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Max is 24 points and then possibly 2 extra bonus points for the last problem and the bonus points you have
gathered for the hand inproblems. Grades will be given as follows; 21 or more gives an A; 18-20 B; 16-17 C;
14-15 D; 11-13 E and 10 will give Fx.
Skrivtid: 8.00-13.00.
Hjälpmedel: Allowed equipment: pencil, eraser, ruler.
Please motivate your solutions clearly!

1. Consider the following sum:

e1 + e2 + 3e3 + 7e4 + 19e5 + 29e6,

where ei = 0 or 1 for all 1 ≤ i ≤ 6. Let Fn be the number of ways that this sum could be n. Write the
generating function

∑60

n=0
Fnxn as a product. (2 points)

2. Determine which permutation gives the following pair of standard Young tableaux under the
RSK-correspondence. (2 points)

1 2 4 5
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3. Draw the tree on 10 vertices with the Prüfer code (6, 5, 5, 6, 2, 1, 6, 3). (2 points)

4. Simplify the following sum to a formula involving only one or two binomial coefficients.

∑

k≥−2

1

k + 3

(

49

k + 2

)(

100

70 − k

)

(3 points)

5. Consider the recursion
an+2 = 5an+1 − 6an + 1, n ≥ 0

with initial values a0 = 1, a1 = 3.

(a) Determine the ordinary generating function for an.

(b) Use it to determine an exact formula for an. (3 points)

6. The edges of the following graph shall be colored with two colors blue and red. For each k determine
how many non-equivalent colorings there are with k red edges. Two colorings are considered equivalent
if we can obtain one from the other by rotation or reflection. There are no other restrictions on the
coloring. (4 points)



7. For n ≥ 2, let d1, . . . , dn be a sequence of positive integers such that
∑

i di = 2n − 2. Prove that the
number of trees on the labeled nodes 1, . . . , n where node i has valency di for each i is equal to

(n − 2)!

(d1 − 1)! . . . (dn − 1)!
.

Hint: A tree always has a leaf, what happens if you remove it? (4 points)

8. Assume that C is a 3-error correcting binary code of length 23, (that is q = 2, n = 23, e = 3, d = 7
with the notations in the book). Assume also that the zero word 0 is in C and that |C| = 212. Let Ai

be the number of codewords in C that has weight i, so in particular A0 = 1.

(a) Prove that C is a perfect code. (2 points)

(b) Prove that A7 = 253. Hint: Count in two different ways the number of pairs (x, c) where x is any
word with weight 4 and c ∈ C at distance 3 from x. (2 points)

(c) Bonus question: Deduce also A8 and explain why all Ai are uniquely determined. (2 points)

Solutions

1. If e6 is 0 we get no contribution to the sum, if e6 = 1 we get a contribution of 27. Thus it corresponds to a
factor 1+x27. Likewise with the other ei so we get

∑60

n=0
Fnxn = (1+x)2(1+x3)(1+x7)(1+x19)(1+x27).

2. Using the description of the inverse of RSK found in the text book we get the permutation
8 9 1 6 7 3 4 10 5 2. (In the students’ solutions I expect to see some description of some intermediate
steps.)

3. Following the description of the inverse of Prüfer coding we get the following tree. (In the students’
solutions I expect to see some explanation of how you have proceeded.)

10 3 6 1 2 9

4

7
5

8

4. First use “absorption/extraction” identity 1

k+3

(

49

k+2

)

= 1

50

(

50

k+3

)

. Then use Vandermond’s convolution
∑

k≥−3

(

50

k+3

)(

100

70−k

)

=
(

150

73

)

. Putting this together we get

∑

k≥−2

1

k + 3

(

49

k + 2

)(

100

70 − k

)

=
1

50

((

150

73

)

−

(

100

73

))

.

5. (a) Let f(x) =
∑

n≥0
anxn. Multiplying each side of the recursion with xn and summing over n ≥ 0

we get
f(x) − a1x − a0

x2
=

5(f(x) − a0)

x
− 6f(x) +

1

1 − x
.

This simplifies to

f(x) =
1

1 − 3x
+

x2

(1 − x)(1 − 2x)(1 − 3x)
.



(b) By partial fraction expansion (for instance “handp̊aläggning”) this gives

f(x) =
1/2

1 − x
−

1

1 − 2x
+

3/2

1 − 3x
.

From this we can deduce the exact formula

an =
1

2
(1 + 3n+1) − 2n.

6. Give the following labels to the edges
1

2

3

4
5

67

8

We have the dihedral group D4 acting on the graph with the following possible permutations

permutation Cycle index
identity s8

1

(1 2 3 4)(5 6 7 8) s2
4

(1 4 3 2)(5 8 7 6) s2
4

(1 3) (2 4)(5 7)(6 8) s4
2

(1)(3)(2 4)(5 8)(6 7) s2
1s

3
2

(2)(4)(1 3)(5 6)(7 8) s2
1s

3
2

(5)(7)(1 2)(3 4)(6 8) s2
1s

3
2

(6)(8)(1 4)(2 3)(5 7) s2
1s

3
2

Thus the cycle index for the entire group is ZG = 1

8
(s8

1 + 2s2
4 + s4

2 + 4s2
1s

3
2). Let ak be the number of

ways to color the graph with k red vertices. By the Cycle index theorem we get by substituting 1 + ti

for si in ZG

8
∑

k=0

aktk =
1

8

(

(1 + t)8 + 2(1 + t4)2 + (1 + t2)4 + 4(1 + t)2(1 + t2)3
)

= 1 + 2t + 6t2 + 10t3 + 13t4 + 10t5 + 6t6 + 2t7 + t8.

7. We prove this by induction over n. For n = 2 the only possible degrees are d1 = d2 = 1 and the formula
becomes 0!

0!0!
= 1 (remember that 0! = 1), which is true since there are exactly one such tree.

Assume now we are given a degree sequence d1, . . . , dn, such that di ≥ 1 and
∑

i di = 2n − 2. All
the di cannot be greater than 2 (by the pigeon hole principle) so there has to be one (in fact at
least two) that is equal to 1. We can without loss of generality assume that dn = 1. This means that
n is a leaf in every tree with degree sequence d1, . . . , dn. Let j denote the node that n is adjacent
to. Removing the leaf n cause the degree to go down by one for node j and give degree sequence
d1, . . . , dj−1, dj − 1, dj+1, . . . , dn−1. By induction, we know that, if dj − 1 ≥ 1 the number of trees on
n − 1 nodes with that degree sequence is

(n − 3)!

(d1 − 1)! . . . (dj−1 − 1)!(dj − 2)!(dj+1 − 1)! . . . (dn−1 − 1)!

=
(dj − 1)(n − 3)!

(d1 − 1)! . . . (dj−1 − 1)!(dj − 1)!(dj+1 − 1)! . . . (dn−1 − 1)!

Note that the second formula is valid also if dj = 1. Summing over all j gives that the total number of
trees is

∑

j

(dj − 1)(n − 3)!

(d1 − 1)! . . . (dn−1 − 1)!
=

(n − 3)!

(d1 − 1)! . . . (dn−1 − 1)!

∑

j

(dj − 1)

=
(n − 3)!

(d1 − 1)! . . . (dn−1 − 1)!
(n − 2) =

(n − 2)!

(d1 − 1)! . . . (dn−1 − 1)!
.



Since dn = 1 this is the equal to the formula we want to prove.

8. (a) The Hamming bound (sphere packing bound) says that

|C| ≤
223

∑3

i=0

(

23

i

) =
223

1 + 23 + 253 + 1771
=

223

2048
= 212.

Equality in the Hamming bound is the definition of a perfect code and thus C is perfect.

(b) We follow the given hint. First note that 0 ∈ C and d = 7 implies that there are no code words in
C of weights 1 to 6. The total number of x ∈ H(23, 2) with wt(x) = 4 is

(

23

4

)

. Since C is assumed
to have minimum distance 7 each such x can be at distance 3 from at most one code word c. Since
C is assumed to be perfect, there is in fact exactly one such c ∈ C and thus exactly one pair (x, c)
for any given x. One the other hand we can choose A7 codewords c with wt(c) = 7 and then we
can find

(

7

4

)

words x of weight 4 using using exactly 4 of the 7 ones in c. This double counting

gives A7

(

7

4

)

=
(

23

4

)

. Since
(

23

4

)

= 23·22·21·20
4·3·2

= 23 · 11 · 7 · 5 and likewise
(

7

4

)

= 7 · 5 we conclude

A7 =
23 · 11 · 7 · 5

7 · 5
= 253.

(c) To determine A8 we count all words of weight 5 by which code word they are closest to, which
could be a word of weight 7 or 8. For each code word c of weight 7 there are

(

7

5

)

words of weight

5 at distance 2 from c and likewise for a code word of weight 8 there are
(

8

5

)

words of weight 5 at

distance 3. Since C is perfect and 3-error correcting this gives the relation
(

23

5

)

= A7

(

7

5

)

+ A8

(

8

5

)

.
From this we can deduce A8 = 506.

To determine Ak we proceed similarly by counting the words of weight k − 3. In general we get

(

23

k − 3

)

= Ak−6

(

23 − k + 6

3

)

+ Ak−5

(

23 − k + 5

2

)

+ Ak−4

((

23 − k + 4

1

)

+

(

23 − k + 4

2

)

(k − 4)

)

+ Ak−3 (1 + (k − 3)(23 − k + 3)) + Ak−2

((

k − 2

1

)

+

(

k − 2

2

)

(23 − k + 2)

)

+ Ak−1

(

k − 1

2

)

+ Ak

(

k

3

)

.

Let us look at the term containing Ak−4. For each code word of weight k−4 we may obtain a word
of weight k−3 by either changing one 0 to a 1 or by changing two 0 to 1 and one 1 to 0. Similarly
for the other terms. This identity enables us to recursively compute Ak for all 0 ≤ k ≤ 23.


