SF2724: TOPICS IN MATHEMATICS IV: APPLIED TOPOLOGY HOMEWORK SET 2

MATTIAS DAHL

Let ω_{n-1} be the (n-1)-form on $\mathbb{R}^n \setminus \{0\}$ defined by

$$\omega_{n-1} = \frac{1}{r^n} \sum_{i=1}^n (-1)^{i-1} x_i \, dx_1 \wedge \dots \wedge \widehat{dx_i} \wedge \dots \wedge dx_n,$$

where $\widehat{dx_i}$ is omitted and $r = (x_1^2 + \dots + x_n^2)^{1/2}$.

- (1) Show that ω_{n-1} is closed. Compute $dr \wedge \omega_{n-1}$.
- (2) Let $F : \mathbb{R}^2 \to \mathbb{R}^3 \setminus \{0\}$ be given in spherical coordinates by

 $(y_1, y_2) \mapsto (\rho \sin \theta \cos \phi, \rho \sin \theta \sin \phi, \rho \cos \theta),$

where ρ, θ, ϕ are smooth functions on \mathbb{R}^2 , $\rho > 0$. Compute $F^*\omega_2$ expressed in $d\rho, d\theta, d\phi$.

(3) Let $U_1 = \mathbb{R}^n \setminus \{(x_1, 0, \dots, 0) \mid x_1 \geq 0\}$ and $U_2 = \mathbb{R}^n \setminus \{(x_1, 0, \dots, 0) \mid x_1 \leq 0\}$ so that $U_1 \cup U_2 = \mathbb{R}^n \setminus \{0\}$ and $U_1 \cap U_2 = \mathbb{R} \times (\mathbb{R}^{n-1} \setminus \{0\})$. Compute $\partial^*[\omega_{n-2}]$, where ∂^* is the connecting homomorphism in the Mayer-Vietoris sequence for $\{U_1, U_2\}, \partial^* : H^{n-2}(U_1 \cap U_2) \to H^{n-1}(\mathbb{R}^n \setminus \{0\})$.

Second updated hint: ω_{n-2} is considered as a form on $U_1 \cap U_2 = \mathbb{R} \times (\mathbb{R}^{n-1} \setminus \{0\})$ which is constant in the first factor. Explicitly, set $s = (x_2^2 + \cdots + x_n^2)^{1/2}$ so that $r^2 = x_1^2 + s^2$, and

$$\omega_{n-2} = \frac{1}{s^{n-1}} \sum_{j=2}^n (-1)^{j-1} x_j \, dx_2 \wedge \dots \wedge \widehat{dx_j} \wedge \dots \wedge dx_n.$$

Choose a partition of unity $\{p_1, p_2\}$ subordinate to $\{U_1, U_2\}$ with functions of the form $\alpha(x_1/s)$. Since p_1 has support in U_1 (and thus vanishes on $\{(x_1, 0, \ldots, 0) \mid x_1 \geq 0\}$) the form $p_1\omega_{n-2}$ is well-defined on U_2 , and vice versa $p_2\omega_{n-2}$ is well-defined on U_1 . Define functions α_n by

$$\alpha_n(t) = c_n \int_{-\infty}^t \frac{1}{(1+y^2)^{n/2}} \, dy,$$

do they give a proper partition of unity?

Some computations: The computation of $\partial^*[\omega_{n-2}]$ involves computing $dp_1 \wedge \omega_{n-2}$. With $p_1 = \alpha(x_1/s)$ we have

$$dp_1 = \alpha'(x_1/s) \frac{1}{s^3} \left(s^2 dx_1 - x_1 \sum_{i=2}^n x_i dx_i \right).$$

This gives

$$dp_{1} \wedge \omega_{n-2} = \alpha'(x_{1}/s) \frac{1}{s^{3}} \left(s^{2} dx_{1} - x_{1} \sum_{i=2}^{n} x_{i} dx_{i} \right)$$

$$\wedge \frac{1}{s^{n-1}} \sum_{j=2}^{n} (-1)^{j-1} x_{j} dx_{2} \wedge \dots \wedge \widehat{dx_{j}} \wedge \dots \wedge dx_{n}$$

$$= \alpha'(x_{1}/s) \frac{1}{s^{n+2}} \left(s^{2} \sum_{j=2}^{n} (-1)^{j-1} x_{j} dx_{1} \wedge dx_{2} \wedge \dots \wedge \widehat{dx_{j}} \wedge \dots \wedge dx_{n} \right)$$

$$= \alpha'(x_{1}/s) \frac{1}{s^{n+2}}$$

$$\left(s^{2} \sum_{j=2}^{n} (-1)^{j-1} x_{j} dx_{1} \wedge dx_{2} \wedge \dots \wedge \widehat{dx_{j}} \wedge \dots \wedge dx_{n} + s^{2} x_{1} dx_{2} \wedge \dots \wedge dx_{n} \right)$$

$$= \alpha'(x_{1}/s) \frac{1}{s^{n}} \sum_{j=1}^{n} (-1)^{j-1} x_{j} dx_{1} \wedge \dots \wedge \widehat{dx_{j}} \wedge \dots \wedge dx_{n} + s^{2} x_{1} dx_{2} \wedge \dots \wedge dx_{n} \right)$$

$$= \alpha'(x_{1}/s) \frac{1}{s^{n}} \sum_{j=1}^{n} (-1)^{j-1} x_{j} dx_{1} \wedge \dots \wedge \widehat{dx_{j}} \wedge \dots \wedge dx_{n}$$

$$= \alpha'(x_{1}/s) \frac{(x_{1}^{2} + s^{2})^{n/2}}{s^{n}} \omega_{n-1}$$

$$= \alpha'(x_{1}/s) \left(1 + \left(\frac{x_{1}}{s}\right)^{2} \right)^{n/2} \omega_{n-1}.$$

With the choice of α above we have $\alpha'(t) = c_n(1+t^2)^{-n/2}$ and we conclude that

$$dp_1 \wedge \omega_{n-2} = c_n \omega_{n-1}.$$

Note that the constant c_n is determined by the fact that $\{p_1, p_2\}$ is a partition of unity, so in particular $\lim_{t\to\infty} \alpha_n(t) = 1$.