Institutionen för matematik
 KTH

Chaotic Dynamical Systems, Fall 2010

Homework assignment 3

The exercises are due on November 26, 2010

1. Consider the diffeomorphism f_{λ} of the plane given by

$$
f_{\lambda}:\binom{x}{y} \rightarrow\binom{e^{x}-\lambda}{-\frac{\lambda}{2} \arctan y}
$$

where λ is a parameter.
a) Find all fixed points and periodic points of period 2 for f_{λ}.
b) Classify each of these periodic points as sinks, sources or saddles.
c) If the point is a saddle, identify and sketch the stable and unstable manifolds.
2. Consider the map $S(x, y)=(2 x+y \bmod 1, x+y \bmod 1)$ on the two-torus \mathbb{T}^{2} (see Challenge 2).
a) Prove Step 1 in Challenge 2 on page 93, for our particular map S.
b) Prove that $(0,0)$ is the only fixed point.
c) Show that the periodic points are dense in \mathbb{T}^{2}.
d) Show that the stable and unstable manifolds of $(0,0)$ are dense in \mathbb{T}^{2}.
3. The Lozi Attractor. Consider the piecewise linear map of the plane given by

$$
L\binom{x}{y}=\binom{1+y-A|x|}{B x}
$$

where A and B are parameters. Assume that $0<B<1$, $A>B+1$ and $2 A+B<4$.
a) Prove that L has two fixed points, one of which lies in the first quadrant. We call this point p.
b) Prove that the unstable set $W^{u}(p)$ contains a straight line which intersects the x-axis at a point q and the y-axis at $L^{-1}(q)$.
c) Let l denote the straight line segment in $W^{u}(p)$ connecting q and $L^{-1}(q)$. Sketch $L(l)$ and $L^{2}(l)$.
d) Construct the triangle T with vertices at $q, L(q)$ and $L^{2}(q)$. Prove that T is a trapping region for L (i.e., show that $L(T)$ lies in the interior of T).
e) Use a computer to plot the forward orbits of points in T. The result is a picture of the Lozi attractor.
4. Let p_{1}, p_{2} and p_{3} be hyperbolic saddles of a smooth diffeomorphism f of \mathbb{R}^{2}. Assume that $W^{u}\left(p_{1}\right)$ intersects $W^{s}\left(p_{2}\right)$ transversally at some point q_{1}, and that $W^{u}\left(p_{2}\right)$ intersects $W^{s}\left(p_{3}\right)$ transversally at some point q_{2}. Use the λ-lemma (see page 415) to prove the following: given any two (small) neighborhoods $U \ni p_{1}$ and $V \ni p_{3}$, there exists a point $x \in U$ and an $n \geq 0$ such that $f^{n}(x) \in V$.
(This is an example of property of diffeomorphisms called accessibility which is a well-studied notion in dynamics.)

