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1. Questions and examples

In the study of Fourier series, several questions arise naturally, such as:

• are there conditions on cn, n ∈ Z, which ensure that

(1)
∞∑

n=−∞
cneint

converges for all t, and, similarly, are there conditions on an, n = 0, 1, . . . ,
and bn, n = 1, 2, . . . , which ensure that

(2)
a0

2
+

∞∑
n=1

(an cos nt + bn sinnt)

converges for all t?
• are there conditions which ensure that (1) and (2) define continuous func-

tions, continuously differentiable functions etc.?
• when is the operation

d

dt

∞∑
n=−∞

cneint =
∞∑

n=−∞

d

dt
(cneint) =

∞∑
n=−∞

incneint

(and the similar operation for (2)) allowed?
• when is the operation∫ b

a

( ∞∑
n=−∞

cneint

)
dt =

∞∑
n=−∞

∫ b

a

cneintdt

(and the similar operation for (2)) allowed?

In order to address these questions, let us consider them in somewhat greater gen-
erality. Say that we have a sequence of (complex or real valued) functions fn,
n = 1, 2, . . . or n = 0, 1, . . . (the case n ∈ Z can in practice be reduced to two
sequences of this form). We are interested in the sum

∞∑
n=1

fn.

In order to illustrate that the answers to the above questions are not quite as
straightforward as might be expected, let us give an example.

Example 1.1. Let

fn(t) =
t2

(1 + t2)n

1
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for n = 0, 1, . . . . Compute

s(t) =
∞∑

n=0

fn(t).

Solution: If t = 0, then fn(t) = 0 for all n. In other words, s(0) = 0. For t 6= 0,
we have

s(t) =
∞∑

n=0

fn(t) =
∞∑

n=0

t2

(1 + t2)n
= t2

∞∑
n=0

(
1

1 + t2

)n

.

The sum appearing on the right hand side is the sum of a geometric series. In fact,
let

α =
1

1 + t2
.

Note that, since t 6= 0, we have 0 < α < 1. Compute
∞∑

n=0

(
1

1 + t2

)n

=
∞∑

n=0

αn =
1

1− α
=

1
1− 1

1+t2

=
1 + t2

1 + t2 − 1
=

1 + t2

t2
.

Thus, for t 6= 0,

s(t) = t2
∞∑

n=0

(
1

1 + t2

)n

= t2
1 + t2

t2
= 1 + t2.

To conclude

s(t) =
{

0 t = 0,
1 + t2 t 6= 0.

In other words, s is not a continuous function, since s(0) = 0 and s(t) > 1 for t 6= 0.
On the other hand, all the functions fn can be differentiated an arbitrary number
of times. To conclude: even though the sum

∞∑
n=0

fn(t)

exists for all t, and even though the partial sums
N∑

n=0

fn

are continuous (they are in fact k times continuously differentiable for any positive
integer k), the sum itself is not even continuous.

Exercise 1.2. Compute

s(t) =
∞∑

n=0

t

(1 + t2)n

and sketch the graph.

Exercise 1.3. Compute

s(t) =
∞∑

n=0

t3

(1 + t2)n

and sketch the graph.
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It is possible to construct examples which illustrate that changing the order of
integration and summation is also problematic etc. We refer the reader interested
in more examples to Walter Rudin’s book Principles of Mathematical Analysis,
Chapter 7.

2. Pointwise and uniform convergence

The reason we obtain the behaviour exhibited in Example 1.1 is that the sum
converges pointwise but not uniformly. In the present section we wish to clarify
the meaning of these concepts.

Since we are interested in Fourier series, we are interested in sums of the form

s(t) =
∞∑

n=1

fn(t).

However, in the various definitions we shall carry out, it is convenient to note that
s can be considered to be a limit of a sequence of functions as opposed to a sum of
a sequence of functions. In fact, let

sn(t) =
n∑

k=1

fk(t).

Then
s(t) = lim

n→∞
sn(t).

Let us from now on consider a sequence of functions sn, n = 1, 2, . . . , and consider
the limit of this sequence as n → ∞. Let us define what is meant by pointwise
convergence.

Definition 2.1. Let sn, n = 1, 2, . . . , be a sequence of functions defined on an
interval I. If the sequence of numbers sn(t), n = 1, 2, . . . , converges for every t ∈ I,
then the sequence of functions sn, n = 1, 2, . . . , is said to converge pointwise on I.

Remark 2.2. If a sequence of functions sn, n = 1, 2, . . . , converges pointwise on
I, then we can define the function s on I by

s(t) = lim
n→∞

sn(t),

and we shall say that the sequence sn, n = 1, 2, . . . , converges to s pointwise on I.

Example 2.3. One sequence which converges pointwise is sn, n = 1, 2, . . . , where

sn(t) =
n∑

k=0

t2

(1 + t2)k
;

in Example 1.1 we proved that this sequence converges pointwise on R.

Example 2.4. Let
sn(t) = tn.

Then the sequence sn, n = 1, 2, . . . , converges pointwise on I = [0, 1], since

sn(t) = tn → 0

if 0 ≤ t < 1 and sn(1) = 1 → 1. If we let

s(t) = lim
n→∞

sn(t),
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we thus have

s(t) =
{

0 t ∈ [0, 1),
1 t = 1.

In other words, the function s has one point of discontinuity, namely t = 1.

Exercise 2.5. Construct a sequence of functions sn, n = 1, 2, . . . , on I = [0, 1]
such that

• the functions sn are all continuous,
• the sequence of functions sn, n = 1, 2, . . . , converges pointwise to a function

s on I,
• s has two points of discontinuity in I.

Can you construct a sequence as in the above exercise such that s has three, four
etc. points of discontinuity?

Exercise 2.6. (This exercise is difficult). Construct a sequence of functions sn,
n = 1, 2, . . . , on I = [0, 1] such that

• the functions sn are all continuous,
• the sequence of functions sn, n = 1, 2, . . . , converges pointwise to a function

s on I,
• s has an infinite number of points of discontinuity in I.

The concept of pointwise convergence should be contrasted with the concept of
uniform convergence.

Definition 2.7. Let sn, n = 1, 2, . . . , be a sequence of functions defined on an
interval I. Then the sequence sn, n = 1, 2, . . . , is said to converge uniformly on I
to a function s if, for every ε > 0, there is an N such that n ≥ N implies that

|sn(t)− s(t)| < ε

for all t ∈ I.

Remark 2.8. If the sequence sn, n = 1, 2, . . . , converges uniformly on I to a
function s, it converges to s pointwise on I (prove this).

Let us demonstrate that the sequence considered in Example 2.4 does not converge
uniformly. In order to do so, let us assume that the sequence sn, n = 1, 2, . . . , con-
verges uniformly on I = [0, 1] to a function S (if we can deduce a contradiction from
this assumption, we are allowed to conclude that the convergence is not uniform).
Due to Remark 2.8, the function S has to coincide with the function s appearing
in Example 2.4. Due to the definition of uniform convergence, we are allowed to
first fix ε > 0 (let us assume ε < 1). Given this ε, there is then an N such that for
n ≥ N , we have

|sn(t)− s(t)| < ε

for all t ∈ I. In the case considered in Example 2.4, s(t) = 0 for t ∈ [0, 1). We thus
have

|sn(t)| < ε

for every t ∈ [0, 1). Since the functions sn are continuous, this means that |sn(1)| ≤
ε, but we know that sn(1) = 1. Since ε < 1, we have a contradiction. Thus the
convergence is not uniform.
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Exercise 2.9. Draw a picture to illustrate the above argument.

In order to make the distinction between pointwise and uniform convergence clearer,
let us write down the relevant questions to ask in order to check whether one has
pointwise or uniform convergence.

Pointwise convergence: first fix a t ∈ I and then ask if, for every ε > 0, there is
an N such that for n ≥ N , |sn(t)− s(t)| < ε (here N depends on ε and t).

Uniform convergence: ask if, for every ε > 0, there is an N such that for n ≥ N ,
|sn(t)− s(t)| < ε for all t (here N only depends on ε).

Let us, finally, define uniform convergence explicitly for a series.

Definition 2.10. Let fk, k = 1, 2, . . . , be a sequence of functions defined on an
interval I. Then the sum

∞∑
k=1

fk

is said to converge uniformly on I to s if the the partial sums sn, n = 1, 2, . . . ,
where

sn =
n∑

k=1

fk,

converge uniformly on I to s.

3. Consequences of uniform convergence

The question remains: what is the use of uniform convergence? Let us quote a few
theorems that we shall need.

Let us start with a criterion which ensures that the sum is continuous.

Theorem 3.1. Let fk, k = 1, 2, . . . , be a sequence of continuous functions defined
on an interval I. Assume that the sum

∞∑
k=1

fk

converges uniformly on I to s. Then s is continuous on I.

As was noted in the introduction, it is of interest to find a criterion which allows
us to change the order of integration and summation.

Theorem 3.2. Let fk, k = 1, 2, . . . , be a sequence of Riemann integrable functions
on an interval I = [a, b] (where −∞ < a < b < ∞). Assume that the sum

∞∑
k=1

fk

converges uniformly on I to s. Then s is Riemann integrable on I and∫ b

a

s(t)dt =
∫ b

a

∞∑
k=1

fk(t)dt =
∞∑

k=1

∫ b

a

fk(t)dt.

Finally, let us address the issue of differentiation.
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Theorem 3.3. Let fk, k = 1, 2, . . . , be a sequence of continuous and continuously
differentiable functions defined on an interval I. Assume that the sums

∞∑
k=1

fk,

∞∑
k=1

f ′k

converge uniformly on I to s and s1 respectively. Then s is continuous and contin-
uously differentiable on I, and

s′ =

( ∞∑
k=1

fk

)′
=

∞∑
k=1

f ′k

on I.

We refer the reader interested in a proof of these statements to Walter Rudin’s
book Principles of Mathematical Analysis, Chapter 7.

4. Weierstrass M-test

None of the theorems mentioned in the previous section are very useful unless we
have a good criterion which ensures that a series converges uniformly. Such a
criterion is provided by the Weierstrass M -test.

Theorem 4.1 (Weierstrass M -test). Let fk, k = 1, 2, . . . , be a sequence of functions
defined on an interval I and assume that there are numbers Mk, k = 1, 2, . . . , such
that

|fk(t)| ≤ Mk,

for t ∈ I and k = 1, 2, . . . , and such that
∞∑

k=1

Mk

is convergent. Then the sum

s(t) =
∞∑

k=1

fk(t)

is well defined for all t ∈ I and
∑∞

k=1 fk converges uniformly on I to s.

Example 4.2. Consider
∞∑

k=1

1
k2 + 1

sin kt.

We wish to use the above results to demonstrate that this sum defines a continuous
function. We have

fk(t) =
1

k2 + 1
sin kt,

k = 1, 2, . . . . In order to be allowed to apply the Weierstrass M -test, we wish to
estimate |fk(t)|. We have

|fk(t)| = 1
k2 + 1

| sin kt| ≤ 1
k2 + 1

.

Let us choose
Mk =

1
k2 + 1

,
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k = 1, 2, . . . . Then
∞∑

k=1

Mk

is convergent and Theorem 4.1 applies. Thus the sum

s(t) =
∞∑

k=1

1
k2 + 1

sin kt

is well defined for all t ∈ R and
∑∞

k=1 fk converges uniformly on R to s. Since the
functions fk are continuous, Theorem 3.1 applies in order to yield the conclusion
that s is continuous.

Example 4.3. More generally, if an, n = 0, 1, 2, . . . , and bn, n = 1, 2, . . . , are
complex numbers such that

∞∑
n=1

(|an|+ |bn|) < ∞,

then

s(t) =
a0

2
+

∞∑
n=1

(an cos nt + bn sinnt)

is well defined for all t ∈ R. Moreover, we obtain uniform convergence due to the
Weierstrass M -test and continuity of s due to Theorem 3.1 (when integrating, we
can also change the order of summation and integration due to Theorem 3.2).

Example 4.4. By an argument similar to the one presented in Example 4.2, it is
possible to prove that if cn, n ∈ Z, is a sequence of complex numbers such that

∞∑
n=−∞

|cn| < ∞,

then
∞∑

n=−∞
cneint,

conveges uniformly on R to a function s. Moreover, s is continuous and, due to
Theorem 3.2, we are allowed to change the order of summation and integration in
order to conclude that

1
2π

∫ π

−π

s(t)e−imtdt =
1
2π

∫ π

−π

( ∞∑
n=−∞

cneint−imt

)
dt

=
∞∑

n=−∞
cn

1
2π

∫ π

−π

eint−imtdt = cm;

the second equality is justified by Theorem 3.2.

Let us turn to differentiability.

Example 4.5. Consider ∑
k∈Z

1
(1 + k2)2

eikt.
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In this case
fk(t) =

1
(1 + k2)2

eikt, f ′k(t) =
ik

(1 + k2)2
eikt.

Since
|fk(t)| ≤ 1

(1 + k2)2

and ∑
k∈Z

1
(1 + k2)2

< ∞,

we can apply the Weierstrass M -test in order to conclude that∑
k∈Z

fk

conveges uniformly on R to a function s. Since

|f ′k(t)| ≤ |k|
(1 + k2)2

and ∑
k∈Z

|k|
(1 + k2)2

< ∞,

we can also apply the Weierstrass M -test in order to conclude that∑
k∈Z

f ′k

conveges uniformly on R to a function s1. Due to Theorem 3.3 we thus conclude
that s is continuous and continuously differentiable and that

s′(t) =
∑
k∈Z

ik

(1 + k2)2
eikt.

Example 4.6. By an argument similar to that given in the previous example we
have the following conclusion. If m ≥ 1 is an integer and∑

n∈Z
|n|m|cn| < ∞,

then
s(t) =

∑
n∈Z

cneint

is m-times continuously differentiable and

s′(t) =
∑
n∈Z

incneint, . . . , s(m)(t) =
∑
n∈Z

(in)mcneint.

Similarly, if
∞∑

n=1

|n|m(|an|+ |bn|) < ∞,

then

s(t) =
a0

2
+

∞∑
n=1

(an cos nt + bn sinnt)

is m times continuously differentiable and we are allowed to differentiate under the
summation sign.


