Institutionen för matematik **KTH** Chaotic Dynamical Systems, Fall 2010

Homework assignment 3

The exercises are due on November 26, 2010

1. Consider the diffeomorphism f_{λ} of the plane given by

$$f_{\lambda}: \begin{pmatrix} x\\ y \end{pmatrix} \to \begin{pmatrix} e^x - \lambda\\ -\frac{\lambda}{2} \arctan y \end{pmatrix}$$

where λ is a parameter.

a) Find all fixed points and periodic points of period 2 for f_{λ} .

b) Classify each of these periodic points as sinks, sources or saddles.

c) If the point is a saddle, identify and sketch the stable and unstable manifolds.

2. Consider the map $S(x, y) = (2x + y \mod 1, x + y \mod 1)$ on the two-torus \mathbb{T}^2 (see Challenge 2).

a) Prove Step 1 in Challenge 2 on page 93, for our particular map S.

- b) Prove that (0,0) is the only fixed point.
- c) Show that the periodic points are dense in \mathbb{T}^2 .

d) Show that the stable and unstable manifolds of (0,0) are dense in \mathbb{T}^2 .

3. The Lozi Attractor. Consider the piecewise linear map of the plane given by

$$L\binom{x}{y} = \binom{1+y-A|x|}{Bx}$$

where A and B are parameters. Assume that 0 < B < 1, A > B + 1 and 2A + B < 4.

a) Prove that L has two fixed points, one of which lies in the first quadrant. We call this point p.

b) Prove that the unstable set $W^u(p)$ contains a straight line which intersects the *x*-axis at a point *q* and the *y*-axis at $L^{-1}(q)$.

c) Let l denote the straight line segment in $W^u(p)$ connecting q and $L^{-1}(q)$. Sketch L(l) and $L^2(l)$.

d) Construct the triangle T with vertices at q, L(q) and $L^2(q)$. Prove that T is a trapping region for L (i.e., show that L(T) lies in the interior of T).

e) Use a computer to plot the forward orbits of points in T. The result is a picture of the Lozi attractor.

4. Let p_1, p_2 and p_3 be hyperbolic saddles of a smooth diffeomorphism f of \mathbb{R}^2 . Assume that $W^u(p_1)$ intersects $W^s(p_2)$ transversally at some point q_1 , and that $W^u(p_2)$ intersects $W^s(p_3)$ transversally at some point q_2 . Use the λ -lemma (see page 415) to prove the following: given any two (small) neighborhoods $U \ni p_1$ and $V \ni p_3$, there exists a point $x \in U$ and an $n \ge 0$ such that $f^n(x) \in V$.

(This is an example of property of diffeomorphisms called *accessibility* which is a well-studied notion in dynamics.)