of H̃k(S
k−1) = Z, and consequently

it is either 0 or is isomorphic to Z. We are going to show that this depends
on the parity of k.

To calculate the homology of projective spaces we thus need to understand
the homomorphisms H̃k(π) : H̃k(S

k) −→ H̃k(RPk) and ∂ : H̃k(RPk) −→
H̃k−1(S

k−1) for various k’s. To do that we will analyze the following open
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covers of RPk and Sk. Let k ≥ 1. Let U = {U0, U1} be an open cover of
RPk given, as in the previous section, by:

U0 := RPk−1
∐
{x ∈ Bk | |x| > 1/3}

U1 := {x ∈ Bk | 2/3 > |x|}

Define:

V := U0 ∩ U1 = {x ∈ Bk | 2/3 > |x| > 1/3}
S := {x ∈ V | |x| = 1/

√
3} ⊂ V

W0 := π−1(U0) ⊂ Sk

W1 := π−1(U1) ⊂ Sk

Z0 := {(x1, . . . , xk+1) ∈ Sk | xk+1 >
√

5/3} ⊂ Sk

Z1 := {(x1, . . . , xk+1) ∈ Sk | xk+1 < −
√

5/3} ⊂ Sk

Y := W0 ∩W1 ⊂ Sk

Y0 := {(x1, . . . , xk+1) ∈ Sk |
√

8/3 > xk+1 >
√

5/3} ⊂ Sk

Y1 := {(x1, . . . , xk+1) ∈ Sk | −
√

8/3 < xk+1 < −
√

5/3} ⊂ Sk

S0 := {(x1, . . . , xk+1) ∈ Sk | xk+1 =
√

6/3} ⊂ Sk

S1 := {(x1, . . . , xk+1) ∈ Sk | xk+1 = −
√

6/3} ⊂ Sk

8.12.3 Excercise. Show that:

(1) W0 = {(x1, . . . , xk+1) ∈ Sk | |xk+1| <
√

8/3}

(2) W1 = Z0 ∪ Z1

(3) Y = Y0 ∪ Y1

8.12.4 Excercise. (1) Show that S ⊂ V and all the following inclusions are
homotopy equivalences:

S0
� � // Y0

� � //W0 Y1
? _oo S1

? _oo

(2) Z0 and Z1 are contractible spaces.

8.12.5 Excercise. (1) Show that π takes S0 and S1 into S and that the
induced maps π : S0 −→ S and π : S1 −→ S are isomorphisms.

(2) Show that the following formulas define continuous maps:

s0 : Sk−1 −→ S0 s1 : Sk−1 −→ S1 s : Sk−1 −→ S

s0(x) := (x/
√

3,
√

6/3) s1(x) := (x/
√

3,−
√

6/3) s(x) = x/
√

3
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(3) Prove that the maps s0, s1, and s are isomorphisms and show that the
following diagrams commute:

Sk−1
s0 //

id
��

S0

π

��
Sk−1 s // S

Sk−1
s1 //

an

��

S1

π

��
Sk−1 s // S

where an : Sk−1 −→ Sk−1 is the antipodal map.

8.12.6 Excercise. Show that there is a commutative diagram:

H̃k−1(S
k−1)⊕ H̃k−1(S

k−1)
H̃k−1(s0)⊕H̃k−1(s1) //

1+(−1)k

��

H̃k−1(S0)⊕ H̃k−1(S1) //

H̃k−1(π)+H̃k−1(π)
��

H̃k−1(Y )

H̃k−1(π)
��

H̃k−1(S
k−1)

s // H̃k−1(S) // H̃k−1(V )

where all the horizontal homomorphisms are isomorphisms.

Set W := {W0,W1}. This is an open cover of Sk and we have the following
commutative diagram of chain complexes with exact rows:

0 // S̃∗(Y )

S̃∗(π)
��

// S̃∗(W0)⊕ S̃∗(W1) //

S̃∗(π)⊕S̃∗(π)
��

S̃W∗ (Sk)

S̃∗(π)
��

// 0

0 // S̃∗(V ) // S̃∗(U0)⊕ S̃∗(U1) // S̃U∗ (RPk) // 0

These exact sequences lead to long exact sequences of their homologies. Since
W0 and V are homotopy equivalent to Sk−1, their k-th homology are trivial.
As W1 is a disjoint union of contractible spaces we also have that H̃k(W1)
and H̃k−1(W1) are trivial. We thus get a commutative diagram with exact
rows:

0 // H̃k(S
k) //

H̃k(π)
��

H̃k−1(Y ) //

H̃k−1(π)
��

H̃k−1(W0)

H̃k−1(π)
��

0 // H̃k(RPk) // H̃k−1(V ) // H̃k−1(U0)

Note that the bottom sequence is the sequence from page 102. We can thus
rewrite it as:

0 // H̃k(S
k) //

H̃k(π)
��

H̃k−1(Y ) //

��

H̃k−1(W0)

��

0 // H̃k(RPk)
∂ // H̃k−1(S

k−1)
H̃k−1(π) // H̃k−1(RPk−1)
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If we identify the appropriate groups with Z and use Exercise 8.12.6, the
above commutative diagram becomes:

0 // H̃k(S
k) //

H̃k(π)
��

Z⊕ Z

1+(−1)k

��

1+1 // Z

��

0 // H̃k(RPk) // Z // H̃k−1(RPk−1)

In this diagram, the generator of H̃k(S
k) is mapped to an element (1,−1) ∈

Z⊕Z via the horizontal homomorphism. It follows that we get a commutative
diagram:

Z = H̃k(S
k)
H̃k(π) //@A BC

1+(−1)k+1

OO
H̃k(RPk)

∂ // H̃k−1(S
k−1) = Z

We can thus conclude:

8.12.7 Corollary. If k is odd, then the image of the following composition
is given by the subgroup generated by 2:

Z = H̃k(S
k)

H̃k(π)−−−→ H̃k(RPk)
∂−→ H̃k(S

k−1) = Z

In particular the homomorphism H̃k(π) : H̃k(S
k) −→ H̃k(RPk) is a monomor-

phism.

Recall that we have an exact sequence:

0 // 0 // H̃k(RPk)

∂eeeeeeeeeeeeeeeeeee

rreeeeeeeeeeeeeeeeeee

H̃k(S
k−1)

H̃k−1(π)

// H̃k−1(RPk−1)
H̃k−1(i) // H̃k−1(RPk)

rrdddddddddddddddddddddddddddddddddddddddddd

0

Using this exact sequence and Corollary 8.12.7 we get:

8.12.8 Corollary. Let k ≥ 1.

(1) If k is even, then H̃k(RPk) = 0.

(2) If k is odd, then ∂ : H̃k(RPk) −→ H̃k−1(S
k−1) is an isomorphism. In

particular H̃k(RPk) is isomorphic to Z.
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Proof. The proof is by induction on k. Case k = 1 is left as an exercise (use
the above exact sequence and observe that H̃0(RP0) = H̃0(RP1) = 0).

Assume that k > 1 and that the lemma is true for projective spaces whose
dimension is less than k. If k is even, then k − 1 is odd and and hence by
Corollary 8.12.7, H̃k−1(π) : H̃k(S

k−1) −→ H̃k−1(RPk−1) is a monomorphism.
Its kernel H̃k(RPk) is therefore trivial.

Assume that k is odd. Thus k − 1 is even and by the inductive assumption
H̃k−1(RPk−1) = 0. It then follows that the boundary homomorphism: ∂ :
H̃k(RPk) −→ H̃k−1(S

k−1) is an isomorphism.

We can now identify explicitly the image of:

8.12.9 Lemma. Let k ≥ 1 be odd. Then the image of:

Z = H̃k(S
k)

H̃k(π)−−−→ H̃k(RPk) = Z

is the subgroup generated by 2.

Proof. Recall that since k is odd, we have a commutative diagram:

Z = H̃k(S
k)

H̃k(π) //@A BC
2

OO
H̃k(RPk)

∂ // H̃k−1(S
k−1) = Z

The lemma now is a consequence of the fact that the boundary homomor-
phism ∂ : H̃k(RPk) −→ H̃k−1(S

k−1) is an isomorphism.

We are now ready to prove:

Proof of Theorem 8.12.1. By Lemma 8.12.2 and Corollary 8.12.8 we already
know that the theorem is true when n ≥ k ≥ 1. It remains to prove the
theorem for n < k. This will be done by induction on k. The case k = 1 is
clear. Let k > 1 and assume that the theorem is true for projective spaces
whose dimension is smaller than k. Since H̃n(i) : H̃n(RPk−1) −→ H̃n(RPk)
is an isomorphism for n 6= k and n 6= k − 1, by the inductive assumption we
then know that the theorem is true for n ≤ k − 2. It remains to show that
the theorem is also true for n = k−1. Recall that there is an exact sequence:

0 // 0 // H̃k(RPk)

∂eeeeeeeeeeeeeeeeeeee

rreeeeeeeeeeeeeeeeeee

H̃k−1(S
k−1)

H̃k−1(π)

// H̃k−1(RPk−1)
H̃k−1(i) // H̃k−1(RPk)

rrddddddddddddddddddddddddddddddddddddddddddd

0
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We now consider two cases. First let k be odd, and hence k − 1 is even.
Thus H̃k−1(RPk−1) = 0 and from the exactness of the above sequence it
follows that H̃k−1(RPk) = 0. In the case k is even, then k − 1 is odd and
therefore, according to Lemma 8.12.9, the image of H̃k−1(π) : H̃k−1(S

k−1) −→
H̃k−1(RPk−1) = Z is is the subgroup generated by the element 2. It then
follows from this exact sequence that H̃k−1(RPk) = Z/2. That finishes the
proof of the theorem.

8.13 Homology of projective spaces

So far we have calculated the integral homology groups of the projective
spaces. In this section we are going to use calculation to present H̃n(RPk, G)
for any group G. We start with rephrasing the algebraic universal coefficient
theorem (Theorem 6.6.1), in terms of the homology of topological spaces:

8.13.1 Theorem. Let X be a space and G be a group. Then:

H̃n(X,G) =

{
H̃0(X)⊗G if n = 0(
H̃n(X)⊗G

)
⊕ TorZ1 (H̃n−1(X), G) if n > 0

We can now use the above theorem and Theorem 8.12.1 to get:

8.13.2 Theorem. Let k ≥ 1. Then:

(1) if k is even

H̃n(RPk, G) =


0 if n = 0 or n > k

Z/2⊗Z G if n is odd and n ≤ k

TorZ1 (Z/2, G) if n is even and n ≤ k

(2) if k is odd

H̃n(RPk, G) =


0 if n = 0 or n > k

Z/2⊗Z G if n is odd and n < k

G if n = k

TorZ1 (Z/2, G) if n is even and n ≤ k

For example in the case G = Z/2 or G = Q we get:
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8.13.3 Corollary. Let k ≥ 1. Then:

H̃n(RPk,Z/2) =

{
0 if n = 0 or n > k

Z/2 if n ≥ k > 0

H̃n(RPk,Q) =

{
0 if k is even or n 6= k

Q if k is odd and n = k

8.13.4 Excercise. Calculate the following homology groups:

H̃n(S1 × S1) H̃n(S1 × S1,Z/2) H̃n(S1 × S1,Q)
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